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Abstract

This paper initiates the study of fractional eternal domination in graphs,
a natural relaxation of the well-studied eternal domination problem. We
study the connections to flows and linear programming in order to obtain
results on the complexity of determining the fractional eternal domination
number of a graph G, which we denote γ∞

f (G). We study the behaviour
of γ∞

f (G) as it relates to other domination parameters. We also determine
bounds on, and in some cases exact values for, γ∞

f (G) when G is a member
of one of a variety of important graph classes, including trees, split graphs,
strongly chordal graphs, Kneser graphs, abelian Cayley graphs, and graph
products.
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1. Introduction

Let G = (V,E) be a graph. We denote by NG(u) the (open) neighbourhood of
u ∈ V (G), or the set of vertices which are adjacent to u in G (one may write N(u)
if G is clear from context). The closed neighbourhood of u is NG[u] = NG(u)∪{u}.
The closed neighbourhood of a set X ⊆ V (G) is NG[X] =

⋃

u∈X NG[u] (the
open neighbourhood may be defined similarly). A set X ⊆ V (G) is called a
dominating set if NG[X] = V (G). The cardinality of a minimum dominating
set in G is denoted γ(G); this parameter is called the domination number of
G. A well-studied variation of the domination number of graphs is the so-called
fractional domination number (see, e.g., [8, 9]). A fractional dominating function
of G is a function w : V (G) → R such that

∑

x∈N [v]w(x) ≥ 1 for all v ∈ V . The
total weight of w is

∑

x∈V w(x). A graph G is S-fractionally dominated if there
exists a fractional dominating function of G with total weight less than or equal
to S. The fractional domination number of G is the smallest total weight of a
fractional dominating function of G; the parameter is denoted γf (G).



Fractional Eternal Domination: Securely Distributing ... 1397

Many recent papers have considered dynamic models of graph “protection”,
where agents move through a graph in a way that somehow responds to “attacks”.
We refer the reader to [12] for a survey of models related to graph domination
which includes both known results and many interesting conjectures. Our work
in this paper follows a line of research which originates from [3], where the
“eternal domination” model was introduced. We describe this model in terms of
a two-player game, played between defender and attacker. The defender controls
a set of guards which occupy some subset of V (G) (typically, only one guard is
allowed to occupy any one vertex). The attacker will attack some vertex in the
graph, which forces the defender to respond to that attack. More precisely, the
defender chooses some set D1 ⊆ V (G) as the starting positions for the guards,
and will choose each subsequent set Di+1, i ≥ 1, in response to the game-play of
the attacker in the i-th round (this is sometimes referred to as the adaptive online
model of the game). For each i ≥ 1, the attacker’s move in the i-th round is to
choose some vertex vi /∈ Di. The defender must then choose some vertex ui ∈ Di

such that vi ∈ N(ui), and set Di+1 = Di∪{vi}\{ui}. The goal of the defender is
to be able to respond to any infinite sequence of attacks. If the defender can win
from some set D1, then D1 is called an eternal dominating set; note that such
a set D1 (and each subsequent Di) must necessarily be a dominating set. The
eternal domination number of G, denoted γ∞(G), is the minimum cardinality of
an eternal dominating set in G. Recall that a clique in G is a subset of V (G)
whose elements are pairwise adjacent, and an independent set (or stable set) is
a subset of V (G) whose elements are pairwise non-adjacent. The clique cover
number of G, denoted θ(G), is the minimum cardinality of a collection of cliques
of G whose union is V (G). The independence number of G, denoted α(G), is the
maximum cardinality of an independent set of G. It is easy to argue (see [6]),
that

α(G) ≤ γ∞(G) ≤ θ(G).

One may consider a related model where, instead of only moving one guard to
respond to an attack, one may reconfigure Di to Di+1 by moving any number
of guards between adjacent vertices so long as the attacked vertex receives one
guard. This is called the m-eternal domination model (introduced in [6], and
an initial set of vertices that can guard any sequence of attacks is called an
m-eternal dominating set. The minimum cardinality of an m-eternal dominating
set, denoted γ∞m (G), is the m-textit-eternal domination number of G. It is clear
that γ(G) ≤ γ∞m (G). By a clever application of Hall’s Theorem, given in [6], it
has been shown that γ∞m (G) ≤ α(G); thus we have the following fundamental
inequality chain

γ(G) ≤ γ∞m (G) ≤ α(G) ≤ γ∞(G) ≤ θ(G).

We consider an eternal domination model that may be considered as the
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fractional relaxation of m-eternal domination, which we call fractional eternal
domination∗. We assign non-negative real weights to V (G) so that S-fractional
domination is maintained for some fixed value S subject to vertex attacks. Denote
the weight at vertex v at time-step i by wi(v), and write w(v) for the initial
weight w1(v) of the vertex v. After the i-th attack at vi, the defender may move
weight from any vertex x to the vertices in N(x). If mxy,i denotes the weight
moved from x to y in round i, then we require only that

∑

y∈N(x)mxy,i ≤ wi(x).
The defender may do this simultaneously for as many vertices as necessary, but
the resulting weight function wi+1 must S-fractionally dominate the graph and
wi+1(vi) ≥ 1. We denote by γ∞f (G) the infimum over all S for which G can be
eternally S-fractionally dominated, and call this the fractional eternal domination
number of G. Note that if one restricts all quantities in the above description to
be integral, then one recovers the m-eternal domination model.

In Section 2, we look at fractional eternal domination through the lens of
linear programming. Section 3 examines some basic properties of γ∞f (G), in
particular as it relates to other domination parameters. In Sections 4, 5, and 6
we establish properties of γ∞f (G) when G is a member of a number of important
graph classes.

2. Linear Programming and Reconfiguration

We begin with a look at the fractional eternal domination problem through a
linear programming lens, and give conditions under which a graph’s fractional
eternal domination number, as well as a guarding strategy, can be computed
efficiently.

Let G be a graph with V (G) = {1, 2, . . . , n}, and assign to vertex i a variable
xi. Denote by Ni = N [i], and for S ⊆ V (G) let NS =

⋃

i∈S Ni. Without loss of
generality, we may assume that vertex 1 is attacked first. The quantity γ∞f (G)
must then be at least the solution to the following LP, which corresponds to the
minimum weight of a fractional dominating set in which vertex 1 has weight at
least 1.

Minimize
∑n

i=1 xi subject to

• x1 ≥ 1,

• xi ≥ 0 for all i = 2, . . . , n,

•
∑

j∈Ni
xj ≥ 1 for all i = 2, . . . , n.

∗This model could also be called fractional m-eternal domination, allowing for the possibility
of a fractional relaxation of the one-guard move model. We suppress the “m-” throughout for
the sake of simplicity.
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Let w1 and w2 be fractional dominating functions of G with the same total
weight. We say that w1 can be reconfigured to w2 if, for 1 ≤ i ≤ n, the weight w(i)
can be redistributed to vertices in N [i] so that the resulting fractional dominating
function is w2.

Let Nw1,w2
be the network with vertex set V (Nw1,w2

) = {s, t}∪{1, 2, . . . , n}∪
{1′, 2′, . . . , n′} and arc set A(Nw1,w2

) = {si : 1 ≤ i ≤ n} ∪ {ij′ : j ∈ NG[i]} ∪ {i′t :
1 ≤ i′ ≤ n}. The capacity of the arc si is w1(i), 1 ≤ i ≤ n. The capacity of the
arc i′t is w2(i

′), 1 ≤ i′ ≤ n. Each arc in the set {ij′ : j ∈ NG[i]} has infinite
capacity.

w1(1)

w1(2)

w1(3)

w1(4)

w2(1
′)

w2(2
′)

w2(3
′)

w2(4
′)

s

1

2

3

4

1′

2′

3′

4′

t

Figure 1. Reconfiguration network Nw1,w2
for C4, with V = {1, 2, 3, 4}, E = {12, 23,

34, 14}.

The following lemma follows easily from the definition of a flow.

Lemma 2.1. Let G be a graph with V (G) = {1, 2, . . . , n}. Let w1 and w2 be
fractional dominating functions of G with the same total weight. Then w1 can be
reconfigured to w2 if and only if there is a flow from s to t in Nw1,w2

with value
∑n

i=1w1(i).

In the fractional eternal domination problem, defending G from an infinite
sequence of attacks requires a collection of fractional dominating functions of the
same total weight such that

1. for each i, 1 ≤ i ≤ n there exists at least one function in the collection in
which the weight assigned to vertex i is at least 1, and

2. for each fractional dominating function w in the collection and each j, 1 ≤
j ≤ n, there exists a fractional dominating function wj in the collection in
which the weight assigned to vertex j is at least 1 and w can be reconfigured
to wj .
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It follows that there are n fractional dominating functions w1, w2, . . . , wn (not
necessarily distinct) of the same total weight and such that w(i) = 1, 1 ≤ i ≤ n.
If we impose the additional condition that each of these can be reconfigured to
every other function in the collection, then the smallest total weight for which
there exists such a collection of fractional dominating functions is an upper bound
on the fractional eternal domination number. We show that this quantity can
be determined as the solution to a linear program with rational constraints, and
hence is rational.

