A CHVÁTAL-ERDŐS TYPE THEOREM FOR PATH-CONNECTIVITY

Guantao Chen
Department of Mathematics and Statistics
Georgia State University, Atlanta, GA 30303
e-mail: gchen@gsu.edu
Zhiquan Hu
Faculty of Mathematics and Statistics Central China Normal University, Wuhan, China 430079
e-mail: hu_Zhiq@yahoo.com.cn

AND

Yaping Wu ${ }^{1}$
Mathematics and Data Science Department School of Artificial Intelligence
Jianghan University, Wuhan, China 430056
e-mail: wypdp@sina.com

Abstract

For a graph G, let $\kappa(G)$ and $\alpha(G)$ be the connectivity and independence number of G, respectively. A well-known theorem of Chvátal and Erdős says that if G is a graph of order n with $\kappa(G)>\alpha(G)$, then G is Hamiltonconnected. In this paper, we prove the following Chvátal-Erdős type theorem: if G is a k-connected graph, $k \geq 2$, of order n with independence number α, then each pair of distinct vertices of G is joined by a Hamiltonian path or a path of length at least $(k-1) \max \left\{\frac{n+\alpha-k}{\alpha},\left\lfloor\frac{n+2 \alpha-2 k+1}{\alpha}\right\rfloor\right\}$. Examples show that this result is best possible. We also strength it in terms of subgraphs.

Keywords: connectivity, independence number, Hamilton-connected, Chvátal-Erdős theorem.
2020 Mathematics Subject Classification: 05C38.

[^0]
1. Introduction

In this paper, we will consider simple graphs only and generally follow West [12] for notation and terminology not defined here. For a graph G, let $\kappa(G)$ and $\alpha(G)$ be the connectivity and independence number of G, respectively. Two classic results of Chvátal and Erdős are the following.

Theorem 1 (Chvátal and Erdős [2]). If G is a graph of order $n \geq 3$ such that $\kappa(G) \geq \alpha(G)$, then G is Hamiltonian.

Theorem 2 (Chvátal and Erdős [2]). If G is a graph of order $n \geq 3$ such that $\kappa(G)>\alpha(G)$, then G is Hamilton-connected.

There are infinitely many non-Hamiltonian graphs such that $\alpha \geq k+1$. So it is of interest to get best lower bound lengths of longest cycles when $\alpha \geq k+1$. The circumference of G, denoted by $c(G)$, is the length of a longest cycle of G if G contains a cycle. For convention, we let $c(G)=0$ if G is acyclic. Fouquet and Jolivet [3] in 1978 conjectured that if $\alpha \geq k \geq 2$, then $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}$. Until 2007, this conjecture was only verified for the case $k=2,3, \alpha-1$ and $\alpha-2$ (see [4, 5] and [9]). In 2011, Chen et al. [1] showed that $c(G) \geq \frac{k(n+\alpha-k)}{\alpha}-\frac{(k-3)(k-4)}{2}$, which implies that the conjecture of Fouquet and Jolivet is true for $k=4$. In 2011 the conjecture of Fouquet and Jolivet was confirmed by O, West and Wu in [11]. In [13] we proved the following stronger theorem.

Theorem 3. Let G be a k-connected graph, $k \geq 2$, of order n and independence number α. Then

$$
c(G) \geq \min \left\{n, k \cdot \max \left\{\frac{n+\alpha-k}{\alpha},\left\lfloor\frac{n+2 \alpha-2 k}{\alpha}\right\rfloor\right\}\right\}
$$

It is interesting to ask whether Theorem 2 has a similar extension as that of Theorem 1. The co-diameter of a connected graph G, denoted by $d^{*}(G)$, is the maximum integer t such that every pair of distinct vertices of G is connected by a path of length at least t. For convenience, we let $d^{*}(G)=0$ if G is not connected. By West's theorem, we can get the following corollary.

