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Abstract

The Edge-Sum Distinguishing game (ESD game) is a graph labeling game
proposed by Tuza in 2017. In such a game, the players, traditionally called
Alice and Bob, alternately assign an unused label f(v) ∈ {1, . . . , s} to an
unlabeled vertex v of a graph G, and the induced edge label φ(uv) of an
edge uv ∈ E(G) is given by φ(uv) = f(u) + f(v). Alice’s goal is to end up
with an injective vertex labeling of all vertices of G that induces distinct
edge labels, and Bob’s goal is to prevent this. Tuza also posed the following
questions about the ESD game: given a simple graph G, for which values of
s can Alice win the ESD game? And if Alice wins the ESD game with the
set of labels {1, . . . , s}, can she also win with {1, . . . , s + 1}? In this work,
we partially answer these questions by presenting bounds on the number of
consecutive non-negative integer labels necessary for Alice to win the ESD
game on general and classical families of graphs.
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1. Introduction

In this paper, all graphs G = (V (G), E(G)) are finite, undirected, simple such
that n = |V (G)| and m = |E(G)|.

In 1963, Sedláček [12] introduced the notion of a magic labeling of a connected
graph G as a labeling of the edges of G with real numbers such that: (1) distinct
edges are assigned distinct labels, and (2) the sum of the values assigned to all
edges incident to a given vertex is the same for all vertices v ∈ V (G). Since then,
many graph labelings based on sums of integer labels have been proposed [5].
For example, in 1970, Kotzig and Rosa [9] introduced the notion of a magic
valuation, which is a labeling f : V (G) → {1, . . . , n} of a graph G such that
S = {f(u) + f(v) : uv ∈ E(G)} consists of m consecutive integers. This labeling
was later rediscovered by Enomoto et al. [3] and renamed as super edge-magic
labeling.

In 1980, Graham and Sloane [6] defined the harmonious labeling as an in-
jective function f : V (G) → Zm in which each edge uv ∈ E(G) is labeled with
φ(uv) = (f(u) + f(v)) mod m, so that the resulting edge labels are distinct, and
conjectured that every tree is harmonious. Liu and Zhang [10] proved that every
graph is a subgraph of a harmonious graph.

In 1990, Hartsfield and Ringel [8] introduced antimagic labelings motivated
by magic labelings. A graph with m edges is called antimagic if its edges can be
labeled with distinct labels from {1, . . . ,m}, such that the sums of the labels of
the edges incident to each vertex are distinct. They conjectured that every graph
except K2 has an antimagic labeling.

For the reader interested in more examples of labelings constructed from sums
of integer labels or in results on (anti)magic labelings, harmonious labelings and
super edge-magic labelings, we suggest Gallian’s dynamic survey [5].

In 2017, Tuza [14] introduced the Edge-Sum Distinguishing labeling (ESD
labeling), defined as follows: given a graph G and a set of consecutive integer
labels L = {1, 2, . . . , s}, an ESD labeling of G is an injective labeling f : V (G)→
L such that, when we assign the edge label φ(uv) = f(u) + f(v) for each edge
uv ∈ E(G), the (induced) edge labeling φ is injective. We note that the set
of all possible edge labels induced by the vertex labeling f is represented by
LE = {3, 4, . . . , 2s− 1}. Figure 1 exhibits a graph with an ESD labeling.

The ESD labeling was later investigated by Bok and Jedličková [1], who
determined the minimum positive integer s for which many classical families of
graphs admit an ESD labeling f : V (G)→ {1, . . . , s}.

Graph labelings are usually investigated from the perspective of determining
whether a given graph has a required labeling or not [5]. An alternative perspec-
tive is to analyze graph labeling problems from the point of view of combinatorial
games [2, 7, 13]. In fact, Tuza introduced the ESD labeling in connection to the
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Figure 1. Petersen graph with an edge-sum distinguishing labeling.

study of a combinatorial game related to graph labelings with sums. In his semi-
nal article, Tuza [14] surveyed the area of graph labeling games and presented two
graph labeling games with sums [2, 7] based on magic labelings. Tuza [14] also
proposed new variants of graph labeling games such as the Graceful game, studied
by Frickes et al. [4], the Edge-Difference Distinguishing game, later investigated
by Oliveira et al. [11], and the Edge-Sum Distinguishing game.

The Edge-Sum Distinguishing game (ESD game) is a type of maker-breaker
game, where the players have opposite goals. In this game, Alice and Bob alter-
nately assign a previously unused label f(v) ∈ L = {1, . . . , s} to an unlabeled ver-
tex v of a given graph G. If both ends of an edge vw ∈ E(G) are already labeled,
then the (induced) label φ(vw) of the edge vw is defined as φ(vw) = f(v)+f(w).
A move is legal if after it all edge labels are distinct. Only legal moves are allowed
in this game. Alice (the maker) wins if the graph G is fully ESD labeled, and
Bob (the breaker) wins if he can prevent this (that is, Bob wins if, at some point,
no more legal moves are allowed and the graph is not fully ESD labeled).

Tuza [14] posed the following questions about the ESD game.

Question 1. Given a graph G and a set of consecutive non-negative integer labels
L = {1, . . . , s}, for which values of s can Alice win the ESD game?

Question 2. If Alice can win the ESD game on a graph G with the set of labels
L = {1, . . . , s}, can she also win with L = {1, . . . , s+ 1}?

In this work, we investigate winning strategies for Alice and Bob on the ESD
game for classical families of graphs, such as stars, paths, cycles, wheels and
complete graphs. Furthermore, we partially answer Tuza’s questions presenting
bounds for the number of consecutive non-negative integer labels necessary for
Alice to win the ESD game on a graph G.

2. Main Results

We begin this section by presenting definitions used throughout this paper. Let
G = (V (G), E(G)) be a graph such that n = |V (G)| and m = |E(G)|. Two
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vertices u, v ∈ V (G) are adjacent if uv ∈ E(G); in such a case, edge e = uv and
vertices u and v are called incident, and vertices u and v are also called neighbors.
The neighborhood of u ∈ V (G) is the set N(u) = {v : uv ∈ E(G)}. The degree
d(v) of a vertex v ∈ V (G) is the number of edges incident to v. The maximum
degree of G is the number ∆(G) = max{d(v) : v ∈ V (G)}. The distance d(u, v)
between two vertices u, v ∈ V (G) is the number of edges in a shortest path
connecting u and v in G.

The edge-sum distinguishing labeling number σ(G) of a graph G is the least
positive integer s for which G has an ESD labeling f : V (G)→ {1, . . . , s}.

