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Abstract

For a graph G, let x(G) and a(G) be the connectivity and independence
number of G, respectively. A well-known theorem of Chvétal and Erdés
says that if G is a graph of order n with x(G) > a(G), then G is Hamilton-
connected. In this paper, we prove the following Chvatal-Erdés type the-
orem: if G is a k-connected graph, k& > 2, of order n with independence
number «, then each pair of distinct vertices of G is joined by a Hamilto-
nian path or a path of length at least (k — 1) max { 2te=k | nt2a=2k+l |1
Examples show that this result is best possible. We also strength it in terms
of subgraphs.
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1. INTRODUCTION

In this paper, we will consider simple graphs only and generally follow West [12]
for notation and terminology not defined here. For a graph G, let x(G) and o(G)
be the connectivity and independence number of G, respectively. Two classic
results of Chvatal and Erdés are the following.

Theorem 1 (Chvétal and Erd6Ss [2]). If G is a graph of order n > 3 such that
k(G) > a(Q), then G is Hamiltonian.

Theorem 2 (Chvétal and Erd6s [2]). If G is a graph of order n > 3 such that
k(G) > a(Q), then G is Hamilton-connected.

There are infinitely many non-Hamiltonian graphs such that o > k£ 4+ 1. So
it is of interest to get best lower bound lengths of longest cycles when o > k 4+ 1.
The circumference of G, denoted by ¢(G), is the length of a longest cycle of G if
G contains a cycle. For convention, we let ¢(G) = 0 if G is acyclic. Fouquet and
Jolivet [3] in 1978 conjectured that if & > k > 2, then ¢(G) > W Until
2007, this conjecture was only verified for the case k = 2,3, — 1 and o — 2 (see

k(nta—k)  (k—3)(k—4)

[4, 5] and [9]). In 2011, Chen et al. [1] showed that ¢(G) > = 5 ,
which implies that the conjecture of Fouquet and Jolivet is true for £ = 4. In
2011 the conjecture of Fouquet and Jolivet was confirmed by O, West and Wu in
[11]. In [13] we proved the following stronger theorem.

Theorem 3. Let G be a k-connected graph, k > 2, of order n and independence
number . Then

+G) > min {n,k.max{n—%a—k’ {n+2a—2kJ}}'

« «

It is interesting to ask whether Theorem 2 has a similar extension as that of
Theorem 1. The co-diameter of a connected graph G, denoted by d*(G), is the
maximum integer ¢ such that every pair of distinct vertices of GG is connected by a
path of length at least t. For convenience, we let d*(G) = 0 if G is not connected.
By West’s theorem, we can get the following corollary.

Corollary 4. Let G be a k-connected graph, k > 2, of order n and independence

number o«. Then ( Dk + 1)
n— +

* > - -

@(G) 2 a+k—2

In this paper, we show the following theorem.

Theorem 5. Let G be a k-connected graph, k > 2, of order n and independence
number . Then

(G) > min {n—L (k1) max {n+a—k7 {n+2a—2k+1J}}.

(0% (0%
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Figure 1. d*(G) = (k — 1) L%*%HJ

The following graphs, depicted in Figure 1, demonstrate that the lower bound
in Theorem 5 is sharp.

Let k,m and p be three positive integers with min{k,p} > 2. For i € {k —
1,m} and j € {k,p,p — 1}, let K; be the complete graph of order j and iK; be
the graph consists of i disjoint copies of K;. Note that in Figure 1. A = K,
B=K, 1,C=Ky, D=(k—1)Kp, E=(m)K,_1. Let G =K, + ((k— 1)K, U
mK,_1) be the join of the two graphs Kj and (k — 1)K, U mK,_;. Clearly,
n=k+pk-1)+mp—-1),k=k a=k+m—1land d"(G)=(k—-1)(p+1) =
( — 1)|2i2a=2kel |

For any nonempty graph H, let

(1) f(H) = min {[H| =1, (k — ) max {f1(H), [f2(H)]}},
where f;(H) = GHFlH;E%,()H)*kH), i = 1,2. The function f(H) from the set

of graphs to positive real numbers is not monotonic increasing according to the
graph inclusion relation, that is, there exists a graph G and a subgraph H of
G such that f(G) < f(H). An example will be given after a stronger result is
presented below.