Corollary 4. Let G be a k-connected graph, $k \geq 2$, of order n and independence number α. Then

$$
d^{*}(G) \geq \frac{(n-1)(k+1)}{\alpha+k-2}
$$

In this paper, we show the following theorem.
Theorem 5. Let G be a k-connected graph, $k \geq 2$, of order n and independence number α. Then

$$
d^{*}(G) \geq \min \left\{n-1,(k-1) \max \left\{\frac{n+\alpha-k}{\alpha},\left\lfloor\frac{n+2 \alpha-2 k+1}{\alpha}\right\rfloor\right\}\right\}
$$

Figure 1. $d^{*}(G)=(k-1)\left\lfloor\frac{n+2 \alpha-2 k+1}{\alpha}\right\rfloor$.

The following graphs, depicted in Figure 1, demonstrate that the lower bound in Theorem 5 is sharp.

Let k, m and p be three positive integers with $\min \{k, p\} \geq 2$. For $i \in\{k-$ $1, m\}$ and $j \in\{k, p, p-1\}$, let K_{j} be the complete graph of order j and $i K_{j}$ be the graph consists of i disjoint copies of K_{j}. Note that in Figure 1. $A=K_{p}$, $B=K_{p-1}, C=K_{k}, D=(k-1) K_{p}, E=(m) K_{p-1}$. Let $G=K_{k}+\left((k-1) K_{p} \cup\right.$ $m K_{p-1}$) be the join of the two graphs K_{k} and $(k-1) K_{p} \cup m K_{p-1}$. Clearly, $n=k+p(k-1)+m(p-1), \kappa=k, \alpha=k+m-1$ and $d^{*}(G)=(k-1)(p+1)=$ $(k-1)\left\lfloor\frac{n+2 \alpha-2 k+1}{\alpha}\right\rfloor$.

For any nonempty graph H, let

$$
\begin{equation*}
f(H)=\min \left\{|H|-1,(k-1) \max \left\{f_{1}(H),\left\lfloor f_{2}(H)\right\rfloor\right\}\right\}, \tag{1}
\end{equation*}
$$

where $f_{i}(H)=\frac{(|H|-1)+i(\alpha(H)-k+1)}{\alpha(H)}, i=1,2$. The function $f(H)$ from the set of graphs to positive real numbers is not monotonic increasing according to the graph inclusion relation, that is, there exists a graph G and a subgraph H of G such that $f(G)<f(H)$. An example will be given after a stronger result is presented below.

Theorem 6. Let G be a k-connected graph with $k \geq 2$ and let $\mathcal{I}(G)$ be the set of all nonempty induced subgraphs of G. Then

$$
d^{*}(G) \geq \max \{f(H): H \in \mathcal{I}(G)\}
$$

where $f(H)$ is defined by (1).
Note that if H^{\prime} is a spanning subgraph of H, then $f_{i}\left(H^{\prime}\right) \leq f_{i}(H), i=1,2$. The following example, depicted in Figure 2, demonstrates that the lower bound in Theorem 5 may reach the maximum at a proper induced subgraph H.

Figure 2. $d^{*}(G)=k\left\lfloor\frac{|H|+2 \alpha(H)-2 k+1}{\alpha(H)}\right\rfloor=f(H)>f(G)$.

Let k, m, p and t be four positive integers with $t>k \geq 2$ and $p \geq 3$. Note that in Figure 2. $A=K_{p}, B=K_{p-1}, C=K_{k}, D=(k-1) K_{p}, E=(m) K_{p-1}, F=$ $K_{p-2}, G=t K_{p-2}$. Let $G=K_{k}+\left((k-1) K_{p} \cup m K_{p-1} \cup t K_{p-2}\right)$ be the join of the two graphs K_{k} and $(k-1) K_{p} \cup m K_{p-1} \cup t K_{p-2}$. Clearly, $n=1+(k-$ 1) $(p+1)+m(p-1)+t(p-2), \kappa=k$, and $\alpha=k+m+t-1$. Noting that $n+2 \alpha-2 k+1=p(k+m+t-1)+(k+m-1)=(p+1) \alpha-t<(p+1) \alpha$, we have $\left\lfloor\frac{n+2 \alpha-2 k+1}{\alpha}\right\rfloor=p$ and $\frac{n+\alpha-k}{\alpha}=\frac{p \alpha+k-t-1}{\alpha} \leq p$. So, $d^{*}(G)=k(p+1)>$ $\min \left\{n-1, \max (k-1)\left\{\frac{n+\alpha-k}{\alpha},\left\lfloor\frac{n+2 \alpha-2 k+1}{\alpha}\right\rfloor\right\}\right\}$. On the other hand, we have $d^{*}(G)=(k-1)(p+1)=(k-1)\left[\frac{|H|+2 \alpha(H)-2 k+1}{\alpha(H)}\right\rfloor$, where $H=K_{k}+\left((k-1) K_{p} \cup\right.$ $\left.m K_{p-1}\right)$.