The edge-sum distinguishing game number σg(G) of a graph G is the least
positive integer s such that Alice has a winning strategy for the ESD game on G
using the set of labels {1, . . . , s}. Our first results present bounds for the edge-sum
distinguishing game number and its relation with the edge-sum distinguishing
labeling number.

Lemma 3. For every graph G, σg(G) ≥ σ(G).

Proof. If Alice has a winning strategy to obtain an ESD labeling of G with labels
from the set {1, . . . , σg(G)}, then σg(G) ≥ σ(G).

Lemma 4. Let s be a positive integer. If a graph G with m edges has an ESD
labeling f : V (G)→ {1, . . . , s}, then m ≤ 2s− 3.

Proof. Let G be a graph with an ESD labeling f : V (G) → {1, . . . , s}. By the
definition of ESD labeling, LE = {3, 4, . . . , 2s− 1}. Since |LE | = 2s − 3 and all
edges of G receive distinct induced labels, we obtain that m ≤ 2s− 3.

Corollary 5. If a graph G with m edges has an ESD labeling f : V (G) →
{1, . . . , s}, then s ≥ m+3

2 .

Corollary 5 establishes a lower bound for s that guarantees a necessary num-
ber of labels to each edge of G, and the next result states a necessary number of
labels to each vertex of G in an ESD labeling.

Lemma 6. For every graph G with n vertices and m edges, σg(G) ≥ σ(G) ≥
max

{
n, m+3

2

}
.

Proof. Since an ESD labeling is an injective mapping from the set of vertices
on the set of integers from 1 to s, if the lower bound given by Corollary 5 is less
than n, that is m < 2n− 3, then s is the maximum between

{
n, m+3

2

}
.

Bok and Jedličková [1] proved that if G is a graph with maximum degree ∆,
then σg(G) ≤ (∆2 + 1)n+ ∆

(
n−1
2

)
. In the next theorem, we improve their result,

by presenting a better upper bound for the parameter σg(G), for an arbitrary
graph G.
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Theorem 7. If G is a graph on n vertices and m edges, then

σg(G) ≤ n+ max{d(u)(m− d(u)) : u ∈ V (G)}.

Proof. Let G be a graph on n vertices and m edges, and let L = {1, . . . , s} be
a set of consecutive integer labels such that s ≥ n + max{d(u)(m − d(u)) : u ∈
V (G)}. Alice (or Bob) starts playing the ESD game on G, and our objective is
to show a winning strategy for Alice.

For each vertex w ∈ V (G), let L(w) be the set of available labels for w. At
the beginning of the game, L(w) = L for all w ∈ V (G). At each round of the
game, a player (Alice or Bob) chooses an unlabeled vertex and assigns to it an
available label α such that 1 ≤ α ≤ s. Right after a player’s move, the sets of
available labels of the remaining unlabeled vertices are updated to maintain the
property that these sets only contain available labels for the respective vertices.
Thus, when it is Alice’s turn, she always chooses an unlabeled vertex w and assign
to w any label in the set of available labels L(w), if L(w) 6= ∅. At the end of
this proof, we show that L(w) 6= ∅ for every unlabeled vertex w ∈ V (G) at any
point of the game. Next, we describe how the sets of available labels of unlabeled
vertices are updated right after each player’s move.

At the j-th move, a player (Alice or Bob) chooses an unlabeled vertex vj ∈
V (G) and assigns an available label f(vj) to vj . Right after the j-th move, the set
of available labels L(u) of each remaining unlabeled vertex u ∈ V (G) is updated.
Only unused vertex labels and vertex labels that cannot generate repeated edge
labels in future iterations can remain in each set. The sets of available labels are
updated according to the following two steps.

1. For every unlabeled vertex u ∈ V (G), remove f(vj) from L(u). Note that,
since an ESD labeling is injective, the label f(vj) cannot be assigned to more
than one vertex.

2. For every unlabeled vertex u ∈ V (G) and for every labeled vertex u′ ∈ N(u),
delete from L(u) every label ` such that ` + f(u′) = φ(e), for every edge
e ∈ E(G) that has both endpoints labeled.

Figure 2 illustrates the strategy described above.
Next, we determine the maximum number of labels that are deleted, through-

out the game, from each set of available labels. First, note that exactly one label
is deleted from each unlabeled vertex at each execution of Step 1. Thus, exactly
n− 1 labels are deleted at Step 1 after the first n− 1 moves.

Now, we count how many labels are deleted after the first n − 1 executions
of Step 2. Let u be the last unlabeled vertex. Right after n − 1 moves, all
the neighbors of u are labeled and there are exactly m − d(u) edges in G with
induced labels `′. For each neighbor w ∈ N(u), each induced edge label `′ can
preclude at most one vertex label from being assigned to vertex u, namely, the
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label `′ − f(w). Thus, each neighbor of u contributes for the deletion of at
most (m − d(u)) labels from L(u). Since u has d(u) neighbors, the number of
labels deleted from L(u) after the first n − 1 executions of Step 2 is at most
d(u)(m− d(u)). Therefore, the maximum number of labels that can be excluded
on Step 2 is max{d(u)(m− d(u)) : u ∈ V (G)}.

4

v1

v2

v3v4

v5

(a) 1st move.

4

v1

v2

9

v3v4

v5

(b) 2nd move.

4

v1

3 v2

9

v3v4

v5

7

12

(c) 3rd move.

4

v1

3 v2

9

v3v4

1v5

7

12

5

(d) 4th move.

4

v1

3 v2

9

v3

5

v4

1v5

7

12

5

6

14

(e) 5th move.

Figure 2. A sequence of moves of the ESD game illustrating the strategy described in
the proof of Theorem 7. A player chooses an unlabeled vertex vi of the cycle C5. At
the beginning of the game, L(vi) = L = {1, . . . , 11}, for every vi ∈ V (G). After each
iteration, the set of available labels is updated for each vertex not labeled. In the last
move we guarantee that there exists an available label that can be assigned for the last
vertex vi in the set L(vi).

From the previous analysis, we conclude that at most (n−1)+max{d(u)(m−
d(u)) : u ∈ V (G)} labels are deleted from each set of available labels. Since |L|
is greater than this value, we conclude that there is always an available label at
each set L(u) to be assigned to an unlabeled vertex u, and the result follows.

We observe that the bound given by Theorem 7 is tight in the sense that
graphs K2 and 2K2 are the smallest graphs that attain the equality. The next
result follows from the proof of Theorem 7 and partially answers Question 2 posed
by Tuza.

