DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

M. Anholcer

Marcin Anholcer

Poznań University of Economics and Business

email: m.anholcer@ue.poznan.pl

0000-0001-7322-7095

A.S. Emadi

Azam Sadat Emadi

University of Mazandaran, Department of Mathematics, Faculty of Mathematical Sciences, Babolsar, Iran

email: math_emadi2000@yahoo.com

0000-0001-5271-0977

D.A. Mojdeh

Doost Ali Mojdeh

University of Mazandaran, Department of Mathematics, Faculty of Mathematical Sciences, Babolsar, Iran

email: damojdeh@umz.ac.ir

0000-0001-9373-3390

Title:

Total vertex product irregularity strength of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2022-07-10 , Revised: 2023-03-15 , Accepted: 2023-03-15 , Available online: 2023-04-20 , https://doi.org/10.7151/dmgt.2495

Abstract:

Consider a simple graph $G$. We call a labeling $w:E(G)\cup V(G)\rightarrow \{1, 2, \dots, s\}$ (total vertex) product-irregular, if all product degrees $pd_G(v)$ induced by this labeling are distinct, where $pd_G(v)=w(v)×\prod_{e\ni v}w(e)$. The strength of $w$ is $s$, the maximum number used to label the members of $E(G)\cup V(G)$. The minimum value of $s$ that allows some irregular labeling is called the total vertex product irregularity strength and denoted $tvps(G)$. We provide some general bounds, as well as exact values for chosen families of graphs.

Keywords:

product-irregular labeling, total vertex product irregularity strength, vertex-distinguishing labeling

References:

  1. M. Aigner and E. Triesch, Irregular assignments of trees and forests, SIAM J. Discrete Math. 3 (1990) 439–449.
    https://doi.org/10.1137/0403038
  2. D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15–38.
    https://doi.org/10.1016/S0012-365X(98)00112-5
  3. M. Anholcer, Product irregularity strength of graphs, Discrete Math. 309 (2009) 6434–6439.
    https://doi.org/10.1016/j.disc.2008.10.014
  4. M. Anholcer, Product irregularity strength of certain graphs, Ars Math. Contemp. 7 (2014) 23–29.
    https://doi.org/10.26493/1855-3974.258.2a0
  5. M. Anholcer, M. Kalkowski and J. Przybyło, A new upper bound for the total vertex irregularity strength of graphs, Discrete Math. 309 (2009) 6316–6317.
    https://doi.org/10.1016/j.disc.2009.05.023
  6. M. Anholcer and C. Palmer, Irregular labellings of circulant graphs, Discrete Math. 312 (2012) 3461–3466.
    https://doi.org/10.1016/j.disc.2012.06.017
  7. M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378–1388.
    https://doi.org/10.1016/j.disc.2005.11.075
  8. G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187–192.
  9. R. Darda and A. Hujdurović, On bounds for the product irregularity strength of graphs, Graphs Combin. 31 (2015) 1347–1357.
    https://doi.org/10.1007/s00373-014-1458-5
  10. P. Erdős, On some applications of graph theory to number theoretic problems, Publ. Ramanujan Inst. 1 (1969) 131–136.
  11. R.J. Faudree and J. Lehel, Bounds on the irregularity strength of regular graphs, in: Colloquia Mathematica Societatis János Bolyai 52, Combinatorics, Eger (Hungary), (North-Holland, Amsterdam 1987) 239–246.
  12. M. Ferrara, R.J. Gould, M. Karoński and F. Pfender, An iterative approach to graph irregularity strength, Discrete Appl. Math. 158 (2010) 1189–1194.
    https://doi.org/10.1016/j.dam.2010.02.003
  13. A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120–137.
    https://doi.org/10.1002/jgt.10056
  14. M. Kalkowski, M. Karoński and F. Pfender, A new upper bound for the irregularity strength of graphs, SIAM J. Discrete Math. 25 (2011) 1319–1321.
    https://doi.org/10.1137/090774112
  15. J. Lehel, Facts and quests on degree irreglar assignments, in: Graph Theory, Combinatorics and Applications, (Wiley, New York 1991) 765–782.
  16. P. Majerski and J. Przybyło, On the irregularity strength of dense graphs, SIAM J. Discrete Math. 28 (2014) 197–205.
    https://doi.org/10.1137/120886650
  17. P. Majerski and J. Przybyło, Total vertex irregularity strength of dense graphs, J. Graph Theory 76 (2014) 34–41.
    https://doi.org/10.1002/jgt.21748
  18. T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313–323.
    https://doi.org/10.1137/S0895480196314291
  19. Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043–3048.
    https://doi.org/10.1016/j.disc.2010.06.041
  20. O. Pikhurko, Characterization of product anti-magic graphs of large order, Graphs Combin. 23 (2007) 681–689.
    https://doi.org/10.1007/s00373-007-0748-6
  21. J. Skowronek-Kaziów, $1$,$2$-conjecture-the multiplicative version, Inform. Process. Lett. 107 (2008) 93–95.
    https://doi.org/10.1016/j.ipl.2008.01.006
  22. J. Skowronek-Kaziów, Multiplicative vertex-colouring weightings of graphs, Inform. Process. Lett. 112 (2012) 191–194.
    https://doi.org/10.1016/j.ipl.2011.11.009
  23. M. Tchebichef, Mémoire sur les nombres premiers, J. Math. Pures Appl. Série 1 17 (1852) 366–390.

Close