In proofs that follow, we need the the following theorem, which was conjectured in [1].

Theorem 7. For any graph G, one of the following two statements holds.
I. For any two distinct vertices $x, y \in V(G)$, there exists an (x, y)-path P such that $\alpha(G-V(P)) \leq \alpha(G)-1$.
II. There is a non-trivial partition $V_{1} \cup V_{2}$ of $V(G)$ such that $\alpha(G)=\alpha\left(G\left[V_{1}\right]\right)+$ $\alpha\left(G\left[V_{2}\right]\right)$, where $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are subgraphs induced by V_{1} and V_{2}, respectively.

An inductive proof of Theorem 7 can be found in [13]. In order to prove Theorem 7, O, West, and Wu [11] proved Theorem 9, which is a path analogy of Kouider's theorem [8].

Theorem 8 (Kouider [8]). If H is a subgraph of a k-connected graph G, then either the vertices of H can be covered by one cycle of G or there exists a cycle C of G such that $\alpha(H-V(C)) \leq \alpha(H)-k$.

Theorem 9 (O, West, and Wu [11]). Let G be a k-connected graph. If $H \subseteq G$ and x and y are distinct vertices in G, then G contains an (x, y)-path P such that $V(H) \subseteq V(P)$ or $\alpha(H-V(P)) \leq \alpha(H)-(k-1)$.

Let $H=G$. Note that if $k \geq 2$, by Theorem 9 , we can get G contains an (x, y)-path P such that $V(G) \subseteq V(P)$ or $\alpha(G-V(P)) \leq \alpha(G)-(k-1) \leq \alpha(G)-1$. So when $k \geq 2$ Theorem 7 is a corollary of Theorem 9 .

For any two distinct vertices x and y in G, let $d^{*}(x, y)$ be the length of a longest (x, y)-path in G. By using Theorem 7 and a technical lemma on inserting vertices into a given path, we get a lower bound on $d^{*}(x, y)$ stated below.
Theorem 10. Let G be a k-connected graph with $k \geq 2$ and let P be an (x, y) path in G, where x, y are two distinct vertices of G. Then, for any subgraph H of $G-V(P)$ and any integer s with $s \geq 2$,

$$
d^{*}(x, y) \geq \min \{(k-1) s,|P|+|H|-\alpha(H)(s-2)-1\} .
$$

The remainer of the paper is organized as follows. In Section 2, we prove a technical lemma on inserting vertices into a path - a cycle version of which was proved in [1]. In Section 3, we give an inductive proof of Theorem 7, in Section 4, by using Lemma 11 and Theorem 7, we prove Theorem 10. Finally, in Section 5 we apply Theorems 9 and 10 to prove Theorem 6.

We assume that every path in this paper has an orientation and denote by $P=P[x, y]$ a path from x to y. We also call P an (x, y)-path. The length of P, denoted by $\ell(P)$, is the number of edges in P. For $u, v \in V(P)$, we denote by $u \prec v$ the relationship that u precedes v on P. If $u \prec v$, we denote by $P[u, v]$ (or $u \vec{P} v$ if the orientation is emphasized) the subpath of P from u to v. The reverse sequence of $u \vec{P} v$ is denoted by $v \overleftarrow{P} u$. More generally, for any two distinct vertices u and v in a tree T, we let $T[u, v]$ denote the unique path in T from u to v. When R is a path or a tree, we denote $R[u, v] \backslash\{u\}, R[u, v] \backslash\{v\}$ and $R[u, v] \backslash\{u, v\}$ by $R(u, v], R[u, v)$ and $R(u, v)$, respectively. We consider them as both paths (or trees)and vertex sets.

