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Abstract

Let G be a graph and k a positive integer. A strong k-edge-coloring of
G is a mapping φ : E(G) → {1, 2, . . . , k} such that for any two edges e
and e′ that are either adjacent to each other or adjacent to a common edge,
φ(e) 6= φ(e′). The strong chromatic index of G is the minimum integer k
such that G has a strong k-edge-coloring. The edge weight of G is defined
to be max{d(u) + d(v) : uv ∈ E(G)}, where d(v) denotes the degree of v in
G. In this paper, we prove that every claw-free graph with edge weight at
most 7 has strong chromatic index at most 9, which is sharp.
Keywords: strong edge coloring, strong chromatic index, claw-free graph,
edge weight.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

We consider only undirected simple graphs in this paper. Let G = (V (G), E(G))
be a graph. For v ∈ V (G), let N(v) = {u ∈ V (G) : uv ∈ E(G)} (respectively,
N [v] = N(v)∪ {v}) denote the open (respectively, closed) neighborhood of v and
let d(v) = |N(v)| be the degree of v. Denote by ∆(G) the maximum degree of G.
The weight of an edge uv in G is defined as d(u) + d(v), and the edge weight of
G is defined to be the maximum weight among all its edges. For convenience, we
use the abbreviation [1, n] for {1, 2, . . . , n}, where n is any positive integer.
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Let e and e′ be two edges of G. If e and e′ are adjacent to each other, we
say that the distance between e and e′ is 1, and if they are not adjacent but both
of them are adjacent to a common edge, we say they are at distance 2. Given a
positive integer k, a strong k-edge-coloring of G is a mapping φ : E(G) → [1, k]
such that for any two edges e and e′ that are at distance 1 or 2, φ(e) 6= φ(e′). The
strong chromatic index of G, denoted by χ′s(G), is the minimum integer k such
that G has a strong k-edge-coloring.

The concept of strong edge coloring, first introduced by Fouquet and Jolivet
[8], can be used to model the conflict-free channel assignment problem in radio
networks [15, 16]. In 1985, Erdős and Nešetřil [6, 7] proposed the following con-
jecture about the upper bound of χ′s(G) in terms of ∆(G), which if proven, would
be tight.

Conjecture 1 (Erdős and Nešetřil [6, 7]). If G is a graph with maximum degree
∆(G), then

χ′s(G) ≤

{
5∆(G)2/4, if ∆(G) is even,
(5∆(G)2 − 2∆(G) + 1)/4, if ∆(G) is odd.

The conjecture is clearly true for ∆(G) ≤ 2. The case ∆(G) = 3 was verified
by Andersen [1] in 1992, and independently by Horák, Qing, and Trotter [11] in
1993. However, this conjecture is still open for ∆(G) ≥ 4. In 1990, Horák [10] first
established an upper bound of 23 for ∆(G) = 4 and then Cranston [4] improved
this bound to 22 in 2006. More recently, Huang, Santana and Yu [12] proved the
upper bound of 21, which is the best bound so far. For the case ∆(G) = 5, Zang
[18] showed that χ′s(G) ≤ 37. This upper bound of 37 is eight larger than the
conjectured bound of 29, but it is the only progress as we know. For larger ∆(G),
the problem is widely open.

Notice that the maximum degree is a parameter of graphs based on which we
are able to form a hierarchy of all simple graphs. Moreover, this hierarchy could
be refined by another parameter of graphs, namely the edge weight. For instance,
all subcubic graphs, i.e., the graphs with maximum degree less than or equal to
3, are properly contained in the class of graphs with edge weight at most 6. In
the meantime, any graph with edge weight at most 6 other than the complete
bipartite graph K1,5 belongs to the class of graphs with maximum degree 4. It
is clear that the strong chromatic index of a graph is bounded below by its edge
weight minus one. Thus it might be interesting to explore the upper bounds for
the strong chromatic indices of graphs in terms of their edge weights.

In 2008, Wu and Lin [17] proved that the strong chromatic index of any graph
with edge weight at most 5 other than the graph H0 is at most 6, where H0 is a
graph with strong chromatic index 7, as shown in Figure 1. That is the first solved
non-trivial case with respect to the edge weight. Moreover, the upper bound of 6
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is the best possible for such graphs. In 2020, inspired by this result, Chen, Huang,
Yu and Zhou [3] formulated a conjecture in terms of the edge weight as follows.