Corollary 8. If Alice wins the ESD game on G with the set of labels L =
{1, . . . , s}, then she also wins with L′ = {1, . . . , s + 1} for any integer s ≥
n+ max{d(u)(m− d(u)) : u ∈ V (G)}.
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In this work, we have also implemented computational algorithms to analyze
the game on small graphs. We applied backtracking technique which means that,
at each player turn, we grow the tree of partial solutions, branching on the set of
all possible moves. We prune the branching process for a partial solution as soon
as we can decide which player wins the game at that position. For the general
case, a partial solution is a winning position for a player X if X can reach a
winning position on its next move. A position where all vertices have a label is a
winning position for Alice. A position where there exist unlabelled vertices and
the player of the turn could not make a legal move is a winning position for Bob.
The computational results obtained are described throughout the next section.

2.1. ESD game on families of graphs

In this section, we present our analysis of the ESD game for some classical families
of graphs. We define L = {1, . . . , s} as the set of available vertex labels for an
ESD game’s match.

2.1.1. Stars

A star graph is a tree on n nodes isomorphic to the complete bipartite graph
K1,n−1, where one node has degree n − 1 (central vertex), and the other n − 1
nodes have degree 1.

Theorem 9. If K1,n−1 is a star, n ≥ 2, then σ(K1,n−1) = σg(K1,n−1) = n.

Proof. Independently of the label ` ∈ {1, . . . , n} that is assigned to the central
vertex of K1,n−1, the labels in the set {1, . . . , n}\{`} are all assigned to the
remaining vertices of K1,n−1 and induce distinct edge labels.

2.1.2. Paths

A path Pn is a graph with vertex set V (Pn) = {v1, . . . , vn} and edge set E(Pn) =
{vivi+1 : 1 ≤ i ≤ n − 1}. An ESD labelling f : V (Pn) → {1, . . . , n} is easily
obtained by assigning f(vi) = d i2e if i is odd; or f(vi) = dn2 e + i

2 otherwise.
Therefore, σ(Pn) = n. By Theorem 7, σg(Pn) ≤ 2n − 2 for 2 ≤ n ≤ 4, and
σg(Pn) ≤ 3n − 6 for n ≥ 5. The next result, establishes the winner of the ESD
game on small paths.

Proposition 10. If Pn is a path with n ≤ 11 vertices, then

σg(Pn) =


n if n ≤ 3;

n+ 1 if 4 ≤ n ≤ 8;

n+ 2 if 9 ≤ n ≤ 11.
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Moreover, if L = {1, . . . , n} is a set of labels then, for P4, the winner is the player
who does not start the game and, for P5, the winner is the player who starts the
game.

Proof. Let L = {1, . . . , n} be a set of labels and Pn be a path on n vertices.
For 2 ≤ n ≤ 3, the result follows from Theorem 9 since in these cases Pn is a
star. Consider n = 4. First, suppose that Alice starts the game by assigning
label ` ∈ L to an arbitrary vertex v ∈ V (P4). On the second move, Bob assigns
label 5 − ` to a neighbor of v with a lower degree. Bob wins with this move
since there will always be an edge with the repeated edge label 5. When Bob is
the first player, he starts the game by assigning label ` ∈ {1, 2} to an arbitrary
vertex v ∈ V (G) (the case ` ∈ {3, 4} is complementary, that is, when a label α is
played here, the label n+ 1−α is used on the same round of the complementary
game). On the second move, Alice assigns label 5 − ` to a vertex u at distance
two apart from v. Alice wins since this partial labeling can always be extended
to an ESD labeling of P4. Hence, the winner on P4 is the player who does not
start the game.

Now, consider n = 5 and suppose that Bob starts the game by assigning label
5 to v3 ∈ V (P5). On the second move, Alice assigns label ` ∈ L\{5} to another
vertex u of P5. Then, Bob assigns the label 5− ` to a neighbor of u on the third
move, thus generating the edge label 5. Bob wins since the next moves generate
a repeated edge label 5. Next, consider that Alice starts the game. She starts
by assigning label 3 to vertex v2 ∈ V (P5). Now, Bob chooses an arbitrary vertex
from {v1, v3, v4, v5}. There are four cases to consider.

Case 1. Bob chooses v1 on the second move: (i) if Bob assigns 1 to v1, then
Alice assigns 2 to v3; (ii) if Bob assigns 2 to v1, then Alice assigns 5 to v4; (iii)
if Bob assigns 4 to v1, then Alice assigns 1 to v4; and (iv) if Bob assigns 5 to
v1, then Alice assigns 1 to v3. It can be checked by inspection that these partial
labelings extend to an ESD labeling of P5, independently of the next two moves.

Case 2. Bob chooses v3 on the second move: (i) if Bob assigns 1 to v3, then
Alice assigns 4 to v5; (ii) if Bob assigns 2 to v3, then Alice assigns 1 to v1; (iii)
if Bob assigns 4 to v3, then Alice assigns 5 to v1; and (iv) if Bob assigns 5 to
v3, then Alice assigns 1 to v1. It can be checked by inspection that these partial
labelings extend to an ESD labeling of P5, independently of the next two moves.

Case 3. Bob chooses v4 on the second move: (i) if Bob assigns 1 to v4, then
Alice assigns 2 to v5; (ii) if Bob assigns 2 to v4, then Alice assigns 5 to v1; (iii)
if Bob assigns 4 to v4, then Alice assigns 1 to v1; and (iv) if Bob assigns 5 to
v4, then Alice assigns 4 to v5. It can be checked by inspection that these partial
labelings extend to an ESD labeling of P5, independently of the next two moves.

Case 4. Bob chooses v5 on the second move: (i) if Bob assigns 1 to v5, then
Alice assigns 4 to v3; (ii) if Bob assigns 2 to v5, then Alice assigns 1 to v4; (iii)
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if Bob assigns 4 to v5, then Alice assigns 1 to v1; and (iv) if Bob assigns 5 to
v5, then Alice assigns 2 to v3. It can be checked by inspection that these partial
labelings extend to an ESD labeling of P5, independently of the next two moves.

Therefore, Alice wins on P5 when she starts.

Finally, we computationally determine the value of σg(Pn) for n ≤ 11 as
follows: σg(Pn) = n if n ≤ 3, σg(Pn) = n+ 1 if 4 ≤ n ≤ 8, and σg(Pn) = n+ 2 if
9 ≤ n ≤ 11.

2.1.3. mP2 graphs

A mP2 is a graph with vertex set V (mP2) = {v1, . . . , v2m} and edge set E(mP2) =
{vivi+1 : i is odd and 1 ≤ i ≤ 2m − 1}. An ESD labelling f : V (mP2) → {1, . . . ,
2m} is obtained by assigning f(vi) = i for every vi ∈ V (mP2). Therefore,
σ(mP2) = 2m.