Let G be a graph with V = {1, 2, . . . , n}, and let w be a fractional dominating
function of G. Then w corresponds to an n-tuple X = (x1, x2, . . . , xn) where
xi = w(i). In this work, we will use the functional notation and the n-tuple
notation interchangeably and will refer to X as being a fractional dominating
function.

For 1 ≤ i ≤ n, Xi = (xi1, xi2, . . . , xin), and let FDSi denote the collection of
inequalities corresponding to Xi being a fractional dominating function

FDSi : xii = 1, and
∑

j∈NG[k]

xij ≥ 1, 1 ≤ k ≤ n.

For 1 ≤ i, j ≤ n and i 6= j, let RECONFIGij denote the set of constraints in
the linear program corresponding to determining the maximum value of a flow
from s to t in NXi,Xj , together with the constraint that the value of the flow is
∑n

ℓ=1 xiℓ.

Based on the discussion above, an optimal solution to the following linear
program A provides an upper bound on the fractional eternal domination number
and the collection X1, X2, . . . , Xn of fractional dominating functions of the given
total weight that can be used to defend G.

A : Minimize
∑n

j=1 x1j subject to

• FDSi, i = 1, . . . , n,

•
∑n

j=1 xi,j =
∑n

j=1 x1,j , i = 2, . . . , n,

• RECONFIGij , i = 1, . . . , n, j = 1, . . . , n, and i 6= j,

• xij ≥ 0, i = 1, . . . , n, j = 1, . . . , n.

If the optimal solution to linear program A equals γ∞f , then we say G can be
eternally fractionally dominated by n f.d.-functions.

Since the number of constraints in the linear program A is polynomial in n,
and linear programming problems are solvable in polynomial time, we have the
following.
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Proposition 1. If G can be eternally fractionally dominated by n f.d.-functions,
then γ∞f (G) and a strategy for eternally fractionally dominating G can be
computed in polynomial time. Further, γ∞f (G) is a rational number.

We will show later that Proposition 1 applies to split graphs.

3. Behaviour of γ∞f (G)

In this section, we compare γ∞f (G) to some of the domination parameters given
in the introduction and explore which numerical values of γ∞f (G) are possible.
We begin with some obvious propositions.

Proposition 2. For any graph G, γf (G) ≤ γ∞f (G) ≤ γ∞m (G).

To see another upper bound on γ∞f (G), note that doubling the weight
of every vertex in a minimal fractional dominating function on V (G) gives a
straightforward guarding strategy – let w1 be a fractional dominating function of
weight γf (G) and initially let w2 = w1. After an attack in an odd-numbered time
step, weights from w1 are moved to respond, while weights from w2 are returned
to their initial assignments. Similarly, after an attack in an even-numbered time
step, weights from w2 are moved to respond, while weights from w1 are returned
to their initial assignments.

Proposition 3. For any graph G, γ∞f (G) ≤ 2γf (G).

Note that the bound in Proposition 3 is tight, in that for every k ≥ 1 there
exists a graph G for which γ∞f (G) = 2k and γf (G) = k. Let G be a graph
obtained from a path P = v1v2 · · · v3k by adding two leaves {xi, yi} to vi for each
i ≡ 2 (mod 3). It is easy to check that γf (G) = k. Attacking x3r+2 then y3r+2

requires a total weight of at least 2 to be present in NG[v3r+2], and thus it follows
that γ∞f (G) ≥ 2k.

From the definition of γ∞f (G), it may not be immediately apparent that
γ∞f (G) can be non-integral, or that it can even differ from the bounds in
Proposition 2. We show how to construct infinite families of graphs with
non-integral values of γ∞f (G) which also differ from the bounds of Proposition 2.

Before proceeding, we note the following easy observation.

Proposition 4. If G is not a complete graph, then γ∞f (G) ≥ 2.

Proof. Let x, y ∈ V (G) be nonadjacent. If x is attacked, then w(x) ≥ 1. For y
to be guarded, w(N [y]) ≥ 1. Since x /∈ N [y], the result follows.

Our construction shows that any admissible rational value of γ∞f (G) (that is,
equal to 1 in the case of complete graphs or at least 2 in the case of non-complete
graphs) is possible.



1402 F. Devvrit, A. Krim-Yee, N. Kumar, G. MacGillivray, et al.

Theorem 3.1. For any rational number q > 2, there exists a graph G such that
γf (G) < γ∞f (G) < γ∞m (G) and γ∞f (G) = q.

Proof. For two positive integers t ≥ d, let X = [t] and Y =
([t]
d

)

. Let Y ′ be a

set of cardinality
(

t
d

)

which contains a copy y′ of each element y ∈ Y . Denote by
Gt,d the graph with V = X ∪ Y ∪ Y ′ obtained by taking a complete graph on X
and an edge between x ∈ X and y ∈ Y and an edge between x ∈ X and y′ ∈ Y ′

if and only if x ∈ y. We first prove that γ∞m (Gt,d) = t − d + 2. It is shown in
[2] that a split graph G satisfies γ∞m (G) ∈ {γ(G), γ(G) + 1}, and γ∞m (G) = γ(G)
if and only if every vertex in the independent set is domination-critical. Since
t−d+1 elements from t-set are necessary and sufficient to hit every d-subset, we
have that γ(Gt,d) = t− d+ 1. Since Y ∪ Y ′ is the independent set and no vertex
in this set is domination-critical (each vertex has a “twin”, or a vertex with the
same neighbourhood), it follows that γ∞m (G) = γ(G) + 1 = t− d+ 2.

We now claim that γ∞f (Gt,d) = 1+ t
d
. We allow two possible types of fractional

eternal dominating functions. In both, a weight of 1
d
is assigned to every vertex

in X. We may then either have an additional weight of 1 added to a vertex in
X (state 1) or a weight of 1 on some vertex in Y ∪ Y ′ (state 2). We let z denote
the vertex with weight at least 1 in the argument below.

Suppose we are in state 1 and an attack happens at x ∈ X. A weight of one
is easily passed from z to x as they are adjacent. If y ∈ Y ∪ Y ′ is attacked, each
of its neighbours sends weight 1

d
and z sends 1

d
to each neighbour y. If we are

in state 2, then an attack in X is handled similarly to the previous case. If an
attack happens at y ∈ Y ∪Y ′, then z sends 1

d
to each of its neighbours, vertices in

N(z) \N(y) send weight 1
d
to vertices in N(y) \N(z) (this is easy as all vertices

are in X), and all vertices in N(y) send 1
d
to y. In all cases, we finish in state 1

or state 2.

To see that no weighting with lower total weight is possible, we simply
note that any attempt to lower the weight of one vertex in X would require
increasing the weights of the other vertices in X by at least that amount to
maintain domination of Y , and that it is never necessary to have weight assigned
to vertices in Y since their closed neighbourhoods are contained in the closed
neighbourhoods of vertices in X. Thus

• γf (Gt,d) =
t
d
,

• γ∞f (Gt,d) = 1 + t
d
, and

• γ∞m (Gt,d) = γ(Gt,d) + 1 = t− d+ 2.

Having proven that γ∞f (G) can take on any admissible rational value, we now
note that the construction of Gt,d can be easily modified to provide an infinite
family of graphs for which γ∞f (G) = q for any admissible rational value of q.



Fractional Eternal Domination: Securely Distributing ... 1403

Theorem 3.2. For any rational number q ≥ 2, there exists an infinite family of
graphs Gq such that γ∞f (G) = q for every G ∈ Gq.

Proof. Let q = t/d + 1 and suppose that V (Gt,d) partitions into a clique X
and independent set Y . Let Gq be the family of graphs obtained from Gt,d by
replacing each y ∈ Y with any arbitrary graph Hy and joining each vertex of Hy

to NGt,d
(y). By applying the same argument as in the proof of Theorem 3.1, it

follows that for any G ∈ Gq, γ
∞
f (G) = γ∞f (Gt,d) = 1 + m

n
= q.

In light of our linear programming discussion from Section 2, we also give a
linear programming lower bound for γ∞f (G). For a given graph G, denote by f(v)
the least total weight of a fractional dominating function Dv in which the weight
assigned to vertex v is at least 1 (note that f(v) can be computed in polynomial
time by linear programming). Let F (G) = max{f(v) : v ∈ V }.

Proposition 5. For any graph G, γ∞f (G) ≥ F (G).

We now turn our attention to a comparison of γ∞f (G) and γ(G), each of
which is bounded below by γf (G) and bounded above by γ∞m (G). We will see
later that, for certain graph classes, γ∞f (G) ≥ γ(G) (see Corollaries 15 and 16);
however, we show here that the two parameters are, in general, not comparable.

Recall that, by Proposition 3, we have that γ∞f (G) ≤ 2γf (G) for any graph
G, and so γ∞f (G) ≤ 2γ(G). In other words, γ∞f (G) cannot grow unboundedly
large in terms of γ(G). On the other hand, the construction of Gt,d in Theorem
3.1 and its modification in Theorem 3.2 gives us the following.

