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Abstract

Consider a simple graph G. We call a labeling w : E(G) ∪ V (G) →
{1, 2, . . . , s} (total vertex ) product-irregular, if all product degrees pdG(v)
induced by this labeling are distinct, where pdG(v) = w(v) ×

∏
e3v w(e).

The strength of w is s, the maximum number used to label the members of
E(G) ∪ V (G). The minimum value of s that allows some irregular labeling
is called the total vertex product irregularity strength and denoted tvps(G).
We provide some general bounds, as well as exact values for chosen families
of graphs.

Keywords: product-irregular labeling, total vertex product irregularity
strength, vertex-distinguishing labeling.
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1. Introduction

Let G be a simple undirected graph with vertex set V (G), edge set E(G), min-
imum degree δ(G) and maximum degree ∆(G). Let us assign a label (positive
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integer) w(x) to every x ∈ E(G) ∪ V (G). For each v ∈ V (G), its product degree
is defined by the formula

pdG(v) = w(v)×
∏
e3v

w(e),

where dG(v) is the degree of v in G and e 3 v means that the vertex v is incident
to the edge e. In particular, in the case of an isolated vertex v we have pdG(v) =
w(v).

We call w (total vertex ) product-irregular when for each couple of vertices
u, v ∈ V (G), u 6= v, we have pdG(u) 6= pdG(v). The (total vertex product) strength
of the labeling w is defined as

tvpsw(G) = max{w(x) |x ∈ E(G) ∪ V (G)}.

Consequently, the total vertex product irregularity strength of G is described with
the formula

tvps(G) = min{tvpsw(G) |w is product-irregular}.

This concept is a variant of the product irregularity strength, introduced by
Anholcer [3] and studied in [4] and [9]. This time the graphs under consideration
have no isolated edges and at most one isolated vertex and the product degree is
defined as the product of the labels of the incident edges only:

pdG(v) =

{∏
e3v w(e) if dG(v) > 0,

0 if dG(v) = 0.

Similarly as in the definition above, one defines the (product) strength of the
labeling psw(G) as the maximum label used and the respective graph invariant
(product irregularity strength, ps(G)) is the minimum strength among all the
product-irregular labelings.

The motivation to study this kind of problems were the well-known irregu-
larity strength and total vertex irregularity strength, where the vertex weighted
degrees are defined as the sums of labels (instead of products). The irreg-
ularity strength was defined in [8] and then analyzed by many authors (see
e.g. [1, 2, 6, 11–13, 15, 18]). The best known general upper bound is s(G) ≤ 6n/δ
for graphs with δ ≥ 6 (see [14]). Majerski and Przyby lo [16] improved it for
dense graphs of sufficiently large order (they proved that in such case s(G) ≤
(4 + o(1))n/δ+ 4). The total vertex irregularity strength was in turn introduced
by Bača et al. in [7] and then also attracted some attention (see e.g. [6,19]). The
best general result tvs(G) ≤ 3n/δ is due to Anholcer et al. [5]. Majerski and
Przyby lo [17] showed that for dense graphs of sufficiently large order the bound
is tvs(G) ≤ (2 + o(1))n/δ + 4.
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Let us focus again on the product version of the problem. Anholcer [3] proved
several lower bounds for general and regular graphs. In particular, it was shown
that for every graph G with nd vertices of degree d,

ps(G) ≥ max
δ(G)≤d≤∆(G)

{⌈
d

e
n

1/d
d − d+ 1

⌉}
,

while for r-regular graphs on n vertices, the inequality takes the form

ps(G) ≥
⌈r
e
n1/r − r + 1

⌉
.

In the same paper it was also shown that ps(G) ≤ p(|E(G)|), where p(k) denotes
the kth prime number. A better bound for sufficiently large graphs follows from
the results of Pikhurko [20]: ps(G) ≤ |E(G)|. A substantial improvement to this
bounds was proved by Darda and Hujdurović [9]. Namely, they showed that for
most graphs

ps(G) ≤ |V (G)| − 1.