Theorem 11. Let L = {1, . . . , 2m} be a set of labels. If Alice starts the ESD
game on mP2, then Bob wins the game.

Proof. The strategy for Bob to win is: if Alice assigns label ` to a vertex v, then
Bob must play on vertex w, adjacent to v, assigning label `+ 1 if ` is odd or `−1
if ` is even. Bob must repeat this procedure until an unlabeled induced 2P2 is
left. At this moment, two pair of labels (a, a + 1) and (b, b + 1), where a, b are
odd, remain unused. And now, if Alice assigns `′ ∈ {a, a+ 1, b, b+ 1} to a vertex
v on the remaining 2P2, then Bob assigns a + b + 1 − `′ to the vertex adjacent
to v generating an edge with sum a+ b+ 1. Therefore, for the last two moves of
the game, the players have a pair of labels with sum a+ b+ 1 and, consequently,
it will not be possible to complete an ESD labeling, which means that Bob wins
the game.

Theorem 12. Let L = {1, . . . , s} be a set of labels. If Bob starts the ESD game
on mP2, then Alice wins the game for any value of s ≥ 2m.

Proof. First, consider that s is even. The strategy for Alice to win is: if Bob
assigns label ` to a vertex v, then Alice must play on vertex w, adjacent to v,
assigning label ` + 1 if ` is odd or ` − 1 if ` is even. Alice must repeat this
procedure until all the vertices are labeled. It is easy to see that the sum of the
extreme points of the edges are all odd and pairwise distinct. Hence, Alice wins.

Now, consider that s is odd. Alice should repeat the strategy of the previous
case, playing pairs of the form (`, `+ 1) where ` is odd, until Bob assign the label
s to some vertex v. Alice replies this move assigning to the vertex w, adjacent to
v, the label x where x is the greatest unused odd label of L. This move is legal
because s+ x is even and all the previous labeled edges have odd label. Clearly,
the label x+ 1 is even, unused and, after the last move, it is the greatest unused
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label of L and the only vertex without an unused pair of the form (`, `+1), where
` is odd. Alice continues to play following the same strategy as before for every
move of Bob where he chooses a label less than x + 1. If Bob assigns the label
x+ 1 to some vertex v, Alice replies this move assigning to vertex w, adjacent to
v, the label y + 1 where y + 1 is the greatest unused even label of L. The edge
label y+ 1 +x+ 1 is even and we need to compare it with s+x to verify if this is
a legal move. Since x+ 1 < s and y + 1 < x, we have that y + 1 + x+ 1 < s+ x,
which implies that the move is legal. After this, we have y as the greatest (and
the only one) vertex without an unused pair of the form (`, `+1), where ` is odd.
If Alice repeats the previous strategies, using the same analysis, we conclude that
she and Bob will always have legal moves to play. Consequently, Alice wins the
game.

2.1.4. Cycles

A cycle Cn, with n ≥ 3 vertices, is a graph with vertex set V (Cn) = {v1, . . . , vn}
and edge set E(Cn) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {vnv1}. From Lemma 6 and
Theorem 7, it follows that n ≤ σ(Cn) ≤ σg(Cn) ≤ 3n− 4 for n ≥ 3. In the next
result, we show the proofs of the Proposition 3.5 posed by Tuza [14] on cycles
C3, C4, and C5, when Alice starts the game. We also establish the winner of the
ESD game played with labels from {1, . . . , n} when Bob starts the game.

Proposition 13. If Cn is a cycle with n ≤ 10 vertices, then

σg(Cn) =


n if n = 3;

n+ 1 if 4 ≤ n ≤ 5;

n+ 2 if 6 ≤ n ≤ 9;

n+ 3 if n = 10.

Moreover, if L = {1, . . . , n} is a set of labels, Bob wins the game on C5, inde-
pendently of who starts the game; and, for C4, the winner is the player who does
not start the game.

Proof. Let L = {1, . . . , n} be a set of labels and Cn a cycle on n vertices.
Alice wins the game on C3 because, independently of who starts the game, its
vertices are assigned a cyclic permutation of {1, 2, 3}, thus generating edge labels
LE = {3, 4, 5}. So, consider n = 4. First, suppose that Bob starts the game by
assigning an arbitrary label ` ∈ L to v1 ∈ V (C4). On the second move, Alice
assigns label 5 − ` to v3 and wins the game since an ESD labeling can always
be obtained independently of the next players’ moves. Now, suppose that Alice
starts the game by assigning an arbitrary label ` ∈ L to v1 ∈ V (C4). On the
second move, Bob assigns label 5−` to v2, thus generating edge label 5. Bob wins
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the game since, regardless of Alice’s next choice, there will always be a repeated
edge label 5.

Next, consider n = 5. First, suppose, without loss of generality, that Alice
starts the game by assigning an arbitrary label ` ∈ L to vertex v1 ∈ V (C5).

Case 1. ` = 1 (the case ` = 5 is complementary). On the second move, Bob
assigns the label 6− ` to v2 ∈ V (C5). In the third move, if Alice assigns a label
α ∈ {2, 4} to a vertex w ∈ {v3, v4, v5}, then Bob wins the game by assigning
the label 3 to a vertex v ∈ {v3, v5}\{w} since a repeated edge label 6 would be
generated in the next move. For the case where Alice assigns label 3 to a vertex
w ∈ {v3, v5} on the third move, she loses by the same reasoning of the previous
case. So, consider that Alice assigns label 3 to v4 on the third move. Thus, Bob
assigns label 2 to v3 and wins the game since a repeated edge label 5 would be
generated in the next move.

Case 2. ` = 2 (the case ` = 4 is complementary). On the second move, Bob
assigns the label 5 to v3 ∈ V (C5). On the third move: (i) if Alice assigns label 1
(respectively 3) to v2, then Bob assigns label 3 (respectively 1) to v4; (ii) if Alice
assigns label 4 to v2, then Bob assigns label 3 to v5; (iii) if Alice assigns label 1
to v5, then Bob assigns label 3 to v2; (iv) if Alice assigns label 3 to v5, then Bob
assigns label 4 to v2; (v) if Alice assigns label 4 to v5, then Bob assigns label 3 to
v2; (vi) if Alice assigns label 1 to v4, then Bob assigns label 3 to v2; (vii) if Alice
assigns label 3 to v4, then Bob assigns label 1 to v2; and (viii) if Alice assigns
label 4 to v4, then Bob assigns label 3 to v2. It can be checked by inspection that
all these partial labelings cannot be extended to an ESD labeling of C5.