Corollary 6. For any ε > 0 and any rational number q ≥ 2, there exists an
infinite family of graphs Gq such that q = γ∞f (G) < εγ(G) for each G ∈ Gq.

Proof. Let α > 1
ε
be some sufficiently large integer, q = t

d
+ 1 where t

d
is

in reduced form, t′ = αt, and d′ = αd. Consider the family of graphs Gq

as constructed in Theorem 3.2, with parameters t′ and d′ in place of t and d,
respectively. Let G ∈ Gq. We have that γ∞f (G) = t′

d′
+ 1 = t

d
+ 1 and γ(G) =

t′ − d′ + 1 = α(t− d) + 1. If α is sufficiently large, then t
d
+ 1 < ε (α(t− d) + 1)

as desired.

Corollary 6 also immediately implies that γ∞f (G) may be an arbitrarily small
fraction of γ∞m (G). Furthermore, the construction of Gm,n in Theorem 3.2 shows
that for any graph H there exists a graph G containing H as an induced subgraph
for which γ∞f (G) < εγ(G).

Finally, though the ratio γ∞f /γ cannot be made unboundedly large, the
difference γ∞f (G) − γ(G) can be made arbitrarily large – in the next section

we show that γ∞f (Pn) =
⌈

n
2

⌉

, whereas γ(Pn) =
⌈

n
3

⌉

for any n ∈ N.
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4. Basic Graph Classes

For some specific classes of graphs, exact values of γ∞f (G) are easy to compute
(proofs are left to the reader). To guard a complete graph, a weight of 1 placed
on any vertex is necessary and sufficient. To guard a path, consider a sequence
of attacks on a maximum independent set “from left to right” to see that weight
1 on alternating vertices is necessary and sufficient. For cycles, it is known (see,
e.g., [6]) that γ∞m (Cn) =

⌈

n
3

⌉

and so γ∞f (Cn) ≤
⌈

n
3

⌉

. To see that γ∞f (Cn) ≥
⌈

n
3

⌉

,

note that total weight less than
⌈

n
3

⌉

is not enough weight to respond to attacks
on every third vertex, in order, around the cycle.

Proposition 7. For any n ∈ N.

1. γ∞f (Kn) = 1.

2. γ∞f (Pn) = α(Pn) =
⌈

n
2

⌉

.

3. γ∞f (Cn) = γ(Cn) =
⌈

n
3

⌉

if n ≥ 3.

Proposition 8. If G has a universal vertex or if every edge is a dominating edge
of G, then γ∞m (G) ≤ 2 and thus γ∞f (G) ≤ 2.

Since every edge in a complete multipartite graph is dominating, the following
is easily obtained.

Corollary 9. For all positive integers n1, n2, . . . , nk where nk ≥ 2,
γ∞f (Kn1,n2,...,nk

) = 2.

Finally, we give the exact value of γ∞f (G) when G is a tree, noting that a
linear time algorithm is given in [11] which computes γ∞m (T ) for any tree T .

Proposition 10. For any tree T , γ∞f (T ) = γ∞m (T ).

Proof. We prove this by induction on n, the order of the tree. The cases n = 1, 2
are clear. Let T be a tree of order n > 2 and suppose the proposition is true
for all trees of order strictly less than n. If T is a star, then the result follows.
Suppose T is not a star. From Proposition 2 we see that it is sufficient to show
γ∞f (T ) ≥ γ∞m (T ). Recall that the eccentricity of a vertex is the maximum distance
from that vertex to all others. Since T is not a star, T contains a vertex of
eccentricity at least 2 which is adjacent to at least one leaf. Let x be such a
vertex with the largest eccentricity. If x is adjacent to exactly one leaf y, then a
weight summing to at least 1 must be maintained on x and y at all time and the
tree T ′ obtained by deleting x and y satisfies γ∞f (T ′) = γ∞m (T ′) = γ∞m (T )− 1. If
x is adjacent to at least two leaves, then a weight summing to at least 2 must be
maintained in the closed neighbourhood of x at all time and the tree T ′ obtained
by deleting these leaves satisfies γ∞f (T ′) = γ∞m (T ′) = γ∞m (T ) − 1. In both cases,
the result follows.
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4.1. Split graphs

Recall that a graph is called a split graph if its vertex set can be partitioned into
a clique and an independent set.

Theorem 4.1. If G is a split graph, then γf (G) ≤ γ∞f (G) ≤ 1 + γf (G).

Proof. The lower bound is trivial (Proposition 2), and so we need only to prove
the upper bound. Let X∪Y be a partition of V (G) for which X is a clique and Y
is an independent set. Begin with a fractional dominating function on G, say w;

note that this is precisely a solution to
{

∑

u∈N(y)w(u) ≥ 1 : y ∈ Y
}

. Assign an

additional weight 1 to some arbitrary vertex. We show that, after any attack, we
can maintain the fractional dominating function w with some arbitrary vertex
receiving an additional weight of 1; z denotes this special vertex throughout.
First, suppose the attack occurs at x ∈ X. If z ∈ X, then z sends one to x. If
z ∈ Y , then N(z) sends a total weight of 1 to x, and z redistributes its weight
of 1 to N(z) so that w is restored. Suppose, then, that the attack occurs in Y .
If z ∈ X, then N(y) sends its total weight of 1 to y, and z sends its weight of 1
to N(y) to restore w. If z ∈ Y , then N(y) sends a total weight of 1 to y, N(z)
sends a total weight of 1 to N(y) to restore w on those vertices (note that if
N(y) ∩ N(z) 6= ∅, then some vertex may send weight to itself), and z sends its
weight of 1 to N(z) to restore w on those vertices.

Recall the definition of F (G) from the Section 3, F (G) = max{f(v) : v ∈ V }
where, for each vertex v ∈ V (G), the quantity f(v) is the least total weight of
a fractional dominating function in which the weight assigned to vertex v is at
least 1.

Proposition 11. Let G be a split graph. Then γ∞f (G) = F (G).

Proof. Let G be a split graph. Let X ∪ Y be a partition of V for which X is a
clique and Y is an independent set.

We will show that G can be eternally fractionally dominated by n
f.d.-functions. For each v ∈ V , let Dv be a fractional dominating set of G of
least total weight in which the weight assigned to vertex v is at least 1. Since
any excess weight assigned to v can be arbitrarily redistributed to its neighbours
in X, without loss of generality every vertex in Y , except v if v ∈ Y , has weight
0 in Dv.

Consider the fractional dominating functions Du and Dw. To reconfigure Du

to Dw, simultaneously: (i) the vertex u sends its weight to its neighbours; (ii)
the vertex w receives weight 1 from its neighbours; (iii) the weights assigned to
vertices in X and neither used in (ii) nor assigned in (i) are redistributed per Dw

(which is possible).
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Thus, the set Du can be reconfigured to Dw for all u,w ∈ V . Hence G can be
fractionally eternally dominated by n f.d.-functions, each of total weight F (G).
Therefore γ∞f = F (G), and the proof is complete.

Corollary 12. If G is a split graph, then γ∞f and a strategy for eternally
fractionally dominating G can be computed in polynomial time. Further, γ∞f
is a rational number.

By contrast, the problem of deciding whether a given Hamiltonian split graph
has eternal domination number at most a given integer k is NP-complete [2].

We say that a vertex v in a graph G is fractionally domination-critical (or
f.d.-critical for short) if γf (G − v) < γf (G). We define a vertex v to be fully
f.d.-critical if γf (G)−γf (G−v) = 1. Note that “fully” is not a vacuous addition;
if G = Gt,d for t, d, then G is an example of a graph containing at least one
f.d.-critical vertex v for which γf (G)− γf (G− v) < 1.

Proposition 13. Let G be a split graph which is not complete. Let X ∪ Y be
a partition of V such that X is a clique and Y is an independent set. Then
γ∞f = γf if and only if every vertex in X is adjacent to a vertex in Y and every
vertex in Y is fully f.d.-critical.

Proof. Note that, since G is not complete, the set Y 6= ∅.
Suppose γ∞f = γf ≥ 2. We will show that every vertex in X is adjacent to a

vertex in Y and every vertex in Y is fully f.d.-critical.
First suppose there exists a vertex x ∈ X such that N(x) ∩ Y = ∅. Let Dx

be a fractional eternal dominating set of G in which the weight assigned to x is
at least 1. Without loss of generality, all vertices in Y are assigned weight 0 in
Dx. But then the restriction of Dx to G − x is a fractional dominating set of
G− x, and hence of G (since x ∈ X), contrary to the hypothesis that γ∞f = γf .
Therefore, every vertex in X is adjacent to a vertex in Y .

Let y ∈ Y . Then, for any vertex y ∈ Y there exists a fractional (eternal)
dominating set Dy in which the weight assigned to y is 1 (any excess weight
assigned to y can be arbitrarily redistributed to its neighbours). Since N(y) ⊆ X,
the set Dy \ {y} is a fractional dominating set of G− y, it follows that y is fully
f.d.-critical.