Let G be a graph and H_{1} and H_{2} be two vertex-disjoint subgraphs of G. A path $P=P[x, y]$ in G is called a path from H_{1} to H_{2} if $V(P) \cap V\left(H_{1}\right)=\{x\}$ and $V(P) \cap V\left(H_{2}\right)=\{y\}$. A path from $\{x\}$ to a subgraph H of G is also called an (x, H)-path. A subgraph F of G is called an (x, H)-fan of width k if F is a union of (x, H)-paths $P_{1}, P_{2}, \ldots, P_{k}$, where $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{x\}$ for $i \neq j$.

In this paper, we let \mathbb{N} denote the set of nonnegative integers. For any two integers $i, j \in \mathbb{N}$ such that $i \leq j$, let $[i, j]=\{\ell \in \mathbb{N}: i \leq \ell \leq j\}$. If $j \geq 1$, let $[j]=[1, j]$.

2. Inserting Vertices Into a Path

Let G be a graph, P be a path of G, and H be a subgraph of $G-V(P)$. A subpath $P\left[x_{1}, x_{2}\right]$ of P is called an H-interval of P if $x_{1} \neq x_{2}$ and there exist two internally vertex disjoint paths P_{1} and P_{2} from H to P ending at x_{1} and x_{2}, respectively. In addition, if either $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\emptyset$ or $\left|V\left(P_{1}\right) \cap V\left(P_{2}\right)\right|=|H|=1$, then $P\left[x_{1}, x_{2}\right]$ is called a normal H-interval of P. An (x, y)-path P is called a maximal (x, y) path if there is no (x, y)-path Q in G such that $V(P) \subsetneq V(Q)$. The following lemma plays a crucial role in the proof of Theorems 5 and 6 , and the proof technique has been used in $[1,7]$ and $[6]$.

Lemma 11. Let k and s be two integers with $k, s \geq 2$, let G be a k-connected graph, let $P=P[x, y]$ be a maximal (x, y)-path of G and let H be a subgraph of $G-V(P)$ with $|H| \geq s-1$. If every normal H-interval $P\left[x_{1}, x_{2}\right]$ of P has length at least s, then $\ell(P) \geq(k-1) s$.

Proof. It suffices to show that there exists a family \mathcal{I} of pairwise edge-disjoint intervals of P such that

$$
\begin{equation*}
\sum_{I \in \mathcal{I}} \ell(I) \geq(k-1) s . \tag{2}
\end{equation*}
$$

By the assumption of Lemma 11, we have

$$
\begin{equation*}
\text { for every normal } H \text {-interval } I \text { of } P, \ell(I) \geq s \text {. } \tag{3}
\end{equation*}
$$

Since P is a maximal (x, y)-path and $G-V(P) \neq \emptyset$, by Menger's Theorem [10], we can deduce that $|V(P)| \geq 2(k-1) \geq k$.

Let $h=|H|$ and $V(H)=\left\{u_{1}, \ldots, u_{h}\right\}$. Since G is k-connected, for each $i \in[h]$, there exists a $\left(u_{i}, P\right)$-fan F_{i} of width k in G. For each $i \in[h]$, let $\left\{x_{i, 1}, x_{i, 2}, \ldots, x_{i, k}\right\}=V\left(F_{i}\right) \cap V(P)$. In addition, we assume that $x_{i, 1}, x_{i, 2}, \ldots, x_{i, k}$ appear in order along \vec{P}. Let $\mathcal{F}_{i}=\left\{P\left[x_{i, j}, x_{i, j+1}\right]: j=1,2, \ldots, k-1\right\}$. An element I of \mathcal{F}_{i} is called an F_{i}-interval.

An H-interval $P\left[x_{1}, x_{2}\right]$ of P is called a long interval if $\ell\left(P\left[x_{1}, x_{2}\right]\right) \geq s$ and a short interval otherwise. Let x_{1}, x_{2} be distinct vertices of P and let $u_{i} \in V(H)$. A path R in G from x_{1} to x_{2} is called an $\left(x_{1}, u_{i}, x_{2}\right)$-arc if $V(R) \cap V(P)=\left\{x_{1}, x_{2}\right\}$ and $u_{i} \in V(R)$. Moreover, we call $P\left[x_{1}, x_{2}\right]$ a good u_{i}-interval if
(G-1) $\ell\left(P\left[x_{1}, x_{2}\right]\right) \leq s-1$,
(G-2) there is an (x_{1}, u_{i}, x_{2})-arc in G, and
(G-3) for every proper subinterval $P\left[x_{1}^{\prime}, x_{2}^{\prime}\right]$ of $P\left[x_{1}, x_{2}\right]$, there is no $\left(x_{1}^{\prime}, u_{i}, x_{2}^{\prime}\right)$ arc in G.