Theorem 6. Let G be a k-connected graph with k > 2 and let Z(G) be the set of
all nonempty induced subgraphs of G. Then

d*(G) > max{f(H) : HeZI(G)},
where f(H) is defined by (1).

Note that if H' is a spanning subgraph of H, then f;(H') < fi(H), i =1,2.
The following example, depicted in Figure 2, demonstrates that the lower bound
in Theorem 5 may reach the maximum at a proper induced subgraph H.
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Figure 2. d*(G) = k {%J = f(H) > f(G).

Let k, m, p and t be four positive integers with ¢t > k > 2 and p > 3. Note that
in Figure 2. A=K,, B=K, 1,C =Ky, D= (k-1)K,, E=(m)K,_1,F =
Ky 2,G =tKp 5. Let G = K+ ((k— 1)K, UmK,_; UtK,_2) be the join of
the two graphs Kj and (k — 1)K, UmK,_1 UtK, 9. Clearly, n = 1+ (k —
Dp+1)+mp—1)+tlp—2), Kk =k, and « = k+m +t — 1. Noting that
n+2a—-2k+1=pk+m+t-—1)+(k+m-1)=p+la—-t<(@p+1)a,
we have |2H2a=2htl | — 5 apg nta=h — poth—i=l <, So, d*(G) = k(p+1) >

[0}

min {n — 1, max(k — 1) {"+g_k, L””a;%“J }}. On the other hand, we have

d(G) = (k—1)(p+1) = (k—1) L%J where H = Kj,+ ((k—1)K,U
prfl).

In proofs that follow, we need the the following theorem, which was conjec-
tured in [1].

Theorem 7. For any graph G, one of the following two statements holds.

I. For any two distinct vertices x,y € V(Q), there exists an (z,y)-path P such
that a(G — V(P)) < a(G) — 1.

II. There is a non-trivial partition ViU Vs of V(G) such that a(G) = o(G[V4]) +
a(G[Va]), where G[V1] and G[Va] are subgraphs induced by Vi and Va, respec-
tively.

An inductive proof of Theorem 7 can be found in [13]. In order to prove
Theorem 7, O, West, and Wu [11] proved Theorem 9, which is a path analogy of
Kouider’s theorem [8].
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Theorem 8 (Kouider [8]). If H is a subgraph of a k-connected graph G, then
either the vertices of H can be covered by one cycle of G or there exists a cycle

C of G such that o(H — V(C)) < «(H) — k.

Theorem 9 (O, West, and Wu [11]). Let G be a k-connected graph. If H C G
and x and y are distinct vertices in G, then G contains an (x,y)-path P such
that V(H) CV(P) ora(H -V (P)) <a(H)— (k—1).

Let H = G. Note that if & > 2, by Theorem 9, we can get G contains an
(x,y)-path P such that V(G) C V(P) or o(G-V(P)) < a(G)—(k—1) < o(G)—1.
So when k£ > 2 Theorem 7 is a corollary of Theorem 9.

For any two distinct vertices  and y in G, let d*(x,y) be the length of a
longest (z,y)-path in G. By using Theorem 7 and a technical lemma on inserting
vertices into a given path, we get a lower bound on d*(z,y) stated below.

Theorem 10. Let G be a k-connected graph with k > 2 and let P be an (x,y)-
path in G, where x,y are two distinct vertices of G. Then, for any subgraph H
of G — V(P) and any integer s with s > 2,

d*(x,y) > min{(k — 1)s, |P| + |H| — a(H)(s — 2) — 1}.

The remainer of the paper is organized as follows. In Section 2, we prove a
technical lemma on inserting vertices into a path — a cycle version of which was
proved in [1]. In Section 3, we give an inductive proof of Theorem 7, in Section
4, by using Lemma 11 and Theorem 7, we prove Theorem 10. Finally, in Section
5 we apply Theorems 9 and 10 to prove Theorem 6.