We now prove the converse. Now suppose every vertex in X is adjacent to a
vertex in Y and every vertex in Y is fully f.d.-critical. Then, for any y ∈ Y there
exists a fractional dominating set in which the weight assigned to y equals 1. To
see this, take a fractional dominating set of G − y and extend it to a fractional
dominating set of G by assigning weight 1 to y. This is a fractional dominating
set of G with total weight γf since y is fully f.d.-critical. For any x ∈ X there
exists a fractional dominating set in which the weight assigned to x is at least
1 – let y in N(x) ∩ Y and the fractional dominating set as above with weight
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1 assigned to y, add the weight assigned to y to the weight assigned to x, and
assign y weight 0. Thus γf (G) = F (G), and the result follows from Proposition
11.

4.2. Packings and strongly chordal graphs

A distance-2 vertex packing (henceforth referred to as a 2-packing) of a graph
G is a set P ⊆ V (G) such that the distance from x to y is at least 3 for every
distinct x, y ∈ P . Clearly, γ∞f (G) ≥ max{|P | : P is a 2-packing in G}.

Proposition 14. If P is a 2-packing in a graph G such that N [P ] ( V (G), then
γ∞f (G) ≥ 1 + |P |.

Proof. Let v ∈ V (G)\N [P ]. Suppose v is attacked. Then the resulting fractional
dominating function must have weight at least one on v, and weight at least one
in the neighbourhood of each vertex in the 2-packing.

A dominating set D is called efficient if |N [v] ∩D| = 1 for every v ∈ V (G).
A dominating set D is near-efficient if there exists a vertex v ∈ V (G) \D such
that D is an efficient dominating set in G− v.

Corollary 15. If G has an efficient dominating set, then γ∞f (G) ≥ γ(G).

Corollary 16. If the maximum possible value of |P | is γ(G), then γ∞f (G) ≥
γ(G).

Since all strongly chordal graphs satisfy the conditions of Corollary 16 (see
[5]), we obtain the following.

Corollary 17. If G is a strongly chordal graph, then γ∞f (G) ≥ γ(G).

We will revisit the notion of 2-packings in Sections 5.2 and 5.3.

4.3. Kneser graphs

Finally, we consider Kneser graphs. The Kneser graph KGn,k is the graph whose
vertex set consists of all k-subsets of an n-set and where vertices are adjacent if
and only if they are disjoint. We determine the exact value of γ∞f (KGn,k) for
the case when k = 2; the value of γ∞f (G) for the Petersen graph, which is KG5,2,
follows as a special case. We start with the following theorem.

Theorem 4.2. For γ∞f (KG5,2) = 3.

Proof. Suppose the n-set is {1, 2, 3, 4, 5} and without loss of generality
w({1, 2}) ≥ 1. Let N1 and N2 be respectively the set of all neighbours
and non-neighbours of {1, 2}. Since the sum of the weights in the closed
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neighbourhood of each vertex of N2 is greater than or equal to 1, we obtain
∑

v∈N2

∑

u∈N [v]w(u) ≥ 6. In the preceding sum, the weight on each vertex of
N2 is repeated 3 times and the weight on each vertex of N1 is repeated 2 times.
So we have 3 ×

∑

v∈N1∪N2
w(v) + 3 × w({1, 2}) ≥ 6 + 3 =⇒ 3 ×

∑

v∈V w(v) ≥
9 =⇒

∑

v∈V w(v) ≥ 3. Now, it remains to prove γ∞f (KG5,2) ≤ 3. To this end,

we first place a weight of 1 on the vertex {1, 2} and a weight of 1
3 on each vertex

of N2. To respond to an attack on a vertex of N1 (say {3, 4} without loss of
generality), we move the weight of 1 from {1, 2} to {3, 4} and the weights from
N({3, 4})\N({1, 2}) to N({1, 2})\N({3, 4}) along the following disjoint paths
{1, 5} − {2, 4} − {3, 5} and {2, 5} − {1, 3} − {4, 5}. If a vertex of N2 is attacked
(say {1, 3} without loss of generality), we move the weights from {2, 4} and {2, 5}
to it and we share the weight of 1 on the vertex {1, 2} equally among the vertices
{1, 2}, {3, 4} and {3, 5}.

Theorem 4.3. For every integer n ≥ 6, γ∞f (KGn,2) = 1+ n−2
n−4 = 2+ 2

n−4 = 2n−6
n−4 .

Proof. Suppose the n-set is {1, 2, . . . , n} and without loss of generality
w({1, 2}) ≥ 1. Let N1 and N2 be respectively the set of all neighbours
and non-neighbours of {1, 2}. Since the sum of the weight in the closed
neighbourhood of each vertex of N2 is greater than or equal to 1, we obtain
∑

v∈N2

∑

u∈N [v]w(u) ≥ 2(n − 2). Consider a vertex {a, b} in N2. Note that
{1, 2} and {a, b} share precisely one element; without loss of generality suppose
a = 1. There are n − 3 sets which are disjoint from {1, b} and intersect {1, 2}.
Thus the weight of {1, b} (and similarly for every vertex in N2) is counted
n − 2 times in the preceding sum. Now consider a vertex {a, b} ∈ N1. The
number of sets which intersect {1, 2} but do not intersect {a, b} is 2(n − 4),
and thus the weight on each vertex of N1 is repeated 2(n− 4) times. So we have
2(n−4)(

∑

v∈N1
w(v)+

∑

v∈N2
w(v)) ≥ 2(n−2) =⇒

∑

v∈N1
w(v)+

∑

v∈N2
w(v) ≥

n−2
n−4 =⇒ γ∞f (KGn,2) ≥ 1 + n−2

n−4 .

Now, it remains to prove γ∞f (KGn,2) ≤ 1 + n−2
n−4 . To this end, we first place

a weight of 1 on the vertex {1, 2} and a weight of 1

(n−3

2
)
on each vertex of N1.

This fractionally dominates the graph since, for every set S which intersects
{1, 2} (aside from {1, 2} itself), there are

(

n−3
2

)

ways to construct a set which is
disjoint from both that set and {1, 2}. We will show that, after any attack, we
may reconfigure the fractional dominating set to have weight 1 on the attacked
vertex, weight 1

(n−3

2
)
on each neighbour of the attacked vertex, and weight 0 on

all other vertices.

To respond to an attack on a vertex of N1 (say {3, 4} without loss of

generality), we first move a weight of
(n−3

2
)−1

(n−3

2
)

from {1, 2} to {3, 4}. The subgraph

induced by the edges with one end in N({1, 2})\N({3, 4}) and the other in



Fractional Eternal Domination: Securely Distributing ... 1409

N({3, 4})\N({1, 2}) is a regular bipartite graph. By Hall’s Theorem there is
a perfect matching between N({1, 2})\N({3, 4}) and N({3, 4})\N({1, 2}), and
so the weights from N({1, 2})\N({3, 4}) can be moved to N({3, 4})\N({1, 2}).
Suppose now that a vertex ofN2 is attacked (say {1, 3} without loss of generality).
Move the total weight of 1 in the neighbourhood of that vertex to it, and share the
weight of 1 on the vertex {1, 2} equally among its

(

n−3
2

)

common neighbours with
{1, 3}. Now, the vertices of N({1, 2})\N({1, 3}) are the sets of the form {3, x}
where x ∈ {4, . . . , n}. Similarly, the vertices of N({1, 3})\N({1, 2}) are the sets
of the form {2, x} where x ∈ {4, . . . , n}. The edges with one end in each set
induce a regular bipartite graph so, as above, the vertices in N({1, 2})\N({1, 3})
can pass their weights to the vertices in N({1, 3})\N({1, 2}) along a perfect
matching. In either case, we finish with a fractional dominating set with weight
1 on the attacked vertex, weight 1

(n−3

2
)
on each neighbour of the attacked vertex,

and weight 0 on all other vertices.

5. Connectivity and Cayley graphs

The main results in the section are focused on γ∞f (G) for Cayley graphs. To
begin, we examine the relationship between the vertex connectivity of a graph
G (denoted κ(G)), the degrees of its vertices, and γ∞f (G). Recall that δ(G) and
∆(G) denote the minimum and maximum degree of G, respectively.

The following lemma follows from results in [4] and [7].

Lemma 5.1. If G is an n-vertex graph with δ(G) = δ and ∆(G) = ∆, then
n

∆+1 ≤ γf (G) ≤ n
δ+1 .

This lemma also inspires the following result on γ∞f (G), which gives a general
bound on γ∞f (G) depending on the order of G and its connectivity.

Theorem 5.2. If G has connectivity κ, then γ∞f (G) ≤ n+κ
κ+1 .

Proof. Let w(x) denote the weight of a vertex x. Begin by weighting an arbitrary
vertex y with 1 and all other vertices 1

κ+1 . Clearly
∑

u∈N [v]w(u) ≥ (δ+1) 1
κ+1 ≥ 1

for every vertex v ∈ V (G). We give a simple strategy to show that we can
maintain a weighting where the attacked vertex receives weight 1 while all others
have 1

κ+1 . If a vertex other than y is attacked, say z, choose κ internally disjoint

yz-paths P1, . . . , Pκ. For each Pi = yv1v2 · · · vtz, each vi will send weight 1
κ+1 to

vi+1 (considering y as v0 and z as vt+1). In this way, z receives weight 1 and
every other vertex has weight 1

κ+1 .