Claim 1. Every short F_{i}-interval contains a good u_{i}-interval, where $i \in[h]$.

Proof. Since every short F_{i}-interval satisfies (G-1) and (G-2), (G-3) will be satisfied if we take minimality.

Claim 2. Suppose $P\left[x_{1}, x_{2}\right]$ is a good u_{i}-interval. Let R be an $\left(x_{1}, u_{i}, x_{2}\right)$-arc and $Q=Q[u, v]$ be a path from H to P. Then,
(i) $V(R) \cap V(H)=\left\{u_{i}\right\}$,
(ii) $v \notin P\left(x_{1}, x_{2}\right)$, and
(iii) if $u \neq u_{i}$, then $V(Q) \cap\left(V(R) \cup P\left[x_{1}, x_{2}\right]\right)=\emptyset$.

Proof. (i) Assume the contrary that $V(R) \cap V(H) \neq\left\{u_{i}\right\}$. Then, $\mid V(R) \cap$ $V(H) \mid \geq 2$. Along the orientation of R from x_{1} to x_{2}, let w be the first vertex of R in H and w^{\prime} be the last vertex of R in H. Clearly, $w \neq w^{\prime}$, so that $P\left[x_{1}, x_{2}\right]$ is a normal H-interval. By (3), we have $\ell\left(P\left[x_{1}, x_{2}\right]\right) \geq s$, contradicting (G-1).
(ii) Assume the contrary that $v \in P\left(x_{1}, x_{2}\right)$. By (i), $V(R) \cap V(H)=\left\{u_{i}\right\}$. If $V(Q) \cap V(R)=\emptyset$, then $Q[u, v]$ and $R\left[u_{i}, x_{2}\right]$ are two vertex disjoint paths from H to P. So $P\left[v, x_{2}\right]$ is a normal H-interval. By (3), we have $\ell\left(P\left[v, x_{2}\right]\right) \geq s$. Consequently, $\ell\left(P\left[x_{1}, x_{2}\right]\right) \geq s$, a contradiction. Therefore, $V(Q) \cap V(R) \neq \emptyset$. Along the orientation of Q, let z be the last vertex of $V(Q) \cap V(R)$. Then, $z \in R\left(x_{1}, u_{i}\right] \cup R\left[u_{i}, x_{2}\right)$. Assume, without loss of generality, $z \in R\left[u_{i}, x_{2}\right)$. Then, $x_{1} \vec{R} z \vec{Q} v$ is an $\left(x_{1}, u_{i}, v\right)$-arc in G, which contradicts (G-3). Hence, (ii) holds.
(iii) Assume to the contrary there is a vertex $z \in V(Q) \cap\left(V(R) \cup P\left[x_{1}, x_{2}\right]\right)$. By (ii), we have $z \notin P\left(x_{1}, x_{2}\right)$, and hence $z \in V(Q) \cap R\left[x_{1}, x_{2}\right]$. Let z^{\prime} be the first vertex of Q on R. Since $u \neq u_{i}$ and $V(Q) \cap V(H)=u, z^{\prime} \neq u_{i}$. Assume, without loss of generality, that $z^{\prime} \in R\left[x_{1}, u_{i}\right)$. Then, $u \vec{Q} z^{\prime} \overleftarrow{R} x_{1}$ and $u_{i} \vec{R} x_{2}$ are two vertex disjoint paths from H to P in G, so that $P\left[x_{1}, x_{2}\right]$ is a normal H-interval. By (3), $\ell\left(P\left[x_{1}, x_{2}\right]\right) \geq s$, contrary to (G-1). This completes the proof of Claim 2.