In the case of cycles the above results can be improved. In particular, the
exact values for short cycles have been presented in [3]. In the same paper it was
shown that the lower bound for general cycles is given by the inequality

ps(Cn) ≥
⌈√

2n− 1

2

⌉
.

On the other hand, it was proved in [3] that for every ε > 0 there exists n0

such that for every n ≥ n0

ps(Cn) ≤
⌈
(1 + ε)

√
2n lnn

⌉
.

The two last results hold also for paths Pn and all the Hamiltonian graphs
of order n. In the same paper it was proved that given any ε > 0, one can

find n
(0)
j ,j = 1, . . . , k such that for every k-tuple (n1, n2, . . . , nk), nj ≥ n

(0)
j ,

j = 1, 2, . . . , k, the upper bounds for toroidal grids and grids are

ps
(
Tn1×n2×···×nk

)
≤

(1 + ε)
√

2

 k∑
j=1

√
nj

 ln

 k∑
j=1

nj


and

ps
(
Gn1×n2×···×nk

)
≤

(1 + ε)
√

2

 k∑
j=1

√
nj

 ln

 k∑
j=1

nj

 ,
respectively.
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Skowronek-Kaziów considered the local versions of both problems (with ver-
tex labels allowed or not). In both cases the goal was to distinguish only the
neighboring vertices. In particular she proved that if the vertex labels are al-
lowed, then 3 colors are enough to properly color any graph [21] and if one
cannot label the vertices, then it is enough to use at most 4 colors [22]. Note
that the respective lower bounds are 2 and 3, so the obtained results are almost
optimal. In the case of complete graphs Skowronek-Kaziów obtains these lower
bounds, so we can see that

ps(Kn) = 3

and

tvps(Kn) = 2.

In [4] Anholcer presented, among others, some results for bipartite graphs.
In particular, if 2 ≤ m ≤ n, then

ps(Km,n) = 3

if and only if n ≤
(
m+2

2

)
, while otherwise ps(Km,n) ≥ 4. In the same paper it

was shown that given arbitrary integer D ≥ 3, for almost all forests F such that
∆(F ) = D, n2 = 0, n0 ≤ 1 and if one removes all the pendant edges, then in the
resulting forest F ′, n2 = 0, the product irregularity strength equals to

ps(F ) = n1.

Darda and Hujdurović [9] generalized some of those results. In particu-
lar, they proved that for positive integers m1 ≤ m2 ≤ m3 ≤ · · · ≤ mk, and
Km1,m2,...,mk

being the complete multipartite graph such that mk ≤ m1 + m2 +
· · ·+mk−1, the equality ps(Km1,m2,...,mk

) = 3 holds.

In this paper, some bounds on tvps(G) have been presented. In Section 2 we
show some general results, as well as the results for regular graphs. In Section
3 we consider cycles and paths. Then we generalize these results for grids and
toroidal grids in Section 4. Finally some bounds for complete multipartite graphs
are presented in Section 5. We conclude the paper with some open problems.

2. General Bounds

Since the goal is to obtain distinct product degrees, a unique multiset of labels
must be used to label the edges incident to every vertex (although, of course, it
does not need to be a sufficient condition). Recall that nd denotes the number
of vertices of degree d (note that d + 1 labels are present in the product degree
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of such vertex). Let s be the strength of the labeling (i.e., the maximum label
used). Then

nd ≤
(
s+ d

s− 1

)
=

(
s+ d

d+ 1

)
<

(
e(s+ d)

d+ 1

)d+1

,

so for every d such that δ(G) ≤ d ≤ ∆(G) the following holds:

s ≥
⌈
d+ 1

e
n

1/(d+1)
d − d

⌉
.

It means that the following two observations are true.

Proposition 2.1. For every graph G,

tvps(G) ≥ max
δ(G)≤d≤∆(G)

{⌈
d+ 1

e
n

1/(d+1)
d − d

⌉}
.