Case 3. ` = 3. On the second move, Bob assigns label 1 to v3. On the third
move: (i) if Alice assigns label 2 to v2, then Bob assigns label 5 to v5; (ii) if Alice
assigns label 4 to v2, then Bob assigns label 5 to v4; (iii) if Alice assigns label 5
to v2, then Bob assigns label 4 to v4; (iv) if Alice assigns label 2 to v5, then Bob
assigns label 5 to v2; (v) if Alice assigns label 4 to v5, then Bob assigns label 5
to v2; (vi) if Alice assigns label 5 to v5, then Bob assigns label 2 to v2; (vii) if
Alice assigns label 2 to v4, then Bob assigns label 5 to v2; (viii) if Alice assigns
label 4 to v4, then Bob assigns label 5 to v2; and (ix) if Alice assigns label 5 to
v4, then Bob assigns label 4 to v2. It can be checked by inspection that all these
nine partial labelings cannot be extended to an ESD labeling of C5.

Therefore, Bob wins the game on C5 when Alice starts.

Now, suppose that Bob starts the game by assigning label 2 to vertex v1.
Then, there are only two choices for Alice, either choosing a neighbor or a non-
neighbor of v1 for her second move. First, consider that Alice chooses a neighbor
of v1, say v2. Thus: (i) if Alice assigns label 1 to v2, then Bob assigns label 5 to
v5; (ii) if Alice assigns label 3 or 4 to v2, then Bob assigns label 1 to v4; and (iii)
if Alice assigns label 5 to v2, then Bob assigns label 3 to v4. It can be checked by
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inspection that all these partial labelings cannot be extended to an ESD labeling
of C5. Next, consider that Alice chooses a non-neighbor of v1, say v3. Thus: (i) if
Alice assigns label 1 to v3, then Bob assigns label 3 to v2; (ii) if Alice assigns label
3 to v3, then Bob assigns label 4 to v2; (iii) if Alice assigns label 4 to v3, then Bob
assigns label 5 to v2; and (iv) if Alice assigns label 5 to v3, then Bob assigns label
3 to v2. It can be checked by inspection that all these partial labelings cannot
be extended to an ESD labeling of C5. Therefore, Bob also wins the game on C5

when he starts.
Finally, we computationally verify the value of σg(Cn) for n ≤ 10 as follows:

σg(Cn) =


n+ 1 if 4 ≤ n ≤ 5;

n+ 2 if 6 ≤ n ≤ 9;

n+ 3 if n = 10.

2.1.5. Wheels

A wheel Wn−1 is a graph with n vertices and m = 2n−2 edges, n ≥ 4, formed by
connecting a single central vertex v0 to all vertices v1, . . . , vn−1 of a cycle Cn−1.
Figure 3 exhibits ESD labelings for some wheels.

5 1

4

6

2

6 1

2

3

7

5

3 1

24

8

6 7

4 1

2
8

7

9

5
3

Figure 3. Wheels Wn−1, 5 ≤ n ≤ 8, with ESD labelings.

The next result follows from Lemma 6 and Theorem 7.

Corollary 14. If Wn−1 is a wheel graph with n ≥ 4, then n + 1 ≤ σg(Wn−1) ≤
(n− 1)2 + n.

For n ≥ 5, the upper bound presented in Corollary 14 can be improved:
adjusting the strategy presented in the proof of Theorem 7 in order to v0 ∈ V (Wn)
be chosen on the first or second move.

Theorem 15. If Wn−1 is a wheel graph with n ≥ 5, then σg(Wn−1) ≤ 6n− 17.

Proof. Let G = Wn−1 be a wheel graph with n ≥ 5. Also, let L = {1, . . . , 6n−
17} be a set of consecutive integer labels. Alice (or Bob) starts the ESD game
on G and our objective is to show a winning strategy for Alice.

For each vertex w ∈ V (G), define the set of available labels L(w) such that,
at the beginning of the game, L(w) = L for all w ∈ V (G). At each round of the



On the Edge-Sum Distinguishing Game 13

game, a player (Alice or Bob) chooses an unlabeled vertex and assigns to it an
available label α such that 1 ≤ α ≤ 6n− 17. Right after a player’s move, the sets
of available labels of the remaining unlabeled vertices are updated to maintain the
property that these sets only contain available labels for the respective vertices.
At the end of this proof, we show that L(w) 6= ∅ for every unlabeled vertex
w ∈ V (G) at any round of the game.

If Alice starts the game, then she chooses v0 ∈ V (G), the central vertex of
the wheel, and assigns to it any label in the set L(v0). Otherwise, if Bob starts
the game, and he does not chooses v0 on his first move, then Alice chooses v0 on
the next move and assigns any label in the set L(v0) to it. Thus, it is guaranteed
that the central vertex is always labeled on the first or second round of the game.

Next, it is described how the sets of available labels of unlabeled vertices are
updated right after each player’s move. At the i-th move, 1 ≤ i ≤ n, a player
(Alice or Bob) chooses an unlabeled vertex vj ∈ V (G) and assigns vj an available
label f(vj) ∈ L(vj). Right after the i-th move, the set of available labels L(u) of
each remaining unlabeled vertex u ∈ V (G) is updated. Only unused vertex labels
and vertex labels that cannot generate repeated edge labels in future iterations
can remain in each set L(u). The sets of available labels are updated according
to the following two steps.

(1) For every unlabeled vertex u ∈ V (G), remove f(vj) from L(u).

(2) For every unlabeled vertex u ∈ V (G) and for every labeled vertex u′ ∈ N(u),
delete from L(u) every label ` such that ` + f(u′) = φ(e), for every edge
e ∈ E(G) that has both endpoints labeled.

Next, we determine the maximum number of labels that are deleted from
each set of available labels, after the first n − 1 moves. Note that exactly one
label is deleted from each unlabeled vertex at each execution of Step (1). Thus,
exactly n− 1 labels are deleted at Step (1) after the first n− 1 moves.