For each $i \in[h]$, by Claim 1 , every short F_{i}-interval $P\left[x_{i, j}, x_{i, j+1}\right]$ contains at least one good u_{i}-interval. Among all of these good u_{i}-intervals we specify one as $I_{i j}$. For each i, let F_{i}^{*} denote the set of all such $I_{i j}$. For each $I_{i j} \in F_{i}^{*}$, let $P\left[y_{i j}, z_{i j}\right]=I_{i j}$, that is, we assume that $y_{i j}$ and $z_{i j}$ are two endvertices of $I_{i j}$; let $R_{i j}$ be an $\left(y_{i j}, u_{i}, z_{i j}\right)$-arc in G.
Claim 3. For any two intervals $I_{i j} \in F_{i}^{*}$ and $I_{i^{\prime} j^{\prime}} \in F_{i^{\prime}}^{*}$, if $i \neq i^{\prime}$, then the following three properties hold.
(i) $V\left(R_{i^{\prime} j^{\prime}}\right) \cap\left(V\left(R_{i j}\right) \cup V\left(I_{i j}\right)\right)=\emptyset$,
(ii) $V\left(I_{i j}\right) \cap V\left(I_{i^{\prime} j^{\prime}}\right)=\emptyset$, and
(iii) there exist at least $s-1$ vertices on P between $I_{i j}$ and $I_{i^{\prime} j^{\prime}}$.

Proof. (i) Since $I_{i^{\prime} j^{\prime}}$ is a good $u_{i^{\prime}}$-interval, $R_{i^{\prime} j^{\prime}} \cap V(H)=\left\{u_{i^{\prime}}\right\}$ by Claim 2(i). Hence $Q=R_{i^{\prime} j^{\prime}}\left[u_{i^{\prime}}, z_{i^{\prime} j^{\prime}}\right]$ is a path in G from H to P. Since $u_{i^{\prime}} \neq u_{i}$, by using Claim 2(iii) with $P\left[x_{1}, x_{2}\right]=I_{i j}$ and $R=R_{i j}$, we have $V\left(R_{i^{\prime} j^{\prime}}\left[u_{i^{\prime}}, z_{i^{\prime} j^{\prime}}\right]\right) \cap$
$\left(V\left(R_{i j}\right) \cup V\left(I_{i j}\right)\right)=\emptyset$. Similarly, we have $V\left(R_{i^{\prime} j^{\prime}}\left[y_{i^{\prime} j^{\prime}}, u_{i^{\prime}}\right]\right) \cap\left(V\left(R_{i j}\right) \cup V\left(I_{i j}\right)\right)=\emptyset$. Hence, (i) is true.
(ii) Suppose to the contrary, that $V\left(I_{i j}\right) \cap V\left(I_{i^{\prime} j^{\prime}}\right) \neq \emptyset$. By symmetry, we may assume $\ell\left(I_{i j}\right) \geq \ell\left(I_{i^{\prime} j^{\prime}}\right)$. Then, $y_{i^{\prime} j^{\prime}} \in I_{i j}$ or $z_{i^{\prime} j^{\prime}} \in I_{i j}$, which implies $V\left(R_{i^{\prime} j^{\prime}}\right) \cap V\left(I_{i j}\right) \neq \emptyset$, giving a contradiction to (i).
(iii) By (ii), we may assume $y_{i j}, z_{i j}, y_{i^{\prime} j^{\prime}}$ and $z_{i^{\prime} j^{\prime}}$ appear on P in the order along P. By Claim 2(i) and Claim 3(i), $u_{i} \overrightarrow{R_{i j}} z_{i j}$ and $u_{i^{\prime}} \overleftarrow{R_{i^{\prime} j^{\prime}}} y_{i^{\prime} j^{\prime}}$ are two vertexdisjoint paths from H to P in G, and hence $P\left[z_{i j}, y_{i^{\prime} j^{\prime}}\right]$ is a normal H-interval. By (3), $\ell\left(P\left[z_{i j}, y_{i^{\prime} j^{\prime}}\right]\right) \geq s$.