Proposition 2.2. For every r-regular graph G such that |V (G)| = n,

tvps(G) ≥
⌈
r + 1

e
n1/(r+1) − r

⌉
.

Now let us consider the upper bounds. Obviously, if one assigns the label 1 to
every vertex, then the obtained product degrees are equal to the ones in the case
when vertex labels are not allowed. It follows that given any G for which ps(G) is
defined, tvps(G) ≤ ps(G) holds. In particular, it holds that ps(G) ≤ |V (G)| − 1.
However, if one considers a general graph, the best we can obtain is the order of
G. In fact, after labeling all the edges in an arbitrary way, one can compute the
temporary product degrees assuming that all the vertex labels equal to 1. Now the
final labels of vertices, being distinct numbers from the set {1, 2, . . . , |V (G)|}, are
assigned in increasing order consistent with non-decreasing order of the temporary
product degrees. Obviously the resulting sequence of product degrees is strictly
increasing. So we obtain the following.

Proposition 2.3. For every graph G of order n, tvps(G) ≤ n.

This bound cannot be improved in the general case, as the example of the
empty graph shows.

In the next section we provide some results for cycles and paths.

3. Cycles and Paths

Denote by Ck a cycle of length k. Then it holds.
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Fact 3.1. tvps(C3) = tvps(C4) = 2,

tvps(C5) = tvps(C6) = tvps(C7) = tvps(C8) = tvps(C9) = tvps(C10) = 3,

tvps(C11) = tvps(C12) = tvps(C13) = tvps(C14) = tvps(C15) = tvps(C16) = 4,

tvps(Cn) ≥ 5 if n ≥ 17.

Proof. Let us start with proving the fact that the given values of tvps(Cn) are
the minimum possible.

By using label 1, only one product can be obtained: 1, so it is impossible to
label C3 with just this label. Thus, one has to apply at least two labels to label
any cycle Cn, where n ≥ 3.

Similarly we can observe that when using labels 1 and 2, one can obtain four
distinct product degrees: 1, 2, 4 and 8, so at least three labels must be applied
for Cn, where n ≥ 5.

Using labels 1, 2 and 3 it is possible to obtain ten products: 1, 2, 3, 4, 6, 8, 9,
12, 18 and 27, so we have to use at least four labels to obtain a product-irregular
labeling of C11 and any longer cycle.

The labels 1, 2, 3 and 4 can result in at most sixteen product degrees: 1, 2,
3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48 and 64, so at least 5 colors are necessary
for Cn, where n ≥ 17.

Now we are going to show that the values in the theorem are enough to obtain
product-irregular labelings. For every cycle Cn, 3 ≤ n ≤ 16, let the sequence of
labels be

Sn = ([w(v1)], w(v1v2), [w(v2)], . . . , w(vn−1vn), [w(vn)], w(vnv1))

(the labels of vertices are in the square brackets). Sample sequences of labels
minimizing the value of tvps(Cn) are listed below:

S3 = ([1], 1, [2], 2, [2], 2),
S4 = ([1], 1, [1], 1, [2], 2, [2], 2),
S5 = ([1], 1, [2], 2, [3], 3, [3], 3, [2], 2),
S6 = ([1], 1, [1], 1, [2], 2, [3], 3, [3], 3, [2], 2),
S7 = ([1], 1, [1], 2, [2], 2, [2], 3, [3], 3, [3], 2, [2], 1),
S8 = ([1], 1, [3], 1, [1], 2, [2], 2, [2], 3, [3], 3, [3], 2, [2], 1),
S9 = ([1], 1, [1], 3, [2], 1, [1], 2, [2], 2, [2], 3, [3], 3, [3], 2, [2], 1),
S10 = ([1], 1, [1], 3, [1], 3, [2], 1, [1], 2, [2], 2, [2], 3, [3], 3, [3], 2, [2], 1),
S11 = ([1], 3, [1], 3, [1], 1, [1], 1, [1], 2, [2], 3, [3], 3, [3], 4, [4], 4, [4], 3, [3], 2),
S12 = ([1], 3, [1], 3, [1], 1, [4], 1, [1], 1, [1], 2, [2], 3, [3], 3, [3], 4, [4], 4, [4], 3, [3], 2),
S13 = ([4], 1, [2], 1, [2], 3, [4], 2, [4], 2, [3], 3, [1], 3, [4], 4, [2], 4, [4], 4, [3], 3, [3], 3, [2], 2),
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S14 = ([4], 1, [2], 1, [4], 1, [2], 3, [4], 2, [4], 2, [3], 3, [1], 3, [4], 4, [2], 4, [4], 4, [3],
3, [3], 3, [2], 2),