Now, we count how many labels are deleted after the first n − 1 executions
of Step (2). Let vk be the last unlabeled vertex, 1 ≤ k ≤ n. Note that d(vk) = 3
since the central vertex of G was labeled at the beginning of the game. Right
after the first n− 1 moves, all the three neighbors of vk are labeled and there are
exactly m − 3 = 2n − 5 edges in G with induced labels φ(e). For each neighbor
w ∈ N(vk), each induced edge label φ(e) can preclude at most one vertex label
from being assigned to vk, namely, the label φ(e) − f(w). However, the labeled
edges incident with the neighbors of vk can be disregarded from this counting
since the label of their other endpoint was already deleted from L(vk) at Step
(1). Thus, each neighbor of vk with degree 3 contributes to the deletion of at most
m− 5 = 2n− 7 labels from L(vk). Now, let us analyze the neighbor v0 ∈ N(vk).
Let w ∈ {v1, . . . , vn}\{vk}. Note that there is only one way to generate an
edge label f(v0) + f(w) having f(v0) fixed as one of the operands of the sum.
Therefore, the labels of the n− 2 labeled edges incident with v0 cannot preclude
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vertex labels from being assigned to vk anymore, since the problematic labels
were already deleted from L(vk) at Step (1). So, when considering the neighbor
v0, there are at most m− 3− (n− 2) = (2n− 2− 3)− (n− 2) = n− 3 edge labels
that can preclude a vertex label from being assigned to vk.

Hence, the total number of labels that is deleted from L(vk) after the first
n− 1 moves is at most (n− 1) + (2n− 7) + (2n− 7) + (n− 3) = 6n− 18. Since
|L| > 6n− 18, there is always an available label at each set L(u) to be assigned
to an unlabeled vertex u, and the result follows.

Proposition 16 presents basic properties of ESD labelings of wheels Wn−1
using labels of the set {1, . . . , n + 1}. Proposition 16 is used in the proof of
Theorem 18.

Proposition 16. Let Wn−1 be a wheel with n vertices, n ≥ 5. If Wn−1 has an
ESD labeling f : V (Wn−1)→ {1, . . . , n+ 1}, then we have the following.

(a) LE = {3, . . . , 2n+ 1} and |LE | = |E(Wn−1)|+ 1.

(b) If the edge labels 3, 4, 5 are all induced on Wn−1, then either there exists a
vertex with label 1 that is adjacent with three vertices with labels 2, 3 and 4;
or Wn−1 contains an induced cycle C3 whose vertices have labels 1, 2 and 3.
Furthermore, in the first case, with exception of the vertices with labels 2 and
3, one of these vertices is the central vertex of Wn−1. In the second case, one
of these vertices is the central vertex of Wn−1.

(c) If the edge labels 2n−1, 2n, 2n+ 1 are all induced on Wn−1, then either there
exists a vertex with label n+ 1 that is adjacent with three vertices with labels
n, n − 1 and n − 2; or Wn−1 contains an induced cycle C3 whose vertices
have labels n+ 1, n and n− 1. Furthermore, in the first case, with exception
of the vertices with labels n − 1 and n, one of these vertices is the central
vertex of Wn−1. In the second case, one of these vertices is the central vertex
of Wn−1.

The following result follows immediately from Proposition 16.

Corollary 17. Let Wn−1 be a wheel with n vertices, n ≥ 5. If Wn−1 has an ESD
labeling f : V (Wn−1) → {1, . . . , n + 1}, then the central vertex v0 of Wn−1 has
label f(v0) ∈ {1, 2, 3, 4, n− 2, n− 1, n, n+ 1}.

Theorem 18. Let L = {1, . . . , n+ 1} be a set of labels. Bob wins the ESD game
on Wn−1, n ≥ 7, if he starts.

Proof. Let Wn−1 be as stated in the hypothesis. Bob and Alice play the ESD
game on Wn−1 using vertex labels from the set L = {1, . . . , n + 1}. Also, note
that LE = {3, . . . , 2n + 1}. Bob starts the ESD game. On his first move, he
assigns label 3 to the central vertex v0, that has degree n − 1. From now on,
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Bob’s strategy consists on precluding the edge label 3 from being generated. Bob
wins if the edge label 3 is not induced because, by item (a) of Proposition 16,
all the three edge labels 2n− 1, 2n, 2n+ 1 must be induced on this case and, by
item (c) of Proposition 16, one of the vertex labels n− 2, n− 1, n, n+ 1 must be
assigned to the central vertex of Wn. This is a contradiction since 3 is already
assigned to the central vertex and 3 < n − 2. Therefore, since Alice wants to
win the game, she avoids using labels 1 and 2 in the first rounds of the game (at
least as long as there are many pairs of unlabeled vertices two apart from each
other). Hence, on the second round, Alice assigns a label ` ∈ L\{1, 2, 3} to a
vertex vi ∈ V (Wn−1). If ` = 4, then Bob wins the game by assigning label 1
to vi+1, thus generating the edge label 5 (note that the vertex label 2 cannot be
assigned to a neighbor of vi+1 in order to induce the edge label 3 since it would
generate the repeated edge label 5 with the central vertex). Now, suppose that
` 6= 4, then, on the third move, Bob assigns label 4 to vertex vi+3, thus generating
edge label 7. On the fourth move, Alice assigns a label `′ to a vertex v. From
the previous reasoning, we know that `′ /∈ {1, 2}. Now, on the fifth move, Bob
assigns label 1 to an unlabelled neighbor of vi+3, thus generating the edge labels
4 and 5. This precludes the vertex label 2 from being assigned to a vertex of
Wn−1 and, consequently, also precludes the edge label 3 from being generated.
Therefore, in both cases, when ` = 4 and ` 6= 4, Bob wins the game.

Theorem 19. Let L = {1, . . . , n+ 1} be a set of labels. For n ≥ 9, Bob wins the
ESD game on Wn−1 when Alice starts.

Proof. Let Wn−1 be as stated in the hypothesis. Also, note that LE = {3, . . . ,
2n + 1}. Bob and Alice play the ESD game on Wn−1 using vertex labels from
the set L = {1, . . . , n+ 1}. Alice starts the ESD game. If she chooses any vertex
other than the central vertex v0 on her first move, say vi with 1 ≤ i ≤ n−1, then
Bob assigns a label ` ∈ {n − 3, n − 4}\{f(vi)} to v0. Bob wins the game since,
by Corollary 17, there is no ESD labeling f of Wn−1 with f(v0) ∈ {n− 3, n− 4}.
Therefore, from now on, we consider that Alice starts the ESD game choosing
the central vertex v0 and that she assigns to it a label ` ∈ {1, 2, 3, 4, n − 2, n −
1, n, n+ 1}. We split the proof into four cases.

Case 1. f(v0) ∈ {1, n + 1}. We first suppose f(v0) = 1. By Proposition 16,
|LE | = |E(Wn−1)|+ 1. Thus, Bob’s winning strategy consists on preventing two
edge labels from the set {2n+ 1, 2n, 2n− 1, 2n− 2} from being induced.

