DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in press


Authors:

G.T. Chen

Guantao Chen

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302, United States of America

email: gchen@gsu.edu

Z.Q. Hu

Zhiquan Hu

Central China Normal University, Wuhan, China

email: hu_zhiq@yahoo.com.cn

Y.P. Wu

YAPING Wu

Mathematics and Data Science department, school of Artificial Intelligence ,Jianghan University,Wuhan, China 430056

email: wypdp@sina.com

Title:

A Chvátal-Erdős type theorem for path-connectivity

PDF

Source:

Discussiones Mathematicae Graph Theory

Received: 2022-04-14 , Revised: 2023-03-03 , Accepted: 2023-03-03 , Available online: 2023-04-11 , https://doi.org/10.7151/dmgt.2493

Abstract:

For a graph $G$, let $\kappa(G)$ and $\alpha(G)$ be the connectivity and independence number of $G$, respectively. A well-known theorem of Chvátal and Erdős says that if $G$ is a graph of order $n$ with $\kappa(G)>\alpha(G)$, then $G$ is Hamilton-connected. In this paper, we prove the following Chvátal-Erdős type theorem: if $G$ is a $k$-connected graph, $k\geq 2$, of order $n$ with independence number $\alpha$, then each pair of distinct vertices of $G$ is joined by a Hamiltonian path or a path of length at least $(k-1)\max\left\{\frac{n+\alpha-k}{\alpha}, \left\lfloor\frac{n+2\alpha-2k+1} {\alpha}\right\rfloor\right\}$. Examples show that this result is best possible. We also strength it in terms of subgraphs.

Keywords:

connectivity, independence number, Hamilton-connected, Chvátal-Erdős theorem

References:

  1. G.T. Chen, Z.Q. Hu and Y.P. Wu, Circumferences of k-connected graphs involving independence numbers, J. Graph Theory 68 (2011) 55–76.
    https://doi.org/10.1002/jgt.20540
  2. V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
    https://doi.org/10.1016/0012-365X(72)90079-9
  3. J.L. Fouquet and J.L. Jolivet, Graphes hypohamiltoniens orientés, in: Problèmes combinatoires et thèorie des graphes, Proc. Coll. Orsay, 1976, (CNRS Publ., Paris 1978) 149–151.
  4. I. Fournier, Longest cycles in $2$-connected graphs of independence number $\alpha$, Ann. Discrete Math. 27 (1985) 201–204.
    https://doi.org/10.1016/S0304-0208(08)73010-X
  5. I. Fournier, Thesis (Ph.D. Thesis, University Paris-XI, Orsay, 1982).
  6. Z.Q. Hu and F.F. Song, Long cycles passing through \(\left\lfloor\frac{4k+1}3\right\rfloor\) vertices in k-connected graphs, J. Graph Theory 87 (2018) 374–393.
    https://doi.org/10.1002/jgt.22164
  7. Z.Q. Hu, F. Tian and B. Wei, Long cycles through a linear forest, J. Combin. Theory Ser. B 82 (2001) 67–80.
    https://doi.org/10.1006/jctb.2000.2022
  8. M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315–318.
    https://doi.org/10.1006/jctb.1994.1023
  9. Y. Manoussakis, Longest cycles in $3$-connected graphs with given independence number, Graphs Combin. 25 (2009) 377–384.
    https://doi.org/10.1007/s00373-009-0846-8
  10. K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95–115.
    https://doi.org/10.4064/fm-10-1-96-115
  11. S. O, D.B. West and H.H. Wu, Longest cycles in k-connected graphs with given independence number, J. Combin. Theory Ser. B 101 (2011) 480–485.
    https://doi.org/10.1016/j.jctb.2011.02.005
  12. D.B. West, Introduction to Graph Theory (Prentice Hall Inc., Upper Saddle River, NJ, 1996).
  13. Y.P. Wu, On the Length of Longest Cycles and Codiameter of $k$-Connected Graphs (Ph.D Thesis, 2011).

Close