We assume that every path in this paper has an orientation and denote by
P = P[z,y] a path from = to y. We also call P an (z,y)-path. The length of P,
denoted by £(P), is the number of edges in P. For u,v € V(P), we denote by
u < v the relationship that u precedes v on P. If u < v, we denote by P[u,v]
(or P if the orientation is emphasized) the subpath of P from u to v. The

reverse sequence of u Pv is denoted by v Pu. More generally, for any two distinct
vertices u and v in a tree T', we let T'[u,v] denote the unique path in 7' from
u to v. When R is a path or a tree, we denote R[u,v]\ {u}, R[u,v]\ {v} and
Rlu,v]\ {u,v} by R(u,v], Rlu,v) and R(u,v), respectively. We consider them as
both paths (or trees)and vertex sets.

Let G be a graph and H; and Hy be two vertex-disjoint subgraphs of G. A
path P = Plz,y] in G is called a path from Hy to Hy if V(P)NV(H;) = {z} and
V(P)NV(Hz2) = {y}. A path from {z} to a subgraph H of G is also called an
(x, H)-path. A subgraph F of G is called an (z, H)-fan of width k if F' is a union
of (x, H)-paths Py, P», ..., Py, where V(P;) N V(P;) = {z} for i # j.

In this paper, we let N denote the set of nonnegative integers. For any two
integers 7,7 € N such that ¢ < j, let [i,j7] ={f e N:i < < j}. If j > 1, let
4 = [1,4].
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2. INSERTING VERTICES INTO A PATH

Let G be a graph, P be a path of G, and H be a subgraph of G—V (P). A subpath
P[z1,x2] of P is called an H-interval of P if z1 # x9 and there exist two internally
vertex disjoint paths P; and P from H to P ending at x1 and x9, respectively. In
addition, if either V/(P)NV (Py) =@ or [V(P)NV (P)| = |H| = 1, then P[z1, x2]
is called a normal H-interval of P. An (z,y)-path P is called a mazimal (z,y)-
path if there is no (z,y)-path @ in G such that V(P) C V(Q). The following
lemma plays a crucial role in the proof of Theorems 5 and 6, and the proof
technique has been used in [1, 7] and [6].

Lemma 11. Let k and s be two integers with k,s > 2, let G be a k-connected
graph, let P = Plz,y| be a mazimal (x,y)-path of G and let H be a subgraph of
G —V(P) with |H| > s —1. If every normal H-interval Plxy,x2| of P has length
at least s, then {(P) > (k —1)s.

Proof. It suffices to show that there exists a family Z of pairwise edge-disjoint
intervals of P such that

(2) > I = (k—1)s.

IeT

By the assumption of Lemma 11, we have
(3) for every normal H-interval I of P, {(I) > s.

Since P is a maximal (x,y)-path and G — V(P) # ), by Menger’s Theorem [10],
we can deduce that |V (P)| > 2(k —1) > k.

Let h = |H| and V(H) = {u1,...,up}. Since G is k-connected, for each
i € [h], there exists a (u;, P)-fan F; of width k in G. For each i € [h], let
{Zi1,zio, ...,z = V(F;)NV(P). In addition, we assume that z; 1, 2;2,..., ik
appear in order along P. Let F; = {Plz;;,2;j+1] : j = 1,2,...,k —1}. An
element I of F; is called an Fj-interval.

An H-interval Pxy,zo] of P is called a long interval if ¢(P[xz1,x2]) > s and
a short interval otherwise. Let x1, xo be distinct vertices of P and let u; € V(H).
A path R in G from z; to xs is called an (x1, u;, x2)-arc if V(R)NV(P) = {z1,x2}
and u; € V(R). Moreover, we call P[x1,z2] a good u;-interval if
(G-1) 4(P[z1,22]) < s—1,
(G-2) there is an (21, u;, z2)-arc in G, and
(G-3) for every proper subinterval P[z), )] of P[x1,z2], there is no (], u;, 5)-

arc in G.

Claim 1. Every short Fj-interval contains a good u;-interval, where i € [h].



A CuVATAL-ERDOS TYPE THEOREM FOR PATH-CONNECTIVITY 7

Proof. Since every short Fj-interval satisfies (G-1) and (G-2), (G-3) will be sat-
isfied if we take minimality. O

Claim 2. Suppose P[z1,z3] is a good u;-interval. Let R be an (x1,u;, x2)-arc
and @Q = Q[u,v] be a path from H to P. Then,

(i) V(R) NV (H) = {ui},
(ii) v ¢ P(x1,22), and
(iil) if u # wi, then V(Q) N (V(R) U Plx1,x2]) = 0.