S15 = ([4], 1, [2], 1, [3], 1, [4], 1, [2], 3, [4], 2, [4], 2, [3], 3, [1], 3, [4], 4, [2], 4, [4],
4, [3], 3, [3], 3, [2], 2),

S16 = ([4], 1, [2], 1, [1], 1, [3], 1, [4], 1, [2], 3, [4], 2, [4], 2, [3], 3, [1], 3, [4], 4, [2],
4, [4], 4, [3], 3, [3], 3, [2], 2).

This completes the proof.

Now we are going to show the bounds for arbitrary n.

Proposition 3.2. For every n > 2,

tvps(Cn) ≥
⌈

3
√

6n− 1
⌉
.

Proof. In the case of Cn, the inequality

nd ≤
(
s+ d

d+ 1

)
takes the form

s(s+ 1)(s+ 2) ≥ 6n,

which implies

(s+ 1)3 ≥ 6n,

and finally

s ≥ 3
√

6n− 1.

Since s must be an integer, the last inequality is equivalent to

s ≥
⌈

3
√

6n− 1
⌉
.

Next, let us prove some upper bounds on tvps(Cn). Recall that in the label
sequences, the vertex labels are surrounded with square brackets.

Lemma 3.3. For every s ≥ 3 there exist product-irregular labelings of C3s−2,
C3s−1 and C3s with the label sequence containing the subsequence

s− 1, [s− 1], s, [s], s, [s], s− 1.
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Proof. For C7, C8 and C9, see the sequences given in the proof of Fact 3.1.
Now, assume that the statement is true for some s. Take any n, 3s− 2 ≤ n ≤ 3s.
Without loss of generality we can assume that w(vn−2vn−1) = s− 1, w(vn−1) =
s−1, w(vn−1vn) = s, w(vn) = s, w(vnv1) = s, w(v1) = s, w(v1v2) = s−1. As one
can see, the three largest product degrees are w(vn − 1) = s(s− 1)2, w(vn) = s3

and w(v1) = s2(s − 1). We now extend the labeling to Cn+3 adding only one
label s+ 1 in the following way (of course the edge vnv1 is removed together with
its label): w(vnvn+1) = s, w(vn+1) = s, w(vn+1vn+2) = s + 1, w(vn+2) = s + 1,
w(vn+2vn+3) = s + 1, w(vn+3) = s + 1,w(vn+3v1) = s. As one can easily check,
the new labeling contains the sequence

s, [s], s+ 1, [s+ 1], s+ 1, [s+ 1], s.

Moreover it preserves the product degrees for all vi, 1 ≤ i ≤ n, while for the
three new vertices we have pd(vn+1) = s2(s+ 1), pd(vn+2) = (s+ 1)3, pd(vn+3) =
s(s + 1)2. Clearly, the new labeling satisfies the subsequence condition and is
product-irregular, so the proof follows by induction.

Lemma 3.4. For every s ≥ 4 there exist product-irregular labelings of C4s−3,
C4s−2, C4s−1 and C4s with the label sequence containing the subsequence

s− 1, [s], s, [s− 2], s, [s], s, [s− 1], s− 1.