Conjecture 2 (Chen, Huang, Yu and Zhou [3]). If G is a graph with edge weight
W ≥ 5, then

χ′s(G) ≤


5dW/4e2 − 8dW/4e+ 3, if W ≡ 1 (mod 4),

5dW/4e2 − 6dW/4e+ 2, if W ≡ 2 (mod 4),

5dW/4e2 − 4dW/4e+ 1, if W ≡ 3 (mod 4),

5dW/4e2, if W ≡ 0 (mod 4).

In [3], the authors also indicated that the bounds given in Conjecture 2, if
true, would be tight. Also, the bounds in Conjecture 2 are precisely the same
as the bounds in Conjecture 1 when the edge weights are even. Moreover, they
proved that the strong chromatic index of any graph with edge weight at most 6
(respectively, at most 7) is 10 (respectively, 15). In particular, the bound of 10
is tight and the bound of 15 is two larger than the conjectured bound of 13. For
graphs with edge weight 8, Chen, Chen, Zhao and Zhou [2] gave an upper bound
of 21 (recall that the conjectured bound is 20), which is a natural extension of
the current best bound 21 for graphs with maximum degree 4 in [12] as each such
graph has edge weight 8.

Figure 1. The graph H0. Figure 2. The 3-prism. Figure 3. The graph H1.

An induced subgraph of G isomorphic to the complete bipartite graph K1,3

is called a claw of G. A graph is called claw-free if it has no claw. It is well
known that claw-free graphs constitute an important superclass of the class of line
graphs. In 2020, Dębski, Junosza-Szaniawski and Śleszyńska-Nowak [5] presented
the following upper bound for the strong chromatic indices of claw-free graphs.

Theorem 3 (Dębski, Junosza-Szaniawski and Śleszyńska-Nowak [5]). For any
claw-free graph G with maximum degree ∆(G), χ′s(G) ≤ 9

8∆(G)2 + ∆(G).

In 2022, Lv, Li and Zhang [14] proved that, for any claw-free subcubic graphG
other than the triangular prism, χ′s(G) ≤ 8. Please see Figure 2 for the triangular
prism (also called the 3-prism). Notice that the 3-prism is a claw-free cubic graph
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with its strong chromatic index being equal to 9. Recently in our manuscript [13],
we improved the bound of 8 to 7 for such graphs and constructed infinitely many
graphs attaining the upper bound 7. Notice that any connected claw-free graph
with edge weight at most 6 is either a subcubic claw-free graph or isomorphic to
H1 (see Figure 3), hence we immediately have the following corollary.

Corollary 4. Let G be a claw-free graph with edge weight at most 6. If no
component of G is isomorphic to the 3-prism, then χ′s(G) ≤ 7.

In this paper, we study the class of claw-free graphs with edge weight at most
7 and prove the following theorem.

Theorem 5. Let G be a claw-free graph. If the edge weight of G is at most 7,
then χ′s(G) ≤ 9.

Remark 6. It is easy to verify that the class of claw-free graphs with edge weight
at most 7 is properly contained in the class of graphs with maximum degree at
most 4. Recall that for the general case when ∆(G) = 4, the upper bound in
Conjecture 1 is 20, and the best bound proved by Huang, Santana and Yu [12] is
21. However, the upper bound for the claw-free graphs with maximum degree 4
given in Theorem 3 is 22, which is even weaker than the general case. For graphs
with edge weight at most 7, the upper bound in Conjecture 2 is 13, the bound
proved by Chen, Huang, Yu and Zhou [3] is 15, while our bound for claw-free
graphs in Theorem 5 is 9.

Remark 7. The 3-prism shown in Figure 2 indicated the sharpness of the upper
bound 9. Notice that the edge weight of the 3-prism is 6. In fact, there are also
some claw-free graphs with edge weight 7 attaining the upper bound 9, please
refer to Figure 4.

Figure 4. The three graphs with edge weight 7 and strong chromatic index 9.