Following immediately from Proposition 2, Lemma 5.1, and Theorem 5.2, we
obtain the following corollary, which motivates our study of Cayley graphs.
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Corollary 18. If G is a d-regular, d-connected graph, then n
d+1 ≤ γ∞f (G) ≤ n+d

d+1 .

Corollary 19. If G is d-regular and d-connected, then there exists a polynomial
time approximation algorithm for γ∞f that has error at most 1.

Proof. The proof of Theorem 5.2 shows that G can be fractionally eternally
dominated by n f.d.-functions, each of total weight less that γf + 1. The result
then follows from Proposition 1.

Every abelian Cayley graph is regular and has connectivity equal to its degree,
and thus we obtain the following.

Corollary 20. If G is an abelian Cayley graph, then γ∞f (G)− γf (G) < 1.

In light of this, it is reasonable to ask whether or not γ∞f (G) can be exactly
determined for abelian Cayley graphs. The rest of this section is devoted to
showing that this is a difficult task, even under the strong assumption that the
graph is cubic.

5.1. Cubic abelian Cayley graphs

At the end of Section 4, we gave a number of conditions under which γ(G) is
a lower bound on γ∞f (G). In the case of cubic abelian Cayley graphs, however,
it turns out that γ(G) = γ∞m (G), and thus γ(G) is an upper bound on γ∞f (G).
We characterize precisely those cubic abelian Cayley graphs for which the upper
bound is strict.

Theorem 5.3. If G is a cubic abelian Cayley graph, then γ∞f (G) ≤ γ(G) =
γ∞m (G). Furthermore, γ∞f (G) < γ(G) if and only if G is isomorphic either to
C4k+22K2 or to Cay(Z8k, {±1, 4k}) for some integer k ≥ 1.

To prove this theorem we rely on the following characterization of cubic
abelian Cayley graphs found in [13]. Recall that Qd denotes the hypercube of
dimension d.

Theorem 5.4. A graph G is a cubic abelian Cayley graph if and only if it is one
of the following.

1. K4,

2. Q3,

3. Cn2K2 (n ≥ 3),

4. Cay(Z2n, {±1, n}) (n ≥ 3).

We settle the first two cases quickly.
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Lemma 5.5. If G ∈ {K4, Q3}, then γ∞f (G) = γ(G)

Proof. If G = K4, then each parameter is clearly equal to 1. Suppose G = Q3,
which has γ(G) = 2. On one hand, G has an efficient dominating set of size 2,
and so by Corollary 15 we have that γ∞f (G) ≥ γ(G) = 2. On the other hand,
γ∞f (G) ≤ γ∞m (G) = 2 = γ(G), therefore equality holds.

To finish the proof of Theorem 5.3, the final two cases require a more in-depth
analysis.

5.2. Cyclic prisms

Let us now turn to Cn2K2, where n ≥ 3. We first show that the all-guards move
model of eternal domination requires a number of guards equal to the domination
number, and then consider γ∞f (G) by cases based on the value of n (mod 4).

Lemma 5.6. For each integer n ≥ 3, γ∞m (Cn2K2) = γ(Cn2K2).

Proof. Suppose the guards are on the vertices of a dominating set of minimum
size which contains the vertex (0, 0) and without loss of generality the guard on
(0, 0) is the one who responds to the first attack. If he moves to (0, 1), then all
guards on (i, j) can move to (i, j+1) in order to maintain a similar configuration
(after relabelling the vertices of the graph, and where operations in the first
and second coordinates are taken mod n and mod 2, respectively). If he moves
to (1, 0), then all guards on (i, j) can move to (i + 1, j) to maintain a similar
configuration. If he moves to (n − 1, 0), then all guards on (i, j) can move to
(i− 1, j).

Lemma 5.7. If n ≡ 0, 1, 3 (mod 4), then γ∞f (Cn2K2) = γ(Cn2K2) =
⌈

n
2

⌉

.

Proof. By Lemma 5.6, it suffices to show that γ(Cn2K2) =
⌈

n
2

⌉

is a lower bound
on γ∞f (Cn2K2). We proceed by cases.

1. n ≡ 0 (mod 4). The set S0 =
{

(4i, 0) : i ∈
[

n
4

]}

∪
{

(4i + 2, 1) : i ∈
[

n
4

]}

(where
[

n
4

]

=
{

1, . . . , n4
}

) is an efficient dominating set of cardinality n
2 . Then,

by Corollary 15 we have γ∞f (Cn2K2) ≥
⌈

n
2

⌉

.

2. n ≡ 1 (mod 4). The set S1 =
{

(4i, 0) : i ∈
[

n−1
4

]}

∪
{

(4i + 2, 1) : i ∈
[

n−1
4

]}

is a 2-packing of cardinality n−1
2 which does not dominate the vertex

(n− 1, 1). Hence, by Proposition 14 we have γ∞f (Cn2K2) ≥ 1 + n−1
2 =

⌈

n
2

⌉

.

3. n ≡ 3 (mod 4). The set S3 =
{

(4i, 0) : i ∈
[

n+1
4

]}

∪
{

(4i + 2, 1) : i ∈
[

n−3
4

]}

is a 2-packing of cardinality n−1
2 which does not dominate the vertex

(n− 1, 1). As a result, by Proposition 14 we have γ∞f (Cn2K2) ≥ 1+ n−1
2 =

⌈

n
2

⌉

.
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Lemma 5.8. If n ≡ 2 (mod 4), then γ∞f (Cn2K2) < γ(Cn2K2).

Proof. Observe that γ∞f (Cn2K2) ≤ 2n+3
4 follows from Theorem 5.2. So, it

suffices to prove that γ(Cn2K2) >
2n+3

4 . To this end, we prove that Cn2K2 does
not contain any efficient dominating set. Suppose this is not true and let S2 be
an efficient dominating set of Cn2K2. Without loss of generality, let (0, 0) be a
vertex of S2. Since S2 is a 2-packing, S2 must contain the vertices (2, 1), (4, 0)
and all the vertices

{

(4i, 0) : i ∈
[

n+2
4

]}

∪
{

(4i + 2, 1) : i ∈
[

n−2
4

]}

. In this case
the vertices (0, 0) and (n − 2, 0) would be two vertices of S2 with non disjoint
neighbourhood (contradiction).

5.3. Möbius prisms

Lastly, we consider the so-called Möbius prisms Cay(Z2n, {±1, n}) for n ≥ 3.

Lemma 5.9. For each integer n ≥ 3, γ∞m (Cay(Z2n, {±1, n})) = γ(Cay(Z2n,
{±1, n})).

Proof. Suppose the guards are on the vertices of a dominating set of minimum
size which contains the vertex 0 and, without loss of generality, the guard on 0
is the one who responds to the first attack. If he moves to vertex 1, then any
guard on a vertex i can move to the vertex i + 1 in order to maintain a similar
configuration (after relabelling the vertices of the graph). If he moves to vertex
2n− 1, then any guard on a vertex i can move to the vertex i− 1 to maintain a
similar configuration. If he moves to vertex n, then any guard on a vertex i can
move to vertex i+ n.

Lemma 5.10. If n 6≡ 0 (mod 4), then γ∞f (Cay(Z2n, {±1, n})) = γ(Cay(Z2n,

{±1, n})) =
⌈

n
2

⌉

.

Proof. By Lemma 5.9, it suffices to show that γ(Cay(Z2n, {±1, n})) =
⌈

n
2

⌉

is a
lower bound on γ∞f (Cay(Z2n, {±1, n})). We proceed by cases.

1. n ≡ 1 (mod 4). The set S1 =
{

4i : i ∈
[

n−1
4

]}

∪
{

4i+n+2 : i ∈
[

n−1
4

]}

is
a 2-packing of cardinality n−1

2 which does not dominate the vertex n− 1. Then,
by Proposition 14 we have γ∞f (Cay(Z2n, {±1, n})) ≥ 1 + n−1

2 =
⌈

n
2

⌉

.

2. n ≡ 2 (mod 4). Now, the set S2 =
{

4i : i ∈
[

n+2
4

]}

∪
{

4i + n + 2 : i ∈
[

n−2
4

]}

is an efficient dominating set of cardinality n
2 . Hence, by Corollary 15 we

have γ∞f (Cay(Z2n, {±1, n})) ≥ n
2 .

3. n ≡ 3 (mod 4). Finally, the set S3 =
{

4i : i ∈
[

n+1
4

]}

∪
{

4i + n + 2 :
i ∈

[

n−3
4

]}

is a 2-packing of cardinality n−1
2 which does not dominate the vertex

n− 1. As a result, by Proposition 14 we have γ∞f (Cn2K2) ≥ 1 + n−1
2 =

⌈

n
2

⌉

.
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Lemma 5.11. If n ≡ 0 (mod 4), then γ∞f (Cay(Z2n, {±1, n})) < γ(Cay(Z2n,
{±1, n})).

