DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

C. Tardif

Claude Tardif

Royal Military College of Canada. Kingston, ON

email: claude.tardif@rmc.ca

0000-0003-3855-989X

Title:

Chromatic Ramsey numbers of generalised Mycielski graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(4) (2024) 1327-1339

Received: 2022-09-22 , Revised: 2023-04-08 , Accepted: 2023-04-13 , Available online: 2023-05-24 , https://doi.org/10.7151/dmgt.2499

Abstract:

We revisit the Burr-Erdős-Lovász conjecture on chromatic Ramsey numbers. We show that it admits a proof based on the Lovász $\vartheta$ parameter in addition to the proof of Xuding Zhu based on the fractional chromatic number. However, there are no proofs based on topological lower bounds on chromatic numbers, because the chromatic Ramsey numbers of generalised Mycielski graphs are too large. We show that the $4$-chromatic generalised Mycielski graphs other than $K_4$ all have chromatic Ramsey number $14$, and that the $n$-chromatic generalised Mycielski graphs all have chromatic Ramsey number at least $2^{n/4}$.

Keywords:

chromatic Ramsey numbers, fractional chromatic numbers, Lovász $\vartheta$ parameter, box complexes, generalised Mycielski graphs

References:

  1. S.A. Burr, P. Erdős and L. Lovász, On graphs of Ramsey type, Ars Combin. 1 (1976) 167–190.
  2. D. Duffus, B. Sands and R.E. Woodrow, On the chromatic number of the product of graphs, J. Graph Theory 9 (1985) 487–495.
    https://doi.org/10.1002/jgt.3190090409
  3. C. Godsil, D.E. Roberson, R. Šámal and S. Severini, Sabidussi versus Hedetniemi for three variations of the chromatic number, Combinatorica 36 (2016) 395–415.
    https://doi.org/10.1007/s00493-014-3132-1
  4. C. Godsil, D.E. Roberson, B. Rooney, R. Šámal and A. Varvitsiotis, Vector coloring the categorical product of graphs, Math. Program. 182 (2020) 275–314.
    https://doi.org/10.1007/s10107-019-01393-0
  5. S. Hedetniemi, Homomorphisms of graphs and automata, Technical Report 03105-44-T, University of Michigan (1966).
  6. L. Lovász, Kneser's conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324.
    https://doi.org/10.1016/0097-3165(78)90022-5
  7. T. Matsushita, $\mathbb{Z}_2$-indices and Hedetniemi's conjecture, Discrete Comput. Geom. 62 (2019) 662–673.
    https://doi.org/10.1007/s00454-019-00090-1
  8. N. Paul and C. Tardif, The chromatic Ramsey number of odd wheels, J. Graph Theory 69 (2012) 198–205.
    https://doi.org/10.1002/jgt.20575
  9. Y. Shitov, Counterexamples to Hedetniemi's Conjecture, Ann. of Math. (2) 190 (2019) 663–667.
    https://doi.org/10.4007/annals.2019.190.2.6
  10. G. Simons, C. Tardif and D. Wehlau, Generalised Mycielski graphs, signature systems, and bounds on chromatic numbers, J. Combin. Theory Ser. B 122 (2017) 776–793.
    https://doi.org/10.1016/j.jctb.2016.09.007
  11. G. Simonyi and G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica 26 (2006) 587–626.
    https://doi.org/10.1007/s00493-006-0034-x
  12. G. Simonyi and A. Zsbán, On topological relaxations of chromatic conjectures, European J. Combin. 31 (2010) 2110–2119.
    https://doi.org/10.1016/j.ejc.2010.06.001
  13. G. Simonyi, C. Tardif and A. Zsbán, Colourful theorems and indices of homomorphism complexes, Electron. J. Combin. 20(1) (2013) #P10.
    https://doi.org/10.37236/2302
  14. M. Stiebitz, Beiträge zur Theorie der färbungskritischen Graphen, Habilitation Thesis (Technische Hochschule Ilmenau, 1985).
  15. P. Turán, A note of welcome, J. Graph Theory 1 (1977) 7–9.
    https://doi.org/10.1002/jgt.3190010105
  16. M. Wrochna, On inverse powers of graphs and topological implications of Hedetniemi's conjecture, J. Combin. Theory Ser. B 139 (2019) 267–295.
    https://doi.org/10.1016/j.jctb.2019.02.008
  17. X. Zhu, The fractional version of Hedetniemi's conjecture is true, European J. Combin. 32 (2011) 1168–1175.
    https://doi.org/10.1016/j.ejc.2011.03.004

Close