The rest of this paper is organized as follows. Section 2 introduces some
definitions and notation. We investigate the basic properties of a minimal coun-
terexample in Section 3 and then complete the proof of Theorem 5 in Section 4.
In the last section, we summarize our results and propose some further research
directions.
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2. Preliminaries and Notation

For X ⊆ V (G), we denote by G[X] the subgraph of G induced by X. An i-vertex
is a vertex of degree i in G. For any uv ∈ E(G) with d(u) = i, we say that u is an
i-neighbor of v. In addition, we denote by Kn the complete graph with n vertices.

We use α, β, γ to denote colors and φ, ψ, σ to denote edge colorings. Given
two distinct edges e and e′ of G, we say that e sees e′ in G if they are distance 1
or 2 apart. An edge coloring of a graph G is good, if it is a strong edge coloring of
G using at most 9 colors. A good partial coloring of a graph G is a good coloring
φ of some subgraph H of G such that φ(e) 6= φ(e′) if e and e′ see each other in G.

Let φ be a good partial coloring of G. We say that e sees a color α in φ, if
e sees an edge e′ for which φ(e′) = α. For e ∈ E(G), let Fφ(e) denote the set
of colors that e sees in φ. We denote by Ēφ the set of edges of G not already
assigned colors by φ. For e ∈ Ēφ, let Aφ(e) denote the set of colors that e does
not see in φ. It is clear that Aφ(e) = [1, 9] \ Fφ(e) for any e ∈ Ēφ.

The key to extending a good partial coloring φ of G to the whole graph is to
color all edges in Ēφ properly. Often we will use Hall’s theorem [9] to do that,
by which {Aφ(e) : e ∈ Ēφ} has a system of distinct representatives (abbreviated
SDR) if and only if |

⋃
e∈M Aφ(e)| ≥ |M | for every M ⊆ Ēφ. Whenever {Aφ(e) :

e ∈ Ēφ} has an SDR, φ can be extended to a good coloring of G. In this situation,
we will say that we can obtain a good coloring of G by SDR.

3. The Propertities of Minimal Counterexample

Let G be a counterexample to Theorem 5 with |V (G)| being minimized, that is,
G is a claw-free graph with edge weight at most 7 and χ′s(G) ≥ 10. According
to Corollary 4, the edge weight of G must be equal to 7. By the minimality of
G, it is clear that G is a connected graph with at least 10 edges. Recall that
the maximum degree of any claw-free graph with edge weight at most 7 does not
exceed 4, we have ∆(G) ≤ 4.

In the proof of the following lemmas, we will often show a contradiction by
extending a strong 9-edge-coloring of a subgraph (or the modified subgraph) of
G to the whole graph. It should be pointed out that the subgraphs we consider
have the property that any two of its edges at distance greater than 2 must also
be at distance greater than 2 in G.

Lemma 8. G contains no K4.

Proof. Suppose that G contains a K4 with four vertices v1, v2, v3, v4 (see Figure
5). Since the edge weight of G is 7, exactly one of the four vertices v1, v2, v3, v4 is
a 4-vertex. Without loss of generality, let d(v4) = 4 and v5 be the fourth neighbor
of v4. It is obvious that d(v5) ≤ 3. By the minimality of G, the subgraph
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Figure 5. The graph G with a K4.

G′ = G− {v1, v2, v3} has a good coloring φ, which is also a good partial coloring
of G with the six edges e1, e2, . . . , e6 being uncolored. Note that each of the edges
e1, e2, e3 sees exactly one colored edge and each of the edges e4, e5, e6 sees at most
three colored edges, and thus the coloring φ can be easily extended to a good
coloring of G, a contradiction.

Lemma 9. G has no 1-vertices.

Proof. Suppose that v is a 1-vertex and w is the neighbor of v. Then G− v has
a good coloring φ. If w is a 4-vertex, then since G is claw-free, w is contained in
a K4, contradicting Lemma 8. Thus the degree of w is at most 3. Again since G
is claw-free, it is easy to see that the edge vw sees at most 6 edges in G− v. So
we can color vw properly to obtain a good coloring of G, a contradiction.

Lemma 10. G has no 2-vertices.