Proof. (i) Assume the contrary that V(R) N V(H) # {u;}. Then, |[V(R)N
V(H)| > 2. Along the orientation of R from z; to x2, let w be the first vertex of
R in H and v’ be the last vertex of R in H. Clearly, w # w’, so that P[x1,x2] is
a normal H-interval. By (3), we have {(P[z1,x2]) > s, contradicting (G-1).

(ii) Assume the contrary that v € P(z1,22). By (i), V(R)NV(H) = {u;}. If
V(Q)NV(R) = 0, then Q[u,v] and R[u;, ] are two vertex disjoint paths from
H to P. So Pv,x9] is a normal H-interval. By (3), we have ¢(P[v,z2]) > s.
Consequently, ¢(P[z1,x2]) > s, a contradiction. Therefore, V(Q) NV (R) # 0.
Along the orientation of @, let z be the last vertex of V(Q) N V(R). Then,
z € R(x1,u;]UR[u;,x2). Assume, without loss of generality, z € R[u;, z2). Then,
x1 RzQu is an (x1,u;,v)-arc in G, which contradicts (G-3). Hence, (ii) holds.

(iii) Assume to the contrary there is a vertex z € V(Q) N (V(R) U P[z1, z2]).
By (ii), we have z ¢ P(x1,22), and hence z € V(Q) N R[x1, z2]. Let 2’ be the first
vertex of @Q on R. Since u # w; and V(Q)NV (H) = u, 2’ # u;. Assume, without
loss of generality, that 2’ € R[x1,u;). Then, uaz’ §x1 and uiﬁxg are two vertex
disjoint paths from H to P in G, so that P[z1,z2] is a normal H-interval. By
(3), £(P[z1,x2]) > s, contrary to (G-1). This completes the proof of Claim 2.

For each ¢ € [h], by Claim 1, every short Fj-interval P[z; j,x; j+1] contains
at least one good u;-interval. Among all of these good u;-intervals we specify one
as I;;. For each i, let F;* denote the set of all such I;;s. For each I;; € F}, let
P [yij, zij] = I;;, that is, we assume that y;; and z;; are two endvertices of I;;; let
R;; be an (y;j,u;, zij)-arc in G.

Claim 3. For any two intervals I;; € F; and Iy € Fj, if i # i/, then the
following three properties hold.
(1) V(Rirj) N (V(Rij) UV (L)) =0,
(ii) V(Iij) N V(Ii/j/) = @, and
(iii) there exist at least s — 1 wvertices on P between I;; and Iy ;.
Proof. (i) Since Iyj is a good uy-interval, Ry NV (H) = {uy} by Claim 2(i).

Hence @ = Ryjrluy,zyj] is a path in G from H to P. Since uy # w;, by
using Claim 2(iii) with P[xq,z2] = I;; and R = R;;, we have V(R jr[uy, zyj]) N
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(V(Rij)UV(Iij)) =0. Similarly, we have V(R@"j/ [yi’j’, Uy])ﬁ(V(Rij)UV(Iij)) = 0.
Hence, (i) is true.

(i) Suppose to the contrary, that V(I;;) NV (Iy;) # 0. By symmetry, we
may assume ((I;;) > €(Iyy). Then, yyy € Ijj or zyy € I;j, which implies
V(Ryj) NV (1;;) # 0, giving a contradiction to (i).

(ili) By (ii), we may assume ¥, i, ¥ j» and zy; appear on P in the order
along P. By Claim 2(i) and Claim 3(i), u;R;;z;; and ui/myifj/ are two vertex-
disjoint paths from H to P in G, and hence P[z;;,yy ;] is a normal H-interval.
By (3), €(Pl[zij, yujr]) = s. O

Claim 4. For every i € [h] and I;; € F}, ((I;;) > 2.

Proof. Assume on the contrary that there is an I;; = Ply;;, 2] € F such
—

that £<IZJ> S 1. Then, V(IZJ) = {yl-j,zij}. Set D = x?yzngzz]?y Then

V(D) 2 V(P)U{u;}, giving a contradiction to that P is a maximal (x,y)-path.