Proof. Observe that γ∞f (Cay(Z2n, {±1, n})) ≤ 2n+3
4 follows from Theorem 5.2.

So, it suffices to prove that γ(Cn2K2) > 2n+3
4 . To this end, we prove that

Cay(Z2n, {±1, n}) does not contain any efficient dominating set. Suppose this is
not true and let S0 be an efficient dominating set of Cay(Z2n, {±1, n}). Without
loss of generality, let 0 be a vertex of S0. Since S0 is a 2-packing, S0 must contain
the vertices n + 2 and all the vertices

{

4i : i ∈
[

n
4

]}

∪
{

4i + n + 2 : i ∈
[

n
4

]}

, in
which case the vertices 0 and n− 2 would be two vertices of S0 with non disjoint
neighbourhood.

We may now complete the proof of Theorem 5.3.

Proof of Theorem 5.3. The result now follows immediately as a consequence
of Theorem 5.4 and Lemmas 5.5, 5.7, 5.8, 5.10, and 5.11.

5.4. Further results on cyclic and Möbius prisms

Determining the exact values for the exceptional cases of Theorem 5.3 appears to
be surprisingly difficult, and we leave this as an open problem for future research.
We conclude with a look at three particular cases of cyclic and Möbius prisms
— C62K2, C102K2, and Cay(Z8, {±1, 4}) — whose exact values of γ∞f are not
given by Theorem 5.3, and obtain lower bounds for general graphs from some of
these exceptional cases.

It can be checked using an LP solver (or tedious manual calculations), that
a solution to the initial configuration LP requires a total weight of at least 7/2.
We now prove that this is insufficient.

Theorem 5.12. 7
2 < γ∞f (C62K2) ≤ 4.

Proof. Let G = C62K2, with the vertices labelled as in Figure 2. The upper
bound follows from Theorem 5.2, as G is 3-regular and 3-connected. Suppose
that γ∞f (C62K2) =

7
2 and let w be a feasible initial weight function. For a set

S ⊆ V (G), we let w(S) =
∑

v∈S w(v). Suppose, without loss of generality, that
a is the vertex to initially receive weight 1. The next five claims show that the
only possible initial weightings are those given in Figure 2.

Claim 1. w(g) ≥ 1
2 .

Proof. The total weight assigned to V (G) \ {a} is 5
2 . Furthermore, w(N [d]) +

w(N [h]) + w(N [l]) ≥ 3, and so w(g) ≥ 1
2 . 2

Claim 2. w(b) = w(f) = w(h) = w(l) = 0.
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a

1

b0

cx

d

1/2− x

e x

f 0

g

1/2

h 0

i 1/2

j

1/2− x

k1/2

l0

Figure 2. An initial weighting of C62K2.

Proof. First note that w(N [c]) + w(N [e]) + w(N [i]) + w(N [k]) ≥ 4, and that
the sum on the left counts the weight of every vertex in {c, d, e, i, j, k} twice. It
follows that

w(N [c]) + w(N [e]) + w(N [i]) + w(N [k]) + 2w(g) ≥ 5

=⇒ 2w(V (G) \ {a})− [w(b) + w(f) + w(h) + w(l)] ≥ 5

=⇒ 5− [w(b) + w(f) + w(h) + w(l)] ≥ 5

=⇒ w(b) = w(f) = w(h) = w(l) = 0

as desired. 2

Claim 3. w(g) = 1
2 .

Proof. Now, we have that

w(c) + w(d) + w(e) + w(g) + w(i) + w(j) + w(k) =
5

2

or, equivalently,

w(N [i]) + w(N [e]) + w(g) =
5

2
.

However, since w(N [i]) and w(N [e]) must each be at least 1, and N [i] and N [e]
are disjoint, we have that w(g) ≤ 1

2 and so w(g) = 1
2 . 2
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Claim 4. w(i) = w(k) = 1
2 .

Proof. By considering N(h) and N(l), we see that w(i) ≥ 1
2 and w(k) ≥ 1

2 .
However, since w(N [d]) ≥ 1 and w(N [d]) + w(i) + w(k) = 2, we have that
w(i) = w(k) = 1

2 . 2

Claim 5. For some x ∈ [0, 12 ], w(c) = w(e) = x and w(d) = w(j) = 1
2 − x.

Proof. By considering N(c), N(e), N(i), and N(k), we get that each of the
w(c) + w(d), w(d) + w(e), w(c) + w(j), w(e) + w(j) is at least 1/2. 2

Now, we show that, for any value of x ∈ [0, 12 ], there is a vertex in G which can
only be responded to in such a way as to no longer have a fractional dominating
function on V (G).

Suppose x ∈ (0, 12 ] and consider an attack on vertex c. We need to move the
weight of 1

2 from vertex i and the weight of 1
2 − x from vertex d to vertex c in

order to respond to the attack. Since there is only a weight of 1
2 − x on j, it is

impossible to maintain a weight of 1
2 on vertex i after the response to the attack

(which contradicts Claim 1).

Suppose now that x = 0 and consider an attack on vertex j. According to
Claims 1–5, there must be a weight of 1 on j, 1

2 on d and 0 on each of the vertices
c, e, h, i, k, l after a response to the attack. However, since vertex j has a total
weight of 2 in its closed neighbourhood, the total weight on the set of vertices at
distance at most 2 from vertex j will be at least 2. Therefore, it is impossible
to maintain a weight of 1 on j, 1

2 on d and 0 on each of the vertices c, e, h, i, k, l
after any response to the attack.

Theorem 5.13. If n ≡ 10 (mod 12), then γ∞f (Cn2K2) ≥
(n+2)(n+4)

2(n+5) .

Proof. It is known from Corollary 18 that 2n+3
4 is an upper bound on the

fractional eternal domination number of Cn2K2. Let ǫ ≥ 0 be a real number
such that a total weight of 2n+3

4 − ǫ can dominate Cn2K2. Let us consider an
initial feasible weight function w. We may assume without loss of generality that
vertex v0 receives a weight of 1. Let S =

{

v4i−1 : i ∈
[

n
4

]}

∪
{

u4i−3 : i ∈
[

n
4

]}

,
then

∑

v∈S w(N [v]) =
(
∑

v∈V w(v)
)

− w(v0)− w(u0). Since
∑

v∈S w(N [v]) ≥ n
2 ,

we have
(
∑

v∈V w(v)
)

−w(v0)−w(u0) ≥
n
2 =⇒ w(u0) ≥

1
4 + ǫ. This means that

for any integer i ∈
[

n−1
3

]

, the sum of the weight in the neighbourhood of the set
{v3i−1, u3i−1} is at least 5

4 +ǫ. Hence,
(

n−1
3

)(

1+ 1
4 +ǫ

)

≤ 2n+3
4 −ǫ−1− 1

4 −ǫ =⇒

ǫ ≤ n−1
4(n+5) . As a result, γ∞f (Cn2K2) ≥

(

n+2
3

)(

1 + 1
4 + (n−1)

4(n+5)

)

= (n+2)(n+4)
2(n+5) .

For the specific n = 10 case, an exact value can be computed.

Theorem 5.14. γ∞f (C102K2) =
28
5 .
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Proof. Let ǫ ≥ 0 be such that a total weight of 28
5 − ǫ can dominate the graph.

We may assume without loss of generality that vertex v0 receives a weight of
1. Now, w(N [u1]) + w(N [v3]) + w(N [u5]) + w(N [v7]) + w(N [u9]) ≥ 5 =⇒
w(V \{v0})+w(u0) ≥ 5 =⇒ w(u0) ≥ 5− 23

5 + ǫ = 2
5 + ǫ. If there is an attack on

vertex v2, we must move a weight of 1 to that vertex and a weight of 2
5+ǫ to vertex

u2. So, there must be a total weight of at least 7
5 + ǫ in the neighbourhood of the

vertices v2 and u2. Since the same argument holds for the vertices v5 and v8, we
have 3

(

7
5 + ǫ

)

≤
∑9

i=1w(vi) + w(ui) ≤
28
5 − ǫ− 1− 2

5 − ǫ = 21
5 − 2ǫ =⇒ 5ǫ ≤ 0.

On the other hand, Figures 6, 7 and 8 along with Table 1 (see the Appendix)
show an initial feasible weight function with total weight 28

5 and a response to all
possible attacks on the vertices of the graph.

We move on to exact values and bounds for special classes of Möbius prisms.

Theorem 5.15. γ∞f (Cay(Z8, {±1, 4})) = 8
3 .

