DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

D.L. de Oliveira

Deise L. de Oliveira

IME, Universidade Federal Fluminense

email: deiseoliveira@id.uff.br

0000-0001-7163-3524

D. Artigas

Danilo Artigas

RIC, Universidade Federal Fluminense, Rio das Ostras, Brazil

email: daniloartigas@id.uff.br

0000-0002-2886-2740

S. Dantas

Simone Dantas

GAN – IME, Universidade Federal Fluminense, Brazil

email: sdantas@id.uff.br

0000-0002-8340-4881

A.G. Luiz

Atílio G. Gomes Luiz

Campus Quixada, Universidade Federal do Ceara

email: gomes.atilio@gmail.com

0000-0002-6177-403X

Title:

On the edge-sum distinguishing game

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2022-11-25 , Revised: 2023-06-07 , Accepted: 2023-06-11 , Available online: 2023-07-08 , https://doi.org/10.7151/dmgt.2502

Abstract:

The Edge-Sum Distinguishing game (ESD game) is a graph labeling game proposed by Tuza in $2017$. In such a game, the players, traditionally called Alice and Bob, alternately assign an unused label $f(v) \in \{1,\ldots, s\}$ to an unlabeled vertex $v$ of a graph $G$, and the induced edge label $\phi(uv)$ of an edge $uv \in E(G)$ is given by $\phi(uv) = f(u) + f(v)$. Alice's goal is to end up with an injective vertex labeling of all vertices of $G$ that induces distinct edge labels, and Bob's goal is to prevent this. Tuza also posed the following questions about the ESD game: given a simple graph $G$, for which values of $s$ can Alice win the ESD game? And if Alice wins the ESD game with the set of labels $\{1,\ldots, s\}$, can she also win with $\{1,\ldots, s+1\}$? In this work, we partially answer these questions by presenting bounds on the number of consecutive non-negative integer labels necessary for Alice to win the ESD game on general and classical families of graphs.

Keywords:

graph labeling, labeling game, maker-breaker game, edge-sum distinguishing game, combinatorial game

References:

  1. J. Bok and N. Jedličková, Edge-sum distinguishing labeling, Comment. Math. Univ. Carolin. 62 (2021) 135–149.
    https://doi.org/10.14712/1213-7243.2021.010
  2. E. Boudreau, B. Hartnell, K. Schmeisser and J. Whiteley, A game based on vertex-magic total labelings, Australas. J. Combin. 29 (2004) 67–73.
  3. H. Enomoto, A. Lhadó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105–109.
    https://doi.org/10.55937/sut/991985322
  4. L. Frickes, S. Dantas and A.G. Luiz, The graceful game, in: Proc. 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, (Enschede, Netherlands 2019) 45–48.
  5. J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2022) #DS6.
    https://doi.org/10.37236/27
  6. R.L. Graham and N.J. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Discrete Meth. 1 (1980) 382–404.
    https://doi.org/10.1137/0601045
  7. B. Hartnell and D. Rall, A vertex-magic edge labeling game, Congr. Numer. 161 (2003) 163–167.
  8. N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Inc., San Diego, 1990).
  9. A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451–461.
    https://doi.org/10.4153/CMB-1970-084-1
  10. B. Liu and X. Zhang, On harmonious labelings of graphs, Ars Combin. 36 (1993) 315–326.
  11. D.L. Oliveira, S. Dantas and A.G. Luiz, Results on the graceful game and range-relaxed graceful game, in: Extended Abstracts EuroComb 2021, Trends in Mathematics 14, J. Nešetřil, G. Perarnau, J. Rué and O. Serra (Ed(s)), (Birkhauser, Cham 2021) 214–220.
    https://doi.org/10.1007/978-3-030-83823-2_34
  12. J. Sedláček, Problem $27$, in: Theory of Graphs and Its Applications, Proc. Symp. Smolenice 1963, (Nakl. CSAV, Praha 1963) 163–164.
  13. E. Sidorowicz, Colouring game and generalized colouring game on graphs with cut-vertices, Discuss. Math. Graph Theory 30 (2010) 499–533.
    https://doi.org/10.7151/dmgt.1510
  14. Zs. Tuza, Graph labeling games, Electron. Notes Discrete Math. 60 (2017) 61–68.
    https://doi.org/10.1016/j.endm.2017.06.009

Close