Proof. For C13, C14, C15 and C16, see the sequences given in the proof of Fact
3.1. Now, assume that the statement is true for some s. Take any n, 4s − 3 ≤
n ≤ 4s. Without loss of generality we can assume that w(vn−2vn−1) = s − 1,
w(vn−1) = s, w(vn−1vn) = s, w(vn) = s−2, w(vnv1) = s, w(v1) = s, w(v1v2) = s,
w(v2) = s− 1, w(v2v3) = s− 1. As one can see, the four largest product degrees
are w(vn−1) = s2(s − 1), w(vn) = s2(s − 2), w(v1) = s3 and w(v2) = s(s − 1)2.
Similarly as in the proof of Lemma 3.3, we extend the labeling to Cn+4 adding only
one label s+1 by assigning w(vnvn+1) = s, w(vn+1) = s+1, w(vn+1vn+2) = s+1,
w(vn+2) = s − 1, w(vn+2vn+3) = s + 1, w(vn+3) = s + 1, w(vn+3vn+4) = s + 1,
w(vn+4) = s, w(vn+4v1) = s. As one can easily check, the new labeling contains
the sequence

s, [s+ 1], s+ 1, [s− 1], s+ 1, [s+ 1], s+ 1, [s], s.

Moreover it preserves the product degrees for all vi, 1 ≤ i ≤ n, while for the four
new vertices we have pd(vn+1) = s(s+1)2, pd(vn+2) = (s−1)(s+1)2, pd(vn+3) =
(s+ 1)3, pd(vn+4) = s2(s+ 1). Clearly, the new labeling satisfies the subsequence
condition and is product-irregular, so the proof follows by induction.

The Lemmas 3.3 and 3.4 imply the following.
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Proposition 3.5.

tvps(Cn) ≤

{⌈
n
3

⌉
if 7 ≤ n ≤ 12,⌈

n
4

⌉
if n ≥ 13.

The following theorem gives the upper bound for the cycles of sufficiently
large order.

Theorem 3.6. For every ε > 0 there exists n0 such that for every n ≥ n0

tvps(Cn) ≤
⌈
(1 + ε)3

3
√

2(1 + ε)n1/3 lnn
⌉
.

Proof. Let s =
⌈
(1 + ε)3 3

√
2(1 + ε)n1/3 lnn

⌉
and let p be the greatest prime

that satisfies the condition p ≤ b2/3π(s)c, where π(s) is the value of the prime-
counting function at s, that is, the number of primes less than or equal to s.
From Bertrand-Chebyshev theorem [23], p ≥ b2/3π(s)c /2 + 1.

We start with finding the edge labels.

For every q, 1 ≤ q < p/2, we define the sequence: 0, q mod p, 2q mod p, . . . ,
(p− 1)q mod p, pq mod p = 0. We will refer to such a sequence as ”the chain”.

In any fixed chain, each number a, 0 ≤ a ≤ p− 1, appears exactly once, as q
and p are relatively prime, and so the order of q in the additive group Zp is equal
to p − 1. Thus, if we join all those chains together and form a multichain (0’s
being common members of every two neighboring chains), every pair of numbers
from the considered set will appear at most once as a pair of consecutive numbers
(here we use the assumption that q < p/2). Next, let p0 = 1, p1 = 2, p2 = 3,
p3 = 5 and so on, where the following terms of the sequence are consecutive
primes. Replace every number a in the multichain constructed above by pa.
None of the pairs repeats, so the same holds for the products. Moreover, since
any two consecutive numbers are always distinct, there is no product equal to
the square of a natural number. Now we join r identical multichains together in
the same way as we joined chains to obtain the multichain and close the cycle,
where 1 ≤ r ≤ dπ(s)e/3 will be chosen later (in particular it may happen that
r = dπ(s)e/3). We are going to show that it is possible to label at least n edges
in this way.