Proof. If not, let v0 be a 2-vertex in G with two neighbors v1 and v2. Without
loss of generality, assume that d(v1) ≥ d(v2). We use e1 and e2 to denote v0v1 and
v0v2, respectively. By the minimality of G, the graph G− v0 has a good coloring
φ. If d(v1) = 2, then d(v2) = 2. It is not difficult to see that |Aφ(e1)| ≥ 5 and
|Aφ(e2)| ≥ 5. If d(v1) = 4, then we must have v1v2 ∈ E(G) as otherwise v1 is
contained in a K4, which is a contradiction to Lemma 8. Notice that d(v2) ≤ 3
(refer to Figure 6(a)), it is easy to check that |Aφ(e1)| ≥ 2 and |Aφ(e2)| ≥ 3. In
both cases, we can extend φ to a good coloring of G.

Now we assume that d(v1) = 3. By Lemma 9, d(v2) ∈ {2, 3}. If d(v2) = 2 or
v1v2 ∈ E(G), it is straightforward to check that both e1 and e2 have at least two
available colors and so coloring e1 and e2 greedily extends φ to a good coloring of
G. So we assume that d(v2) = 3 and v1v2 /∈ E(G). If v1 and v2 have at least two
common neighbors, as shown in Figure 6(b) and (c), it is easy to check that the
number of available colors for e1 is always at least 2 and the same is true for e2.
Thus we can get a good coloring of G based on φ by coloring e1 and e2 greedily.
We next consider the case N(v1) ∩N(v2) = {v0}.
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Figure 6. The graph G with a 2-vertex v0 contained in a small cycle.

Let N(vi) = {v0, ui, wi} for i = 1, 2. It is clear that the four vertices
u1, w1, u2, w2 are all distinct. Since G is claw-free, u1w1, u2w2 ∈ E(G). Now
let G∗ = (G− v0) ∪ {v1v2}. Observe that G∗ is also a claw-free graph with edge
weight 7, by the minimality of G, G∗ has a good coloring ψ. Ignoring v1v2 in ψ
yields a good partial coloring of G with two uncolored edges e1 and e2, which we
refer to it as σ. Notice that ψ(v1v2) ∈ Aσ(e1)∩Aσ(e2), we have |Aσ(e1)| ≥ 1 and
|Aσ(e2)| ≥ 1. If |Aσ(e1) ∪ Aσ(e2)| ≥ 2, then e1 and e2 can be colored properly
by SDR and we are done. So we assume that Aσ(e1) = Aσ(e2) = {ψ(v1v2)}. It
follows from |Aσ(e1)| = |Aσ(e2)| = 1 that both v1 and v2 must have exactly one
4-neighbor and one 3-neighbor. Suppose that d(u1) = d(u2) = 4 and d(w1) =
d(w2) = 3. Refer to Figure 7 for the names of the vertices and edges of G. Under
our assumptions, it is easily seen that the four edges f1, f2, f3, f4 receive differ-
ent colors in σ and {σ(h1), σ(h2), σ(h3), σ(h4)} = {σ(h5), σ(h6), σ(h7), σ(h8)} =
[1, 9] \ {ψ(v1v2), σ(f1), σ(f2), σ(f3), σ(f4)}.

Now, if |N(u1) ∩ N(w1)| = 2 (see Figure 7(a)), note that any edge e ∈
E(G − v0) \ {f1, h3} sees f1 in G if and only if it also sees h3 in G, we can
exchange the colors of f1 and h3 in σ to get a new partial coloring σ∗ of G, in
which Aσ∗(e1) = {ψ(v1v2)} and Aσ∗(e2) = {ψ(v1v2), σ(f1)}. Consequently, e1
and e2 can be colored properly, a contradiction.

