DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

Y. Lin

Yuquan Lin

Southeast University

email: yqlin@seu.edu.cn

W. Lin

Wensong Lin

Southeast University

email: wslin@seu.edu.cn

0000-0002-4112-0469

Title:

Strong chromatic index of claw-free graphs with edge weight seven

PDF

Source:

Discussiones Mathematicae Graph Theory 44(4) (2024) 1311-1325

Received: 2023-01-13 , Revised: 2023-04-13 , Accepted: 2023-04-13 , Available online: 2023-05-01 , https://doi.org/10.7151/dmgt.2497

Abstract:

Let $G$ be a graph and $k$ a positive integer. A strong $k$-edge-coloring of $G$ is a mapping $\phi: E(G)\to \{1,2,\dots,k\}$ such that for any two edges $e$ and $e'$ that are either adjacent to each other or adjacent to a common edge, $\phi(e)\neq \phi(e')$. The strong chromatic index of $G$ is the minimum integer $k$ such that $G$ has a strong $k$-edge-coloring. The edge weight of $G$ is defined to be $\max\{d(u)+d(v):uv\in E(G)\}$, where $d(v)$ denotes the degree of $v$ in $G$. In this paper, we prove that every claw-free graph with edge weight at most $7$ has strong chromatic index at most $9$, which is sharp.

Keywords:

strong edge coloring, strong chromatic index, claw-free graph, edge weight

References:

  1. L.D. Andersen, The strong chromatic index of a cubic graph is at most $10$, Discrete Math. 108 (1992) 231–252.
    https://doi.org/10.1016/0012-365X(92)90678-9
  2. L. Chen, S. Chen, R. Zhao and X. Zhou, The strong chromatic index of graphs with edge weight eight, J. Comb. Optim. 40 (2020) 227–233.
    https://doi.org/10.1007/s10878-020-00582-4
  3. L. Chen, M. Huang, G. Yu and X. Zhou, The strong edge-coloring for graphs with small edge weight, Discrete Math. 343(4) (2020) 111779.
    https://doi.org/10.1016/j.disc.2019.111779
  4. D.W. Cranston, Strong edge-coloring of graphs with maximum degree $4$ using $22$ colors, Discrete Math. 306 (2006) 2772–2778.
    https://doi.org/10.1016/j.disc.2006.03.053
  5. M. Dębski, K. Junosza-Szaniawski and M. Śleszyńska-Nowak, Strong chromatic index of $K_{1,t}$-free graphs, Discrete Appl. Math. 284 (2020) 53–60.
    https://doi.org/10.1016/j.dam.2020.03.024
  6. P. Erdős, Problems and results in combinatorial analysis and graph theory, Discrete Math. 72 (1988) 81–92.
    https://doi.org/10.1016/0012-365X(88)90196-3
  7. P. Erdős and J. Nešetřil, Problem, in: Irregularities of Partitions, G. Halász and V.T. Sós (Ed(s)), (Springer, Berlin 1989) 161–165.
    https://doi.org/https://doi.org/10.1007/978-3-642-61324-1_15
  8. J.L. Fouquet and J.L. Jolivet, Strong edge-colorings of graphs and applications to multi-$k$-gons, Ars Combin. 16A (1983) 141–150.
  9. P. Hall, On representatives of subsets, J. Lond. Math. Soc. (1) 10 (1935) 26–30.
    https://doi.org/10.1112/jlms/s1-10.37.26
  10. P. Horák, The strong chromatic index of graphs with maximum degree four, Contemp. Methods Graph Theory (1990) 399–403.
  11. P. Horák, H. Qing and W.T. Trotter, Induced matchings in cubic graphs, J. Graph Theory 17 (1993) 151–160.
    https://doi.org/10.1002/jgt.3190170204
  12. M. Huang, M. Santana and G. Yu, Strong chromatic index of graphs with maximum degree four, Electron. J. Combin. 25(3) (2018) #P3.31.
    https://doi.org/10.37236/7016
  13. Y. Lin and W. Lin, The tight bound for the strong chromatic indices of claw-free subcubic graphs (2022).
    arXiv: 2207.10264
  14. J.-B. Lv, J. Li and X. Zhang, On strong edge-coloring of claw-free subcubic graphs, Graphs Combin. 38(3) (2022) 63.
    https://doi.org/10.1007/s00373-022-02462-6
  15. T. Nandagopal, T. Kim, X. Gao and V. Bharghavan, Achieving MAC layer fairness in wireless packet networks, in: Proc. 6th Annual International Conference on Mobile Computing and Networking (2000) 87–98.
    https://doi.org/10.1145/345910.345925
  16. S. Ramanathan, A unified framework and algorithm for $($T/F/C$)$ DMA channel assignment in wireless networks, in: Proc.16th Annual Joint Conference of the IEEE Computer and Communications Societies 2 (1997) 900–907.
    https://doi.org/10.1109/INFCOM.1997.644573
  17. J. Wu and W. Lin, The strong chromatic index of a class of graphs, Discrete Math. 308 (2008) 6254–6261.
    https://doi.org/10.1016/j.disc.2007.11.051
  18. C. Zang, The strong chromatic index of graphs with maximum degree $\Delta$ (2015).
    arXiv: 1510.00785

Close