For each i € [h], let ¢; be the number of long Fj-intervals and let t = max{¢; :
i € [h]}. Assume, without loss of generality, that ¢ = ¢;. If t = k — 1, then
|Fil=k—1and ) ;. z €(I) > (k—1)s. So T = F satisfies (2). In what follows,
we assume ¢ < k — 1.

It follows from the definition of ¢ that for each i € [h], there exists at least
k —t — 1 short Fj-intervals. This together with the definition of F;" implies that
|F¥| > k—t—1> 0 for each i € [h]. Let Z, = ", F*. For two distinct intervals
Iij and Iz"j/7 E(Il]) N E(Ii/j/) = @ if i =4 and j ?é j/; and V(IU) N V(Ii/j/) = @ if
i # ' (by Claim 3(ii)). So all intervals in Z, are pairwise edge-disjoint.

Since |F}'| > k —t — 1 for each i € [h], we have

h
Tyl =D |F | = h(k—t—1) > (s—1)(k—t—1).
i=1

This together with Claim 4 implies that

(4) > U = 20Ty = s(k—t—1).
1€z,

If t =0, then by (4), T = Z, satisfies (2). So, we assume ¢t > 1, that is, there is a
long interval in Fj.

Claim 5. Let I be a long Fy-interval and let I' € F}, where i € [2,h]. If E(I') N
E(I) # 0, then E(I') C E(I).

Proof. Let I = P[$17p,$1,p+1] and I’ = Iij = P[yij,zij], for p,J € [k‘ — 1] Since
F is an (uy, P)-fan of width k, Fi[u1, x1,] and Fi[ug, 1 py1] are two paths from
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H to P. By Claim 2(iii), we have V(F[u1,21,]) N (V(Rij) UV (Plyij, 2i5])) = 0.
Hence 1, ¢ Plyij, zij]. Similarly, z1 541 ¢ Plyij, zi5]. If E(I') N E(I) # 0, then
E(I') C E(I). This completes the proof of Claim 5. 0

Claim 6. For each long Fi-interval I, there exists a long interval I' C I such
that all intervals in T, U{I'} are pairwise edge disjoint.

Proof. Denote I = P[z1,, 21 p+1), where p € [k — 1]. Set
T={ie[h]: EI)NE(;)#0 for some I;; € F}}.

If T = 0, then I’ = I satisfies Claim 6. So, we assume T # (). Since every
I; € F} is contained in a short Fi-interval, we conclude that 7' C [2, h).

Since Fy is an (u1, P)-fan of width k, Fi[ui, 21 ,] and Filuy, 1 p41] are two
paths from H to P. Choose I;; € F;, i € T. Note that I;; is a good u;-interval.
Let Plyij, zij] = I;; and R;; be an (y;;, u;, zij)-arc in G. Since uy # u;, by Claim
2(iii), V(Fi[ur, 1)) N (V(Rij) UV (Plyij, 2i5])) = 0. Then P[zq ,yi;] is a normal
H-interval. By (3), we have ((P[z1p,yi;]) > s, which completes the proof of

By Claim 6, for each long Fi-interval Plxy p, 21 p+1], there exists a long in-
terval I, C Px1p, 21 p+1] such that all intervals in Z, U {I,} are pairwise edge-
disjoint. Among all of these I),’s, we specify one as [;. Let Z, be the set of all
such I}s. Clearly, 7, consists of ¢ pairwise edge disjoint long intervals. By (4),
we have

U+ D uI) = stk—t—1)+ts=(k—1)s.

I€T, I€T,

Hence, 7 = 7, UZy is a set of pairwise edge disjoint intervals of P’ that satisfies
(2). ]

3. PROOF OF THEOREM 10

In this section, we apply Lemma 11 and Theorem 7 to prove Theorem 10, which
gives a lower bound on d*(z,y) in terms of a given path P and an induced
subgraph of G — V(P). We first give some definitions.