So by symmetry, we may assume that |N(u1) ∩ N(w1)| = 1 and |N(u2) ∩
N(w2)| = 1 (see Figure 7(b)). Let N(u1) = {v1, w1, x1, x2} and N(w1) =
{v1, u1, y1}. It is obvious that the three vertices x1, x2, y1 are all distinct and
x1x2 ∈ E(G). Moreover, by Lemma 8, d(y1) ≤ 3. Let α = σ(f1) and β = σ(f2).
Observe that each of the three edges f1, f2, h3 sees h1, h2 and h4. Erasing the
colors of f2 yields a new partial coloring of G, where the only uncolored edges
are f2, e1 and e2. This coloring is still denoted by σ. We next extend σ to a
good coloring of G. If Aσ(f2) = {ψ(v1v2), β}, then we must have d(y1) = 3 and
{σ(g3), σ(g4)} = {σ(f3), σ(f4)}, implying that σ(f1) /∈ {σ(g3), σ(g4)}. Thus we
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Figure 7. The graph G with a 2-vertex v0.

can exchange the colors of f1 and h3 in σ and then color f2 with β, which re-
sults in a good partial coloring σ∗ of G with Aσ∗(e1) = {ψ(v1v2)} and Aσ∗(e2) =
{ψ(v1v2), α}. Therefore, σ∗ can be further extended to a good coloring of G by
coloring e1 and e2 greedily. If Aσ(f2) 6= {ψ(v1v2), β}, then there exists some color
γ ∈ Aσ(f2) ∩ {σ(f3), σ(f4)}, we color f2 with γ to get a new partial coloring σ∗

of G, in which Aσ∗(e1) = Aσ∗(e2) = {ψ(v1v2), β}. Therefore, coloring e1 and e2
greedily gives a good coloring of G. This completes the proof of the lemma.

By Lemmas 9 and 10, each vertex in G is either a 3-vertex or a 4-vertex.
Recall that G is a claw-free graph with edge weight 7, for any 4-vertex v in G,
each neighbor of v is a 3-vertex and |E(G[N(v)])| ≥ 2. Also, for any 3-vertex v in
G, we have |E(G[N(v)])| ≥ 1. Moreover, any 3-cycle in G contains at most one
4-vertex. In what follows, we will discuss the number of 4-neighbors of a 3-vertex
in G.

Lemma 11. Each 3-vertex in G has at least one 4-neighbor.

Proof. Suppose that v0 is a 3-vertex with three 3-neighbors v1, v2, v3. Let e1 =
v0v1, e2 = v0v2 and e3 = v0v3. Since G has at least 10 edges, we may assume
that |E(G[N(v0)])| ≤ 2. As otherwise, G is isomorphic to K4, a contradition. By
the minimality of G, G − v0 has a good coloring φ, which is also a good partial
coloring of G with three uncolored edges e1, e2, e3.

If |E(G[N(v0)])| = 2, without loss of generality, assume that v1v2, v2v3 ∈
E(G). Let u1 and u3 be the third neighbor of v1 and v3, respectively. Recall
that G is a claw-free graph with at least 10 edges, u1 and u3 must be distinct.
Futher, by Lemma 8, both u1 and u3 are 3-vertices. Then it is easy to verify that
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|Aφ(e1)| ≥ 3, |Aφ(e2)| ≥ 5 and |Aφ(e3)| ≥ 3. It follows that φ can be extended to
a good coloring of G.

If |E(G[N(v0)])| = 1, without loss of generality, assume that v1v2 ∈ E(G).
Let u1 and u2 be the third neighbor of v1 and v2, respectively, and let N(v3) =
{v0, u3, w3}. The remainder of the proof is divided into the following two cases
according to whether vertices u1 and u2 are distinct or not.

Case 1. u1 = u2. Please refer to Figure 8 for this case. It is easy to check
that both e1 and e2 see at most 7 edges and e3 sees at most 9 edges in G − v0.
Moreover, we have Aφ(e1) = Aφ(e2). If |Aφ(e1)| = 2, then we can recolor f2 with
the color φ(f4) as f2 sees only four edges f1, f3, h1, h2 in G − v0 and the seven
edges f1, f2, f3, f4, f5, h1, h2 receive different colors in φ. This results in a new
partial coloring ψ of G, in which |Aψ(e1)| = 3, |Aψ(e2)| = 3 and |Aψ(e3)| ≥ 1.
Therefore, greedily coloring e3, e2, e1 in this order gives rise to a good coloring
of G.

Figure 8. The graph G in Case 1.