In the second move, Bob assigns label n+ 1 to v1. Note that the edge label
2n + 1 is induced only by the vertex labels n and n + 1; and the edge label 2n
is induced only by the vertex labels n − 1 and n + 1. Therefore, if none of the
vertex labels n and n − 1 is assigned to a neighbor of v1, then Alice loses the
game since the edge labels 2n + 1 and 2n are not induced. This implies that,
until the fifth move, Alice has to assign a label ` ∈ {n, n− 1} to a neighbor of v1,



16 D.L. de Oliveira, D. Artigas, S. Dantas, and A.G. Luiz

say vn−1. In the fourth move, Bob assigns an available label α ∈ {2, 3} to vertex
v2, thus preventing either 2n + 1 or 2n from being induced. In the fifth move,
Alice chooses a new vertex and assigns a label β to it.

At this point of the game, the edge label 2n− 1 can only be induced by the
vertex labels n − 1 and n; and the edge label 2n − 2 can only be induced by
the vertex labels n − 2 and n. In fact, at most one of these labels can already
have been induced. In order to win, Bob must prevent either n − 1 or n − 2
from being assigned to a neighbour of a vertex with label n. Just after the fifth
move, we know, from the above discussion, that f(vn−1) ∈ {n, n− 1}. Then, on
the sixth move, Bob assigns an available label from the set {n, n − 1, n − 2} to
a vertex not adjacent to the previously labeled vertices (with exception of v0),
thus winning the game. The analysis of the case f(v0) = n+ 1 is complementary
to the analyzes of the case f(v0) = 1 (with edge label ` taken as 2n+ 4− ` and
with vertex label α taken as n+ 2− α).

Case 2. f(v0) = 2 (respectively f(v0) = n). According to item (b) of
Proposition 16, the labels 1 and 3 (respectively n−1 and n+1) must be assigned
to adjacent vertices in order to induce the edge label 4 (respectively 2n). So the
strategy of Bob is to force these labels to be assigned to nonadjacent vertices.
Thus, on the second move, Bob assigns label 4 (respectively n−2) to v1, inducing
the edge label 6 (respectively 2n − 2). Independently of Alice’s next move, Bob
assigns one of the labels 1 or 3 (respectively n−1 or n+1) to a vertex nonadjacent
to the last vertex chosen by Alice. Therefore, Bob wins the game.

Case 3. f(v0) = 3 (respectively f(v0) = n − 1). According to item (b) of
Proposition 16, the labels 1 and 2 (respectively n + 1 and n) must be assigned
to adjacent vertices in order to induce the edge label 3 (respectively 2n+ 1). On
the second move, Bob assigns label 5 (respectively n−3) to v1, inducing the edge
label 8 (respectively 2n − 4). Independently of Alice’s next move, Bob assigns
one of the labels 1 or 2 (respectively n + 1 or n) to a vertex nonadjacent to the
last vertex chosen by Alice, thus winning the game.

Case 4. f(v0) = 4 (respectively f(v0) = n − 2). According to item (b)
of Proposition 16, the labels 2, 1 and 3 (respectively n, n + 1 and n) must be
assigned to consecutive vertices vi, vi+1, vi+2, respectively, in order to induce the
edge labels 3 and 4 (respectively 2n+1 and 2n). On the second move, Bob assigns
label 1 (respectively n + 1) to v1, inducing the edge label 5 (respectively 2n −
1). Independently of Alice’s next move, Bob assigns one of the labels 2 or 3
(respectively n or n− 1) to a vertex nonadjacent to v1. Therefore, Bob wins the
game.

Our algorithm determines the value of σg(Wn−1), for 4 ≤ n ≤ 10. Also, from
Theorems 18 and 19 we summarize in the following result.
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Corollary 20. If Wn−1 is a wheel graph with n ≥ 4, then σg(Wn−1) > n + 1.
Moreover, if Wn−1 is a wheel with n ≤ 10 vertices, then

σg(Wn−1) =

{
2n− 2 if 4 ≤ n ≤ 5;

2n− 1 if 6 ≤ n ≤ 10.

2.1.6. Complete Graphs

A complete graph Kn is a graph on n vertices where any two of its vertices are
adjacent. The next result follows from Lemma 6 and Theorem 7.

Corollary 21. If Kn is a complete graph with n ≥ 2 vertices, then⌈
n2 − n+ 6

4

⌉
≤ σ(Kn) ≤ σg(Kn) ≤

⌊
n3 − 4n2 + 7n− 2

2

⌋
.

In the next result, we show that complete graphs with at least six vertices

do not have an ESD labeling with labels from the set
{

1, . . . ,
⌈
n2−n+6

4

⌉}
.

Theorem 22. If Kn is a complete graph with n ≥ 6 vertices, then σ(Kn) >⌈
n2−n+6

4

⌉
.

Proof. Let G = Kn be as stated in the hypothesis. Since G is a complete
graph, we know that |E(G)| = n(n−1)

2 . Suppose, by contradiction, that σ(G) ≤⌈
n2−n+6

4

⌉
. Thus, G has an ESD labeling f : V (G)→

{
1, . . . ,

⌈
n2−n+6

4

⌉}
. When

n ≡ 0, 1 (mod 4),
⌈
n2−n+6

4

⌉
= n2−n+6+2

4 . On the other hand, when n ≡ 2, 3

(mod 4),
⌈
n2−n+6

4

⌉
= n2−n+6

4 . Note that the smallest edge label that can be in-

duced is 3 and the largest edge label that can be induced is 2
⌈
n2−n+6

4

⌉
−1. Thus,

the possible induced edge labels belong to the set LE =
{

3, . . . , 2
⌈
n2−n+6

4

⌉
− 1
}

.

Next, we calculate the cardinality of the set LE , depending on the value of n mod-
ulo 4.

Case 1. n ≡ 0, 1 (mod 4). Thus,

|LE | =
(

2

⌈
n2 − n+ 6

4

⌉
− 1

)
− 3 + 1 =

(
2

(
n2 − n+ 6 + 2

4

)
− 1

)
− 2

=

(
n2 − n+ 6 + 2

2
− 1

)
− 2 =

(
n2 − n+ 6 + 2− 2

2

)
− 2

=
n2 − n

2
+ 3− 2 =

n(n− 1)

2
+ 1 = |E(G)|+ 1.
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Case 2. n ≡ 2, 3 (mod 4). Thus,

|LE | =
(

2

⌈
n2 − n+ 6

4

⌉
− 1

)
− 3 + 1 =

(
2n2 − 2n+ 12− 4

4

)
− 2

=

(
2n2 − 2n

4

)
=

(
n2 − n

2

)
=
n(n− 1)

2
= |E(G)|.