For any two induced subgraphs Hy; and Hs of G, we let Hy U Ho denotes the
subgraph of G induced by V(H;)UV (Hz). Moreover, we write H; W Hy to denote
H; U Hs under the condition V(H1)NV (H3) = (. For convenience, we allow some
of the H; to be an empty graph in this definition. If H is a graph, we use G 25 H
or H C; G to denote that H is a spanning subgraph of G, that is, V(G) = V(H)
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and F(G) 2 E(H). Clearly, if G D5 H1 W Hy, then o(G) < a(Hy) + o(Hsz). We
are interested in the class of graphs for which equality holds. Set

G*={G : there exist nonempty subgraphs H;, Hy such that
G D5 Hi W Hy and o(G) = a(Hy) + a(H2)}.

For convenience, the following equivalent definition is also used.

G*={G : there exist nonempty subgraphs H;, Hy such that
G 25 Hi W Hy and o(G) > a(Hy) + a(H2)}.

We say that a graph G satisfies property H. if for every two distinct vertices
u,v € V(G), there exists a path P = Plu,v] in G such that a(G — V(P)) <
a(G) — 1. Let H} denote the class of graphs satisfying property H.. Clearly,
every Hamilton-connected graph is in H}. The empty graph is not an element
of H}.

Lemma 12. Let G be a graph and « be the independence number of G. Then
there are two induced subgraphs Hy and Hy such that G Og Hi W Hy, Hy € H}
and a(Hy) + a(H2) < a (Hp may be an empty graph).

Proof. By Theorem 7, G € G* UH}. If G € H, then we are done with H; = ()
and Ho = (. In what follows, we assume G € G*. Then, G D, H1 W Ho,
where Hp, Hs are induced subgraphs of G with «a(Hy) + a(H2) < a(G) and
a(Hy) > a(H2) > 1. Choose (Hi, Ha) such that a(Hz) achieves the minimum.
If Hy € H¥, then we are done. We may assume that Hy ¢ H:. Then, by
Theorem 7, we have Hy € G*. So, Hy D4 Ho1 W Hoo, where Hop, Hoo are induced
subgraphs of Hy such that a(Hap)+a(Ha2) < a(Hz) and a(Hg;) > 1,4 =1,2. Set
Hi = G[V(Hl)UV(Hgl)]. Then, OZ(H{)"‘OZ(HQQ) < (O[(Hl)+0[(H21))+O[(H22) <
a(Hy)+a(Hs) < a(G). This together with G D¢ H{ W Hoo implies that (H], Hag)
is a pair of induced subgraphs of G that contradicts the choice of (Hy, Hy). This
completes the proof of Lemma 12. [ |

Before proving Theorem 10, we restate it for reference.

Theorem 10. Let G be a k-connected graph with k > 2, let x #y € V(G), and
let P be an (x,y)-path in G. Then,

d*(z,y) = min{(k — 1)s, |P| + |H| — a(H)(s — 2) — 1},
where H is any subgraph of G — V (P) and s is any integer with s > 2.
Proof. Suppose the contrary that

(5) for some integer s > 2, d*(z,y) < (k —1)s
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and there exists an (z,y)-path P in G and a subgraph H of G — V(P) such that
(6) d*(z,y) <|P|+[H| - a(H)(s —2) - 1.

Note that |H| # 0. Moreover, we choose P and H such that

(i) |H| achieves the minimum, and

(ii) subject to (i), |P| achieves the maximum.

A simple calculation shows that, for any (z,y)-path P’ with V(P’) D V(P)
and H = H—V(P’), we have |P'|+|H'|—a(H')(s—2) > |P|+|H|—a(H)(s—2).
So, by (ii), P is a maximal (z,y)-path in G.

It follows from Lemma 12 that there exist two induced subgraphs Hi, Ho
of H (Hy may be an empty graph) such that H Dy Hy W Hy, Hy € H}, and
a(Hy) + a(Hsz) < a(H). We consider two cases.

Case 1. |Ha| < s—2. Since Hy # 0, a(H1) = a(H) — a(H2) < a(H) — 1. By
the choice of (P, H), Theorem 10 holds for (P, H1), and hence
@ (,y) > |P|+|Hi| - a(Hi)(s —2) — 1
> [P+ (|H] - [Ha|) = (a(H) = 1)(s —2) = 1
> [P+ [H] - a(H)(s —2) -1,

contrary to (6).