If |Aφ(e1)| ≥ 3, we may assume that |Aφ(e3)| = 0 as otherwise φ can be easily
extended to a good coloring of G by SDR. Thus the nine edges f1, f2, f3, f4, f5,
h3, h4, h5, h6 are assigned different colors. This together with |Aφ(e1)| ≥ 3 and the
five edges f1, f2, f3, h1, h2 receiving different colors in φ implies that {φ(h1), φ(h2)}
∩{φ(f4), φ(f5)} 6= ∅. Now we recolor f2 with some color α ∈ [1, 9] \ {φ(f1), φ(f2),
φ(f3), φ(h1), φ(h2)} to get a new good partial coloring of G, calling it ψ. Notice
that α ∈ {ψ(f4), ψ(f5), ψ(h3), ψ(h4), ψ(h5), ψ(h6)}, we have Aψ(e3) = {φ(f2)}.
Moreover, it is also easy to check that |Aψ(e1)| ≥ 3 and |Aψ(e2)| ≥ 3. Thus ψ
can be further extended to a good coloring of G.

Case 2. u1 6= u2. If u1u2 ∈ E(G), then as G is claw-free we must have
d(u1) = d(u2) = 3. Please see Figure 9 for the names of vertices and edges
of G. It is easy to check that |Aφ(e1)| ≥ 2 and |Aφ(e2)| ≥ 2. Notice that
the colors of h1 and h3 are different, |Fφ(e1) ∩ Fφ(e2)| ≤ 6. It follows that
|Aφ(e1) ∪ Aφ(e2)| ≥ 3. We may assume that Aφ(e3) = ∅ as otherwise a good
coloring of G can be easily obtained by SDR. In this situation, the colors of
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Figure 9. The graph G with u1u2 ∈ E(G) in Case 2.

the nine edges f1, f2, f3, f4, f5, h4, h5, h6, h7 are different from each other. By
recoloring f2 with some color α ∈ [1, 9] \ {φ(f1), φ(f2), φ(f3), φ(h1), φ(h2), φ(h3)},
we get a new partial coloring ψ of G, in which |Aψ(e1)| ≥ 2, |Aψ(e2)| ≥ 2 and
|Aψ(e3)| = 1. Observe that |Aψ(e1) ∪ Aψ(e2)| ≥ 3, we can further extend ψ to a
good coloring of G by SDR.

Figure 10. The graph G with u1u2 /∈ E(G) in Case 2.

If u1u2 /∈ E(G), then, by Lemma 8, d(u1) = d(u2) = 3. Please refer to
Figure 10. Let G∗ be the graph obtained from G by deleting the three vertices
v0, v1, v2 and adding a new edge u1u2. Observe that G∗ is indeed a claw-free graph
with edge weight at most 7, by the minimality of G, G∗ has a good coloring ψ.
Ignoring u1u2 in ψ yields a good partial coloring of G, where the only uncolored
edges are f1, f2, f3, f4, f5, f6. This coloring is still called ψ. It is straightforward
to check that |Aψ(f1)| = 5, |Aψ(f2)| ≥ 5, |Aψ(f3)| ≥ 5 and |Aψ(fi)| ≥ 3 for each
i ∈ {4, 5, 6}. Notice that h1, h2, h3, h4 receive different colors under ψ, we have
|Aψ(f2)∪Aψ(f3)| = 7, and so the remaining six edges can be colored properly by
SDR. As a result, ψ can be extended to a good coloring of G. This finishes the
proof.
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Lemma 12. For any edge uv of G with d(u) = 4 and d(v) = 3, N(u)∩N(v) 6= ∅.

Proof. Let uv be an edge of G with d(u) = 4 and d(v) = 3. If N(u) ∩ N(v) =
∅, then since G is claw-free, u is contained in a K4, contradiciting Lemma 8.
Therefore, N(u) ∩N(v) 6= ∅ and the lemma holds.

Lemma 12 implies directly that each 3-vertex inG has at most two 4-neighbors.

Lemma 13. Each 3-vertex in G has exactly one 4-neighbor.

Proof. If not, then by Lemma 11, we may assume that v0 is a 3-vertex with
two 4-neighbors v1, v3 and one 3-neighbor v2. It follows from Lemma 12 that
v1v2 ∈ E(G) and v2v3 ∈ E(G). We use u1, u2 and u3, u4 to denote the other
two neighbors of v1 and v3, respectively. Clearly, u1, u2, u3, u4 are all 3-vertices.
Since G is claw-free, u1u2 ∈ E(G) and u3u4 ∈ E(G). We denote by wi the third
neighbor of ui for each i ∈ [1, 4].