In every chain p labels have been used and each chain is based on distinct
natural number smaller than p/2, so one can label

m ≥ rp(p− 1)

2
≥ dπ(s)/3e(2/3bπ(s)c)2

8
≥ 1

54

⌊ s

ln s

⌋3

edges. Because of the choice of s, for sufficiently large n, the inequality m > n
holds.
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We use the maximum number of multichains and then the maximum number
of chains that allows to label at most n edges. It means that the number of labeled
edges is at least n − (p − 1)r/2 + 1 but not greater than n. Let t denote the
number of unlabeled edges. Of course, 0 ≤ t < (p− 1)r/2− 1. Moreover, exactly
p labels have been applied and no squares of natural numbers have occured so
far. Now let us choose t edges from the last chains of as many multichains as
necessary (i.e., choose all the edges in the last chains of bt/(p − 1)c multichains
and t− (p− 1)bt/(p− 1)c in any other multichain). Then, replace each of those
edges with two new edges, assigned the same label. No product degree changes, as
the only change is that some sequences of the form pi, pj , pk become pi, pj , pj , pk.
Eventually only some new products of the form p2

j can appear. So we obtain edge
labeling of the cycle of length n. Note that every product degree appears at most
r times, as in every multichain all the degrees are distinct. Now for every set of
vertices with equal product degree we use the primes greater than any label used
so far (there are exactly r of them) to distinguish the product degrees of those
vertices. This results with a product-irregular labeling of Cn.

It is straightforward to see that the above results for cycles Cn can be used
also to prove upper bounds on the tvps(G), where G is a path (it is enough to
remove any edge with label 1), Hamiltonian graph (one labels with 1 all the edges
not belonging to the Hamiltonian cycle) or semi-Hamiltonian graph (one labels
with 1 all the edges not belonging to the Hamiltonian path).

4. Grids and Toroidal Grids

Given k paths Pj (j = 1, 2, . . . , k) with vertex sets Vj (j = 1, 2, . . . , k), where
|Vj | = nj , the grid Gn1×n2×···×nk

is the Cartesian product of those paths: V =
V (Gn1×n2×···×nk

) = V1 × V2 × · · · × Vk and two vertices (u1, u2, . . . , uk), (v1, v2,
. . . , vk) ∈ V are adjacent if and only if all their coordinates but one, say jth, are
the same, and (uj , vj) ∈ E(Pj). By taking cycles instead of paths, one obtains
the toroidal grid Tn1×n2×···×nk

.

Lemma 4.1. Let n1, n2, . . . , nk be natural numbers, nj ≥ 3 for all j = 1, 2, . . . , k.

1. Let p1, p2, . . . , pk and r1, r2, . . . , rk be 2k natural numbers (not necessarily
distinct) such that pj primes as the edge labels and rj primes as vertex labels
are enough to obtain a product-irregular labeling of Cnj (j = 1, 2, . . . , k). Then∑k

j=1 (pj + rj) primes are enough to obtain a product-irregular labeling of the
toroidal grid Tn1×n2×···×nk

.

2. Let p1, p2, . . . , pk and r1, r2, . . . , rk be 2k natural numbers (not necessarily
distinct) such that pj primes as the edge labels and rj primes as vertex labels
are enough to obtain a product-irregular labeling of Pnj (j = 1, 2, . . . , k). Then
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∑k
j=1 (pj + rj) primes are enough to obtain a product-irregular labeling of the grid

Gn1×n2×···×nk
.

Proof. First consider the toroidal grids. We will use the induction on k. For k =
1 it is trivially true. Assume that we have managed to label Tn1×n2×···×nk−1

using∑k−1
j=1 pj primes. To construct Tn1×n2×···×nk

, join nk copies of Tn1×n2×···×nk−1
in

such a way that for every vertex v of Tn1×n2×···×nk−1
, all copies of v are joined

with the same copy of Cnk
. The sets of labels applied to the edges incident with

each copy of v are distinct, as they consist of constant set of labels used to label
Tn1×n2×···×nk−1

and distinct pairs of labels used on Cnk
(taken from a disjoint

set of numbers). We define the vertex label as the product of the labels of the
corresponding vertices in the factors (i.e., in Tn1×n2×···×nk−1

and Cnk
). It results

in a product-irregular labeling of Tn1×n2×···×nk
using pk + rk new primes, which

is the desired number of labels.
In the case of Gn1×n2×···×nk

we use Pnj instead of Cnj .