Case 2. |Hz| > s — 1. By (5), {(P) < d*(z,y) < (k — 1)s. By applying
Lemma 11 with H = Hy, we see that there is a normal Ha-interval Pz, xs] of
P with ¢(P[z1,x2]) <s—1.

Since P[z1,x2] is a normal Ha-interval, there exist two internally vertex
disjoint paths P, = Pj[ui,z1], P» = Pug, 29| in G from Hs to P such that
|V(H2) N (V(P1) UV (P))| = min{|Ha|,2}. Since Hy € H}, there exists a path
Q = Q[u1,ug) in Hy such that a(Hy —V(Q)) < a(Hz) — 1. (Note that this is also
true if u; = ug, which implies |H| =1and s =2).

Set P* = x?xlﬁulauQPﬁgﬁy and H* = H — V(P*). Then, H* is a
subgraph of G — V(P*) with

a(H") = a(H[V(Hy) UV (Hz) = V(P7)]
(7) < a(Hy = V(PY)) + a(Hy = V(P7))
< alH)+a(H,—V(Q)) <a(H))+a(Hy) —1=a(H) —1.

Note that P* is an (x,y)-path in G such that

[P+ [H"] = [V(P*)nV(P)| +|V(P*) NV (H)| + [H]
(8) = (1P| = |[P(z1,22)]) + [H| > [P| = (s = 2) + |H].
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Since |H*| < |H]|, by the choice of (P, H), we have d*(z,y) > |P*| + |H*| —
a(H*)(s —2) — 1. This together with (7) and (8) implies that

d*(z,y) = |[P*|+ [H*| = (a(H") + 1)(s —2) — 1
> |P|+[H| - a(H)(s —2) -1,
contrary to (6). This completes the proof of Theorem 10. [ |

4. PROOF OF THEOREM 6.

It suffices to prove the following equivalent form of Theorem 6.

Theorem 6. Let G be a k-connected graph, k > 2, of order n and let Vi be a
nonempty subset of V(G). Then for any two distinct vertices x,y of G,

d*(z,y) = min{[Vo| — 1, (k — 1) max {f1(Vo), [ f2(Vo) ] }} ,

where f;(Vo) = fi(G[Vp]) = WEDEHABLON=RED 5 o,

Proof. Let s; = fi(V), i = 1,2. By applying Theorem 9 with H = G[Vp], we
get an (z,y)-path P in G such that either V(P) D Vp or a(G[W] — V(P)) <
a(G[Vo]) — k+ 1. Clearly, Theorem 5 holds if V(P) 2 Vj. We assume V) Z V(P)
and a(G[Vo] — V(P)) < a(G[Vo]) — k+ 1. Let H = G[Vp — V(P)]. Then,

a(H") = a(G[Vy] — V(P)) < a(G[Vy]) — k + 1, in particular, a(G[Vp]) > k. This
implies |Vy| > k and hence s; = % > 1. We consider the following
two cases.

Case 1. s1 > |s2]. If d*(z,y) > (k — 1)s1, we are done. Assume d*(z,y) <
(k—1)s1. Set

 [s1], ifsi>1
TN 2, ifs =1

Then, s is an integer with s > 2 and s —2 < s; — 1. By Theorem 10, we get

d*(z,y) > |P|+ |H| —a(H)(s —2) =1
z [Vol = (a(G[Wo]) =k + 1)(s1 = 1) =1
= (IVol + a(G[Vo]) = k) = ((G[Vo]) = k + )s1.
This together with d*(z,y) < (k — 1)s; implies that s; > %, a con-
tradiction.

Case 2. s; < [s2]. Then, |s2| > 2. If d*(x,y) > (k — 1)|s2], we are done.
Assume d*(x,y) < (k —1)|s2]. By taking s = |s2| in Theorem 10, we have
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d*(z,y) > [P+ |H| - a(H)(]s2] —2) -1
Vol = (a(G[Vo]) =k +1)([s2] —=2) -1
(IVol + 2a(G[Vo]) = 2k + 1) — ((G[Vo]) = k + 1) [s2].

v

This together with d*(z,y) < (k—1)|s2] implies | s2| > ‘VOlJFQi((g[[“/}(’)}]))*%H, giving

a contradiction. [
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