First we assume that w1, w2, w3, w4 are all 3-vertices. Then it is not difficult
to check that {w1, w2} ∩ {w3, w4} = ∅. However, it is possible that w1 = w2 or
w3 = w4. But whether they are equal to each other or not will not affect the
following arguments.

Figure 11. The graph G in Lemma 13.

By the minimality of G, the graph G−N [v0] has a good coloring φ, which is
indeed a good partial coloring of G with the nine uncolored edges e1, e2, . . . , e9.
As for the names of vertices and edges in G, please refer to Figure 11. It is
straightforward to check that |Aφ(ei)| = 6 for each i ∈ {1, 3, 4, 5}, |Aφ(e2)| = 9
and |Aφ(ej)| ≥ 4 for each j ∈ {6, 7, 8, 9}. Observe that Aφ(e1) = Aφ(e4) and
Aφ(e3) = Aφ(e5).

If |Aφ(e1)∪Aφ(e3)| = 6, we have {φ(f1), φ(f2), φ(f3)} = {φ(f4), φ(f5), φ(f6)}.
Since f2 sees at most six edges in the graph G − N [v0], we can always modify
φ by recoloring f2 with some color α ∈ [1, 9] \ (Fφ(f2) ∪ {φ(f2)}) so that there
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are seven colors available for either e1 or e3. Therefore we may assume that
|Aφ(e1) ∪Aφ(e3)| ≥ 7.

Now, if Aφ(e6) ∩ Aφ(e8) = ∅, then |Aφ(e6) ∪ Aφ(e8)| ≥ 8. This implies
that the remaining nine edges e1, e2, . . . , e9 can be colored properly by SDR. If
Aφ(e6) ∩ Aφ(e8) 6= ∅, suppose that β ∈ Aφ(e6) ∩ Aφ(e8). Coloring e6 and e8
with the same color β results in a new good partial coloring of G, which we
refer to it as ψ. It is easy to check that |Aψ(ei)| = 5 for each i ∈ {1, 3, 4, 5},
|Aψ(e2)| = 8, |Aψ(e7)| ≥ 3 and |Aψ(e9)| ≥ 3. Moreover, it follows from the
assumption |Aφ(e1) ∪Aφ(e3)| ≥ 7 that |Aψ(e1) ∪Aψ(e3)| ≥ 6. As a result, ψ can
be further extended to a good coloring of G by SDR.

Now we assume that at least one of the four vertices w1, w2, w3, w4 are 4-
vertices. Notice that if d(w1) = 4, then by Lemma 12, w1 and u1 must have the
commom neighbor u2, which implies that w1 = w2. Similarly, if d(w3) = 4, then
w3 = w4. It is not difficult to see that the above arguments also apply to this
case and so we omit the proof here.

4. Proof of Theorem 5

Proof of Theorem 5. Choose a 4-vertex v0 inG with four 3-neighbors v1, v2, v3,
v4. Let ei denote the edge v0vi for each i ∈ [1, 4]. Since G is a claw-free graph
with at least 10 edges, 2 ≤ |E(G[N(v0)])| ≤ 3.

If |E(G[N(v0)])| = 3, without loss of generality, let v1v2, v2v3, v3v4 ∈ E(G).
We denote by u1 and u4 the third neighbor of v1 and v4, respectively. Since both
v1 and v4 have a 4-neighbor v0, by Lemma 13, d(u1) = d(u4) = 3. If u1 = u4,
then G[N [u1]] is a claw. Therefore, we have u1 6= u4. By the minimality of G, the
graph G−v0 has a good coloring φ, which is also a good partial coloring of G with
the four uncolored edges e1, e2, e3, e4. And it is easy to check that |Aφ(e1)| ≥ 2,
|Aφ(e2)| ≥ 4, |Aφ(e3)| ≥ 4 and |Aφ(e4)| ≥ 2. Thus greedily coloring e1, e4, e2, e3
in this order gives a good coloring of G, a contradiction.