Note that the maximum label used in the above labeling is not greater than
max{P,R}, where P is the maximum edge label among all cycles (paths) and
R the product of the maximum vertex labels of all cycles (paths). Now we can
formulate the main result of this section.

Theorem 4.2. For every k ≥ 2 and every ε > 0 there exist n
(0)
j , j = 1, . . . , k

such that for every k-tuple (n1, n2, . . . , nk), nj ≥ n
(0)
j , j = 1, 2, . . . , k,

1. tvps (Tn1×n2×···×nk
) ≤

⌈
(1 + ε)kk−2

(∑k
j=1 n

k/(2k+1)
j

)∑k
j=1 lnnj

⌉
;

2. tvps (Gn1×n2×···×nk
) ≤

⌈
(1 + ε)kk−2

(∑k
j=1 n

k/(2k+1)
j

)∑k
j=1 lnnj

⌉
.

Proof. In order to find an irregular labeling of a cycle Cjn it is enough to use pj
labels (primes or 1) to label the edges and

rj =

⌈
2n

pj(pj − 1)

⌉
labels for vertices (see the proof of Theorem 3.6). In particular, if pj =

⌊
n
k/(2k+1)
j

⌋
,

then rj ≤
⌈
n

1/(2k+1)
j

⌉
. This means that we need at most

k∑
j=1

(⌊
n
k/(2k+1)
j

⌋
+
⌈
n

1/(2k+1)
j

⌉)
distinct labels (all of them being primes or 1). Let

s =

(1 + ε)kk−2

 k∑
j=1

n
k/(2k+1)
j

 k∑
j=1

lnnj
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and
ε′ = (1 + ε)1/k − 1.

We assign
k∑
j=1

⌈
n

1/(2k+1)
j

⌉
smallest primes to the vertices (1 will be used as edge label). This means that
the maximum vertex label Rj in every cycle satisfies the condition

Rj < (1 + ε′)

 k∑
j=1

n
1/(2k+1)
j

 ln

 k∑
j=1

n
1/(2k+1)
j


for sufficiently large sj (i.e., nj), j = 1, . . . , n. Consequently, the maximum vertex
label R in Tn1×n2×···×nk

is not greater than

R =
k∏
j=1

Rj < (1 + ε)

 k∑
j=1

n
1/(2k+1)
j

 ln

 k∑
j=1

n
1/(2k+1)
j

k

for sufficiently large nj , j = 1, . . . , k. For sufficiently large nj we have

ln

 k∑
j=1

n
1/(2k+1)
j

 ≤ k∑
j=1

ln
(
n

1/(2k+1)
j

)
.

From Hölder’s Inequality it follows that

k∑
j=1

n
1/(2k+1)
j ≤

 k∑
j=1

n
k/(2k+1)
j

1/k

k1−1/k

and

k∑
j=1

ln
(
n

1/(2k+1)
j

)
≤

 k∑
j=1

(
ln
(
n

1/(2k+1)
j

))k1/k

k1−1/k

<

 k∑
j=1

ln
(
kn

1/(2k+1)
j

)1/k

k1−1/k

<

 k∑
j=1

ln
(
n
k/(2k+1)
j

)1/k

k1−1/k.
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This implies

R < (1 + ε)k2k−2

 k∑
j=1

n
k/(2k+1)
j

 k∑
j=1

lnnj ≤ s.