By Cases 1 and 2, we conclude that |LE | = |E(G)| + 1 if n ≡ 0, 1 (mod 4);
or |LE | = |E(G)| otherwise. First, consider G with n ≡ 2, 3 (mod 4). In this
case, |LE | = |E(G)|. This implies that all edge labels in the set LE are induced
on the edges of G, in particular, the smallest edge labels 3, 4 and the two largest
edge labels 2n2−2n+8

4 and 2n2−2n+8
4 − 1. Note that: (a) the edge label 3 can only

be induced by vertex labels 1 and 2; (b) the edge label 4 can only be induced by

vertex labels 1 and 3; (c) the edge label 2n2−2n+8
4 can only be induced by vertex

labels n2−n+6
4 and n2−n+6

4 − 1; and (d) the edge label 2n2−2n+8
4 − 1 can only be

induced by vertex labels n2−n+6
4 and n2−n+6

4 −2. From the previous observations,

we obtain that the six vertex labels 1, 2, 3, n
2−n+6

4 , n
2−n+6

4 − 1, n
2−n+6

4 − 2 are
assigned to vertices of G. This contradicts the fact that f is an ESD labeling
since the pairs of vertex labels

(
1, n

2−n+6
4

)
and

(
2, n

2−n+6
4 − 1

)
induce repeated

edge labels. Note that the pairs of vertex labels
(
2, n

2−n+6
4

)
and

(
3, n

2−n+6
4 − 1

)
also induce repeated edge labels.

Now, consider G with n ≡ 0, 1 (mod 4). In this case, |LE | = |E(G)|+1. This
implies that exactly one edge label in the set LE is not induced on the edges of
G. From the previous case, we know that if the four edge labels 3, 4, 2n

2−2n+8
4 −

1, 2n
2−2n+8

4 are all induced on the edges of G, then repeated edge labels are
generated. This implies that exactly one of these four edge labels is not induced
on the edges of G. We split the remaining of this proof into 4 cases depending of
the missing edge label.

Case 1. The edge label 3 is not induced on G. In this case, the vertex
labels 1, 3, n2−n+6

4 , n2−n+6
4 − 1, n2−n+6

4 − 2 are assigned to vertices of G. This
contradicts the fact that f is an ESD labeling since the pairs of vertex labels(
1, n

2−n+6
4

)
and

(
3, n

2−n+6
4 − 2

)
induce repeated edge labels.

Case 2. The edge label 4 is not induced on G. In this case, the vertex
labels 1, 2, n2−n+6

4 , n2−n+6
4 − 1, n2−n+6

4 − 2 are assigned to vertices of G. This
contradicts the fact that f is an ESD labeling since the pairs of vertex labels(
1, n

2−n+6
4

)
and

(
2, n

2−n+6
4 − 1

)
induce repeated edge labels.

Case 3. The edge label 2n2−2n+8
4 is not induced on G. In this case, the vertex

labels 1, 2, 3, n2−n+6
4 , n2−n+6

4 − 2 are assigned to vertices of G. This contradicts

the fact that f is an ESD labeling since the pairs of vertex labels
(
1, n

2−n+6
4

)
and(

3, n
2−n+6

4 − 2
)

induce repeated edge labels.
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Case 4. The edge label 2n2−2n+8
4 − 1 is not induced on G. In this case, the

vertex labels 1, 2, 3, n2−n+6
4 , n2−n+6

4 − 1 are assigned to vertices of G. This
contradicts the fact that f is an ESD labeling since the pairs of vertex labels(
1, n

2−n+6
4

)
and

(
2, n

2−n+6
4 − 1

)
induce repeated edge labels.

Independently of the value of n modulo 4, a contradiction is reached. There-

fore, we conclude that our initial assumption that σ(G) ≤
⌈
n2−n+6

4

⌉
is false. The

correct affirmation is that σ(G) >
⌈
n2−n+6

4

⌉
.

Our computational experiments shows that, for 4 ≤ n ≤ 5, σg(Kn) >⌈
n2−n+6

4

⌉
. Also, from Theorem 22, we summarize in the following result.

Corollary 23. If Kn is a complete graph on n ≥ 4 vertices, then σg(Kn) >⌈
n2−n+6

4

⌉
.

3. Concluding Remarks

In this work, we considered a combinatorial game defined by Tuza called Edge-
Sum Distinguishing game (ESD game). Tuza proposed two questions about the
game: given a simple graph G, for which values of s can Alice win the ESD game?
And if Alice wins the ESD game with the set of labels {1, . . . , s}, can she also
win with {1, . . . , s+ 1}?

For the first question of Tuza, on Theorem 7, we present a tight upper bound
for the number of labels necessary for Alice to win the game on general graphs.
We also show winning strategies for some classical graph classes such as stars,
mP2 and wheels.

We developed computational experiments to check the result of the game for
some small graphs. We applied the backtracking technique, growing the tree of
partial solutions by branching on the set of all possible moves and pruning the
branching process as soon as we can decide which player wins the game.

We observe that, in this algorithm, at each turn of the game, a player needs
to choose one vertex in the set of remaining vertices and a label in the set of
remaining labels. Thus, at the k-th turn at the end of the game, the player has
(n− k+ 1) · (s− k+ 1) possible choices. Since s ≥ n, we have Ω(n!×n!) possible
configurations for the hole game. For this reason, we just considered graphs with
at most 11 vertices to compute with our backtracking algorithm. For example,
for paths with n = 12, we spent four days running the program and the answers
obtained show that: Bob always wins with n + 1, Alice always wins with n + 3,
but for n+ 2, the program did not complete the verification.

In our tests, we did not find a counterexample in which Alice wins the game
with s labels but does not win with s+ 1 labels, and this means that the second
question of Tuza remains an open problem.
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Finally, given a graph G, we asked what is the minimum s such that Alice
wins the ESD game independently of which player started the game, i.e., the
σg(G). Our algorithm computed the value of σg(G) of G in some graph classes
and these results are summarized in Table 1.

Graph G σg (G)

K1,n−1, n ≥ 2 n

Pn, n ≤ 3 n

Pn, 4 ≤ n ≤ 8 n+ 1

Pn, 9 ≤ n ≤ 11 n+ 2

Cn, n = 3 n

Cn, 4 ≤ n ≤ 5 n+ 1

Cn, 6 ≤ n ≤ 9 n+ 2

Cn, n = 10 n+ 3

Wn−1, 4 ≤ n ≤ 5 2n− 2

Wn−1, 6 ≤ n ≤ 10 2n− 1

Table 1. Graphs and their respective edge-sum distinguishing game number.
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