Now we assume that |E(G[N(v0)])| = 2 and v1v2, v3v4 ∈ E(G). We use ui to
denote the third neighbor of vi for each i ∈ [1, 4]. Because v1, v2, v3, v4 have the
common 4-neighbor v0, by Lemma 13, u1, u2, u3, u4 are all 3-vertices. Moreover,
for each i ∈ [1, 4], ui has exactly one 4-neighbor in G, denoted by wi. Recall that
G is claw-free, ui 6= uj for any two integers i ∈ {1, 2} and j ∈ {3, 4}. We also
have u1 6= u2 (respectively, u3 6= u4), as otherwise w1 (respectively, w3) must
be contained in a K4, contradicting Lemma 8. Therefore u1, u2, u3, u4 are four
distinct vertices. Please refer to Figure 12 for the names of vertices and edges in
G. Notice that, for two different integers i, j ∈ [1, 4], it is possible that uiuj is
an edge of G. However, the existence of these edges will not affect the following
arguments.
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Recall that u1, u2, u3, u4 are four 3-vertices and each of them has a 4-neighbor,
for each i ∈ [1, 4], ui has degree at most 1 in G[{u1, u2, u3, u4}]. Without loss
of generality, we may assume that u1u4 /∈ E(G) and u2u3 /∈ E(G). Now let
G∗ = (G−N [v0]) ∪ {u1u4, u2u3}. Clearly, G∗ is also a claw-free graph with edge
weight 7. By the minimality of G, the graph G∗ has a good coloring φ. Ignoring
the colors of u1u4 and u2u3 in φ yields a good partial coloring of G with ten
edges e1, e2, . . . , e10 being uncolored. This partial coloring is denoted by ψ. The
remainder of the proof is divided into two cases according to whether φ(u1u4) and
φ(u2u3) are equal or not.

Figure 12. The graph G in the proof of Theorem 5.

If φ(u1u4) 6= φ(u2u3), let α = φ(u1u4) and β = φ(u2u3). By coloring e7 and
e10 with the same color α and e8 and e9 with the same color β, we extend ψ to
another good partial coloring σ of G, in which |Aσ(ei)| ≥ 5 for each i ∈ [1, 4]
and |Aσ(ej)| ≥ 3 for each j ∈ {5, 6}. Notice that u1u4, f1, f2, f7, f8 receive five
different colors in φ, Fσ(e1) ∩ Fσ(e4) = {α, β}. This implies that |Aσ(e1) ∪
Aσ(e4)| = 7. Therefore, the remaining six edges can be colored properly by SDR
and so σ can be further extended to a good coloring of G, a contradiction.

If φ(u1u4) = φ(u2u3) = α, we can color e8 and e9 with the same color α to
obtain another good partial coloring of G, calling it σ. Notice that α 6= σ(fi) for
each i ∈ [1, 8]. It is easy to check that |Aσ(ei)| = 6 for each i ∈ [1, 4], |Aσ(ej)| ≥ 4
for each j ∈ {5, 6}, |Aσ(e7)| ≥ 2 and |Aσ(e10)| ≥ 2. Moreover, it is also not
difficult to check that |Aσ(e1) ∪ Aσ(e4)| = 8 and |Aσ(e2) ∪ Aσ(e3)| = 8. Thus
we can extend σ to a good coloring of G by SDR, again a contradiction. This
completes the proof of Theorem 5.
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5. Final Remark

Let G be a connected claw-free graph with edge weight at most 7. This paper
proves that χ′s(G) ≤ 9. The three graphs shown in Figure 4 and the 3-prism
shown in Figure 2 indicate that this upper bound 9 is sharp. However, we do
not find infinitely many claw-free graphs with edge weight 7 and their strong
chromatic indices attaining the upper bound 9. Thus, it is natural to ask the
following question.

Question 1. Let G be a connected claw-free graph with edge weight 7 that is not
isomorphic to the 3-prism as well as the three graphs shown in Figure 4. Is it true
that χ′s(G) ≤ 8?

It is also interesting to investigate the list version of strong edge coloring.

Question 2. Is the strong list-chromatic index of any claw-free graph with edge
weight 7 at most 9?
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