On the other hand, for sufficiently large nj , j = 1, . . . , n, the highest edge label
is not greater than

(1+ε)

 k∑
j=1

(⌊
n
k/(2k+1)
j

⌋
+
⌈
n

1/(2k+1)
j

⌉) ln

 k∑
j=1

(⌊
n
k/(2k+1)
j

⌋
+
⌈
n

1/(2k+1)
j

⌉)
< (1 + ε)

2
k∑
j=1

n
k/(2k+1)
j

 2
k∑
j=1

lnn
k/(2k+1)
j < s.

Since in every cycle 1 appears as an edge label, the same reasoning proves the
theorem for the grid Gn1×n2×···×nk

.

5. Complete Multipartite Graphs

In this section we prove two simple results for complete multipartite graphs. Let
us start with the bipartite case.

Proposition 5.1. Let m and n be two integers such that 3 ≤ m ≤ n ≤
(
m+2

2

)
.

Then

tvps(Km,n) = 3.

Proof. The fact that the labels 1, 2 and 3 are enough follows from the equality
ps(Km,n) = 3 (it is enough to label all vertices with 1 and we are done). On the
other hand, if we use only labels 1 and 2, then the product degrees could take at
most n+ 2 values, namely 1, 2, 4, . . . , 2n+1, while there are at least n+ 3 vertices,
so at least third label is necessary.

By using a similar argument, we can prove the exact value for complete
multipartite graphs.

Proposition 5.2. Let m1,m2, . . . ,mk be integers such that 3 ≤ m1 ≤ m2 ≤
m3 ≤ · · · ≤ mk ≤ m1 +m2 + · · ·+mk−1. Then

tvps
(
Km1,m2,...,mk

)
= 3.

Proof. Let us recall that Darda and Hujdurović [9] proved that if Km1,m2,...,mk

is the complete multipartite graph such that 0 < m1 ≤ m2 ≤ m3 ≤ · · · ≤ mk ≤
m1 +m2 + · · ·+mk−1, then the equality ps(Km1,m2,...,mk

) = 3 holds. By putting
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label 1 on every vertex we get tvps(Km1,m2,...,mk
) ≤ 3. In order to show that two

labels are not enough, observe that ∆(Km1,m2,...,mk
) = m2 + · · · + mk, so using

labels 1 and 2 one can obtain at most 2 +m2 + · · ·+mk different weights, while
the number of vertices is m1 +m2 + · · ·+mk ≥ 3 +m2 + · · ·+mk.

6. Conclusion

In this paper, a new graph invariant, total vertex product irregularity strength,
has been introduced. It is a parameter similar to the total vertex irregularity
strength, where the weighted degrees are computed as products. We proved
several results for general and regular graphs, as well as for some specific families
of graphs, like cycles, paths and grids.

Most of our results show that for any d-regular graph G of order n it holds
that c1n

1/(d+1) ≤ g ≤ c2n
1/(d+1) lnn for some constants c1 and c2. Erdös [10]

proved that in the case of integers not greater than n, the cardinality s(n) of a
subset resulting in distinct pairwise products (multiplicative Sidon set) cannot
be much greater than the number of primes not greater than n:

s(n) = π(n) + Θ

(
n3/4

ln3/2 n

)
.

This makes us believe that the upper bounds presented in this paper are closer
to the exact value of tvps(G) than the lower and the effort of the further research
should be focused on the improvement of the latter ones. For that reason we
formulate the two following open problems.

Problem 6.1. Is there a constant c such that for every d-regular graph G of
order n

tvps(G) ≥ cn ln lnn?

Problem 6.2. Is there a constant c such that for every d-regular graph G of
order n

tvps(G) ≥ cn lnn

ln lnn
?

We also believe that the logarithmic factor is enough to guarantee the exis-
tence of a product-irregular labeling of any graph. This encourages us to pose
the following conjecture.

Conjecture 6.3. There exists a constant c such that for every d-regular graph
G of order n

tvps(G) ≤ cn1/(d+1) lnn.
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[9] R. Darda and A. Hujdurović, On bounds for the product irregularity strength of
graphs, Graphs Combin. 31 (2015) 1347–1357.
https://doi.org/10.1007/s00373-014-1458-5
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