Proof. We first prove that γ∞f (Cay(Z8, {±1, 4}) ≥ 8
3 . Let ǫ ≥ 0 be such that

total weight of 8
3 − ǫ can dominate the graph. We may assume without loss of

generality that vertex v0 receives a weight of 1. Since the sum of the weights
in the neighbourhood of the vertices v3 and v5 must sum to at least 1, we have
w(v2) + w(v3) + w(v4) + w(v7) ≥ 1 and w(v4) + w(v5) + w(v6) + w(v1) ≥ 1.
Since there is a weight of 1 on the vertex v0, then

∑7
i=1w(vi) ≤ 5

3 − ǫ. So,

w(v4) +
∑7

i=1w(vi) ≥ 2 =⇒ w(v4) ≥ 1
3 + ǫ. If there is an attack on vertex

v2, we must move a weight of 1 to that vertex and a weight of at least 1
3 + ǫ to

vertex v6. So, the weight in the neighbourhood of vertex v2 and v6 must sum to
at least 1+ 1

3 +ǫ. Hence, 4
3 +ǫ ≤ w(v1)+w(v2)+w(v3)+w(v5)+w(v6)+w(v7) ≤

4
3 − 2ǫ =⇒ 3ǫ ≤ 0. Now, to prove that γ∞f (Cay(Z8, {±1, 4}) ≤ 8

3 , we place

a weight of 1 on vertex v0, a weight of 1
3 on vertex v4 and a weight of 2

3 on
the vertices v2 and v6. The reader can check from Figure 4 and Figure 5 (see
Appendix) that any attack on a vertex vi can be defended in a way such that
vertex vi receives a weight of 1, vertex vi+4 receives a weight of 1

3 and each of the
vertices vi+2, vi+6 receive a weight of 2

3 .

Theorem 5.16. If n ≡ 4 (mod 12), then γ∞f (Cay(Z2n, {±1, n})) ≥ (n+2)(n+4)
2(n+5) .

Proof. It is known from Corollary 18 that 2n+3
4 is an upper bound on the

fractional eternal domination number of Cay(Z2n, {±1, n}). Let ǫ ≥ 0 be a real
number such that a total weight of 2n+3

4 − ǫ can fractionally eternally dominate
Cay(Z2n, {±1, n}). Let us consider an initial feasible weight function w. We
may assume without loss of generality that vertex v0 receives a weight of 1. Let
S = {v4i−1 : i ∈ [n4 ]} ∪ {vn+4i−3 : i ∈ [n4 ]}. It follows from the preceding
definition and from the fact that n ≡ 0 (mod 4) that N [vi] ∩ N [vj ] = ∅ for
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any i, j ∈ S, i 6= j unless i = n − 1 and j = n + 1. Now,
∑

v∈S w(N [v]) =
(
∑

v∈V w(v))−w(v0)−w(vn). Since
∑

v∈S w(N [v]) ≥ n
2 , we have (

∑

v∈V w(v))−
w(v0)−w(vn) ≥

n
2 =⇒ w(vn) ≥

1
4+ǫ. This means that for any integer i ∈ [n−1

3 ],
the sum of the weight in the closed neighbourhood of the set {v3i−1, vn+3i−1} is
at least 5

4 + ǫ. Since n ≡ 1 (mod 3), V \ {v0, vn} can be partitioned into n−1
3

sets each of which contains the closed neighbourhood of {v3i−1, vn+3i−1} for some
i ∈

[

n−1
3

]

. Hence,
(

n−1
3

)(

1+ 1
4 + ǫ

)

≤ 2n+3
4 − ǫ− 1− 1

4 − ǫ =⇒ ǫ ≤ n−1
4(n+5) . As a

result, γ∞f (Cay(Z2n, {±1, n})) ≥
(

n+2
3

)(

1 + 1
4 + (n−1)

4(n+5)

)

= (n+2)(n+4)
2(n+5) .

6. Graph Products

6.1. Hypercubes

In this final section, we consider γ∞f (G) when G is obtained by taking the
Cartesian or strong product of two graphs. Perhaps the most relevant in the field
of graph domination, due to its applications in coding theory, is the hypercube
Qd. Hypercubes are generally resistant to exact computation of domination
parameters; the exact value of γ(Qd) has been determined for d ≤ 9 and for
d = 2r − 1 for some positive integer r but is generally open. It is known that
γ(Qd) = γ∞m (Qd) since any attack on Qd can be defended by a guard shift, and
so determining the number of guards needed in the all-guards move model is also
generally open. However, as a consequence of Corollary 18, we see that γ∞f (Qd)
can at least be closely approximated.

Theorem 6.1. For any positive integer d, 2d

d+1 ≤ γ∞f (Qd) ≤
2d+d
d+1 .

Figure 3 compares the bounds from Theorem 6.1 with the known values of
γ(Qd) for small values of d (see [1]). The equality in parameters for d = 1, 3, 7
is not a coincidence. If d = 2r − 1 for some positive integer r, then γ(Qd) =

γ∞m (Qd) = 2d

d+1 because Qd has an efficient dominating set [10]. Since this is a
lower bound on γ∞f (Qd) (Theorem 6.1) as well as an upper bound (Proposition
2), equality holds.

6.2. Grids

Theorem 6.2. For any integer n ≥ 1, γ∞f (Pn2P2) =
⌈

2n
3

⌉

.

Proof. Since C2n is a spanning subgraph of Pn2P2 and satisfies γ∞f (C2n) =
⌈

2n
3

⌉

,

we have γ∞f (Pn2P2) ≤
⌈

2n
3

⌉

. It remains to prove that γ∞f (Pn2P2) ≥
⌈

2n
3

⌉

. To
this end, we label the vertices of the graph v1, v2, . . . , vn, v

′
1, v

′
2, . . . , v

′
n in a way

such that viv
′
i ∈ E for all i and vivj , v

′
iv

′
j ∈ E for all i, j such that |i − j| = 1.

Now, consider the sequence of attacks on the vertices v1, v
′
2, v4, v

′
5, v7, v

′
8 . . . in this
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d γ∞m (Qd) = γ(Qd) γ∞f (Qd)

1 1 1
2 2 [43 , 2]
3 2 2
4 4 [165 , 4]
5 7 [163 ,

37
6 ]

6 12 [647 , 10]
7 16 16
8 32 [2569 , 883 ]
9 62 [2565 , 52110 ]
10 [107, 120] [102411 , 94]

Figure 3. Comparison of γ∞

f (Qd) and γ(Qd).

particular order. More formally, for any k ≥ 0, at time t = 2k + 1, the attacked
vertex is v3k+1 and at time t = 2k + 2, the attacked vertex is v′3k+2. Observe
that, for any t1 ≥ 1 and t2 > t1, the attacked vertex u2 at time t2 is at distance
at least t2− t1+1 from the attacked vertex u1 at time t1. Since the weight on u1
can be distributed only to the vertices at distance at most t2− t1 from u1 during
the t2-th attack, it follows that new set of weights (not coming from u1) must be
moved to u2. Consequently, for any k ≥ 0, the sum of the weights on the vertices
of the set {vi : i ≤ 3k+1}∪{v′i : i ≤ 3k+1} is at least t = 2k+1 after a response
to the t-th attack if t = 2k + 1 and the sum of the weights on the vertices of the
set {vi : i ≤ 3k + 2} ∪ {v′i : i ≤ 3k + 2} is at least t = 2k + 2 after a response to
the t-th attack if t = 2k + 2. Thus, the inequality follows.

Theorem 6.3. γ∞f (Pm2Pn) ≤
mn
5 + 2(m+n)

15 + 39
15 for any m,n ≥ 2.

Proof. We begin by placing a weight of 1
5 on each vertex in the inner Pm−22Pn−2,

a weight of 7
15 on each of the corner vertices and a weight of 4

15 on each of the
non-corner boundary vertices. We place an additional weight of 12

15 on an arbitrary
vertex in the inner Pm−22Pn−2, an additional weight of 8

15 on one of the corner
vertices and an additional weight of 12

15 on a random vertex in the boundary (not
the corner). If a vertex in the inner Pm−22Pn−2 is attacked, the additional weight
of 12

15 can be distributed along 4 disjoint paths to that vertex. If a vertex in the
corner is attacked, the additional weight of 8

15 can be distributed along 2 disjoint
paths to that vertex. If a vertex on the boundary is attacked, the additional
weight of 11

15 can be distributed along 3 disjoint paths to that vertex. This strategy

shows that a total weight of (m−2)(n−2)
5 + 12

15 + 8(m−2)+8(n−2)
15 + 11

15 + 28
15 + 8

15 =
mn
5 + 2(m+n)

15 + 39
15 can defend the graph from any sequence of attacks.
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Theorem 6.4. γ∞f (Pn ⊠ Pm) ≤ mn
9 + 16(m+n)

9 + 114
9 for any m,n ≥ 0.

Proof. Observe that there exists 8 disjoint paths joining any pair of vertices in
the inner Pn−8⊠Pm−8 subgrid. So, we start by placing a weight of 1

9 on each of the
vertices of that subgrid, then a weight of 3

9 on the remaining vertices of the graph.
Now we can place an additional weight of 8

9 on a random vertex in the subgrid and
an additional weight of 6

9 on a random vertex not in the subgrid. If a vertex in
the subgrid is attacked, then the additional weight of 8

9 can be distributed along
eight disjoint paths to that vertex, otherwise, the additional weight of 6

9 can be
distributed along disjoint paths leading to that vertex. This strategy shows that
a total weight of (m−8)(n−8)

9 + 8
9 + 24m+24n−192

9 + 6
9 = mn

9 + 16(m+n)
9 + 114

9 can
defend the graph from any sequence of attacks.

7. Conclusion

We conclude with some open problems for future research. In Section 3 we noted
that, for any rational number r ≥ 2, there is a graph whose fractional eternal
domination number is exactly r. However, it is not clear whether or not γ∞f (G)
is necessarily rational for every finite graph G.

Problem 7.1. Is γ∞f (G) rational for every graph G?

In Section 2, we showed that, if a graph G can be eternally fractionally
dominated by n f.d-functions, then γ∞f (G) and an optimal guarding strategy can
be computed efficiently and γ∞f (G) is necessarily rational. This prompts to ask
the following.

Problem 7.2. Can every finite graph G be eternally fractionally dominated by
n f.d.-functions?

Clearly, a positive answer to Problem 7.2 implies a positive answer to Problem
7.1.

In light of the upper bound from Theorem 5.2 on γ∞f (G) in terms of the
connectivity and order of G, and of the bound given in Lemma 5.1 on γf (G), we
offer the following problem.

Problem 7.3. Does there exist some function f such that every graph with
connectivity κ satisfies γ∞f (G) ≤ γf (G) + f(κ)?

Following our study of various graph classes, we are left with a number of
unanswered questions.

Problem 7.4. Determine the exact value of γ∞f (G) for all Kneser graphs.
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Recall that Theorem 4.2 determined the exact value for n = 5 and k = 2,
and Theorem 4.3 gives bounds for KGn,2.

In Section 5, it was proved that, if G is a cubic abelian Cayley graph,
then γ∞f (G) < γ(G) if and only if G is isomorphic to either C4k+22K2 or
Cay(Z8k, {±1, 4k}) for some positive integer k. For all other cubic abelian Cayley
graphs, and for C102K2, the exact value of γ∞f (G) was computed exactly.

Problem 7.5. Let k be a positive integer. Determine the exact value of γ∞f (G)
when G is isomorphic to

• C4k+22K2 for k 6= 2;

• Cay(Z8k, {±1, 4k}).

Finally, turning to graph products, the exact value of γ∞f (G) remains
unsolved for hypercubes, Cartesian grids (except for “ladders”), and strong grids.
Domination parameters are notoriously difficult to compute in graph products,
however the results of Section 6 provide some initial bounds from which to work.
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Appendix
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Figure 4. Configuration of the guards in Cay(Z8, {±1, 4}) after an attack on the vertices
v0, v1, v4, v7. The graph on the top left corresponds to the initial configuration of the
guards.
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Figure 5. Configuration of the guards in Cay(Z8, {±1, 4}) after an attack on the vertices
v2, v3, v5, v6. The graph on the top left corresponds to the initial configuration of the
guards.
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Figure 6. Configuration of the guards in C102K2 after an attack on the vertices
v0, v1, v2, v3. The graph on top corresponds to the initial configuration of the guards.
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Figure 7. Configuration of the guards in C102K2 after an attack on the vertices
v4, v5, u0, u1. The graph on top corresponds to the initial configuration of the guards.
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Figure 8. Configuration of the guards in C102K2 after an attack on the vertices
u2, u3, u4, u5. The graph on top corresponds to the initial configuration of the guards.
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Attack Response

v1

v0
1
−→ v1, v2

1/5
−−→ v3, v3

2/5
−−→ v4, v4

1/5
−−→ v5, v5

1/5
−−→ v6, v6

1/5
−−→ v7,

v7
2/5
−−→ v8, v8

1/5
−−→ v9, u0

2/5
−−→ u1, u1

1/5
−−→ u2, u2

2/5
−−→ u3, u3

1/5
−−→ u4,

u4

1/5
−−→ u5, u5

2/5
−−→ u6, u6

1/5
−−→ u7, u7

1/5
−−→ u8, u8

2/5
−−→ u9, u9

1/5
−−→ u0

v2

v0
2/5
−−→ v9, v0

2/5
−−→ u0, v3

2/5
−−→ v2, v6

1/5
−−→ v5, v7

1/5
−−→ v6, u0

1/5
−−→ u1,

u0

1/5
−−→ u9, u1

1/5
−−→ u2, u2

2/5
−−→ v2, u3

1/5
−−→ u2, u4

1/5
−−→ u3, u5

2/5
−−→ u4,

u6

1/5
−−→ u5, u7

1/5
−−→ u6, u8

2/5
−−→ u7, u9

1/5
−−→ u8

v3

v0
1/5
−−→ v1, v0

1/5
−−→ v9, v0

1/5
−−→ u0, v2

1/5
−−→ v3, v4

1/5
−−→ v3, v7

1/5
−−→ v6,

u0

1/5
−−→ u1, u0

1/5
−−→ u9, u2

1/5
−−→ u3, u4

1/5
−−→ u3, u5

1/5
−−→ u4, u6

1/5
−−→ u5,

u7

1/5
−−→ u6, u8

1/5
−−→ u7, u9

1/5
−−→ u8

v4

v0
1/5
−−→ v1, v0

1/5
−−→ v9, v0

1/5
−−→ u0, v3

2/5
−−→ v4, v5

1/5
−−→ v4, u0

1/5
−−→ u1,

u0

1/5
−−→ u9, u1

1/5
−−→ u2, u2

1/5
−−→ u3, u3

1/5
−−→ u4, u5

1/5
−−→ u4, u7

1/5
−−→ u6,

u8

1/5
−−→ u7

v5

v0
1/5
−−→ v1, v0

1/5
−−→ v9, v0

2/5
−−→ u0, v3

2/5
−−→ v2, v4

1/5
−−→ v5, v6

1/5
−−→ v5,

v7
2/5
−−→ v8, u0

1/5
−−→ u1, u0

1/5
−−→ u9, u1

1/5
−−→ u2, u2

2/5
−−→ u3, u3

1/5
−−→ u4,

u4

1/5
−−→ u5 u6

1/5
−−→ u5, u7

1/5
−−→ u6, u8

2/5
−−→ u7, u9

1/5
−−→ u8

u0
v0

1/5
−−→ v1, v0

1/5
−−→ v9, v0

1/5
−−→ u0, v3

1/5
−−→ v2, v7

1/5
−−→ v8, u1

1/5
−−→ u0,

u2

1/5
−−→ u3, u5

1/5
−−→ v5, u8

1/5
−−→ u7, u9

1/5
−−→ u0

u1 v0
2/5
−−→ v1, v0

2/5
−−→ v9, v7

1/5
−−→ v6, u0

2/5
−−→ u1, u2

2/5
−−→ u1, u5

1/5
−−→ u4

u2

v0
1/5
−−→ v1, v0

1/5
−−→ v9, v0

1/5
−−→ u0, v2

1/5
−−→ u2, v3

2/5
−−→ v2, v4

1/5
−−→ v3,

v5
1/5
−−→ v4, v6

1/5
−−→ v5, v7

1/5
−−→ v6, v8

1/5
−−→ v7, u0

2/5
−−→ u9, u1

1/5
−−→ u2,

u3

1/5
−−→ u2, u4

1/5
−−→ v4, u5

1/5
−−→ u4, u6

1/5
−−→ u5, u7

1/5
−−→ u6, u8

1/5
−−→ u7,

u8

1/5
−−→ v8, u9

1/5
−−→ u8

u3

v0
2/5
−−→ v1, v0

1/5
−−→ v9, v0

1/5
−−→ u0, v3

1/5
−−→ u3, v4

1/5
−−→ v3, v5

1/5
−−→ v4,

v6
1/5
−−→ v5, v7

1/5
−−→ v6, u0

1/5
−−→ u9, u2

2/5
−−→ u3, u3

1/5
−−→ u3, u5

1/5
−−→ v5,

u7

1/5
−−→ u6, u8

1/5
−−→ u7, u9

1/5
−−→ u8, u8

1/5
−−→ v8

u4

v0
1/5
−−→ v1, v0

2/5
−−→ v9, v0

1/5
−−→ u0, v3

1/5
−−→ v4, v4

1/5
−−→ u4, v5

1/5
−−→ v4,

v6
1/5
−−→ v5, v7

2/5
−−→ v6, u0

1/5
−−→ u1, u0

1/5
−−→ u9, u3

1/5
−−→ u4, u5

1/5
−−→ u4,

u8

2/5
−−→ u7, u9

1/5
−−→ u8

u5

v0
1/5
−−→ v1, v0

1/5
−−→ v9, v0

1/5
−−→ u0, v2

1/5
−−→ v3, v3

1/5
−−→ v4, v4

1/5
−−→ v5,

v5
1/5
−−→ u5, v6

1/5
−−→ v5, v7

1/5
−−→ v6, v8

1/5
−−→ v7, u0

1/5
−−→ u1, u0

1/5
−−→ u9,

u1

1/5
−−→ u2, u2

1/5
−−→ v2, u4

1/5
−−→ u5, u6

1/5
−−→ u5, u8

1/5
−−→ v8, u9

1/5
−−→ u8

Table 1. Response of the guards to each attack on the vertices of C102K2.
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