Claim 4. For every $i \in[h]$ and $I_{i j} \in F_{i}^{*}, \ell\left(I_{i j}\right) \geq 2$.
Proof. Assume on the contrary that there is an $I_{i j}=P\left[y_{i j}, z_{i j}\right] \in F_{i}^{*}$ such that $\ell\left(I_{i j}\right) \leq 1$. Then, $V\left(I_{i j}\right)=\left\{y_{i j}, z_{i j}\right\}$. Set $D=x \vec{P} y_{i j} \overrightarrow{R_{i j}} z_{i j} \vec{P} y$. Then $V(D) \supseteq V(P) \cup\left\{u_{i}\right\}$, giving a contradiction to that P is a maximal (x, y)-path.

For each $i \in[h]$, let t_{i} be the number of long F_{i}-intervals and let $t=\max \left\{t_{i}\right.$: $i \in[h]\}$. Assume, without loss of generality, that $t=t_{1}$. If $t=k-1$, then $\left|\mathcal{F}_{1}\right|=k-1$ and $\sum_{I \in \mathcal{F}_{1}} \ell(I) \geq(k-1) s$. So $\mathcal{I}=\mathcal{F}_{1}$ satisfies (2). In what follows, we assume $t<k-1$.

It follows from the definition of t that for each $i \in[h]$, there exists at least $k-t-1$ short F_{i}-intervals. This together with the definition of F_{i}^{*} implies that $\left|F_{i}^{*}\right| \geq k-t-1>0$ for each $i \in[h]$. Let $\mathcal{I}_{g}=\bigcup_{i=1}^{h} F_{i}^{*}$. For two distinct intervals $I_{i j}$ and $I_{i^{\prime} j^{\prime}}, E\left(I_{i j}\right) \cap E\left(I_{i^{\prime} j^{\prime}}\right)=\emptyset$ if $i=i^{\prime}$ and $j \neq j^{\prime} ;$ and $V\left(I_{i j}\right) \cap V\left(I_{i^{\prime} j^{\prime}}\right)=\emptyset$ if $i \neq i^{\prime}$ (by Claim 3(ii)). So all intervals in \mathcal{I}_{g} are pairwise edge-disjoint.

Since $\left|F_{i}^{*}\right| \geq k-t-1$ for each $i \in[h]$, we have

$$
\left|\mathcal{I}_{g}\right|=\sum_{i=1}^{h}\left|F_{i}^{*}\right| \geq h(k-t-1) \geq(s-1)(k-t-1)
$$

This together with Claim 4 implies that

$$
\begin{equation*}
\sum_{I \in \mathcal{I}_{g}} \ell(I) \geq 2\left|\mathcal{I}_{g}\right| \geq s(k-t-1) . \tag{4}
\end{equation*}
$$

If $t=0$, then by (4), $\mathcal{I}=\mathcal{I}_{g}$ satisfies (2). So, we assume $t \geq 1$, that is, there is a long interval in F_{1}.

Claim 5. Let I be a long F_{1}-interval and let $I^{\prime} \in F_{i}^{*}$, where $i \in[2, h]$. If $E\left(I^{\prime}\right) \cap$ $E(I) \neq \emptyset$, then $E\left(I^{\prime}\right) \subseteq E(I)$.

Proof. Let $I=P\left[x_{1, p}, x_{1, p+1}\right]$ and $I^{\prime}=I_{i j}=P\left[y_{i j}, z_{i j}\right]$, for $p, j \in[k-1]$. Since F_{1} is an $\left(u_{1}, P\right)$-fan of width $k, F_{1}\left[u_{1}, x_{1, p}\right]$ and $F_{1}\left[u_{1}, x_{1, p+1}\right]$ are two paths from
H to P. By Claim 2(iii), we have $V\left(F_{1}\left[u_{1}, x_{1, p}\right]\right) \cap\left(V\left(R_{i j}\right) \cup V\left(P\left[y_{i j}, z_{i j}\right]\right)\right)=\emptyset$. Hence $x_{1, p} \notin P\left[y_{i j}, z_{i j}\right]$. Similarly, $x_{1, p+1} \notin P\left[y_{i j}, z_{i j}\right]$. If $E\left(I^{\prime}\right) \cap E(I) \neq \emptyset$, then $E\left(I^{\prime}\right) \subseteq E(I)$. This completes the proof of Claim 5 .

Claim 6. For each long F_{1}-interval I, there exists a long interval $I^{\prime} \subseteq I$ such that all intervals in $\mathcal{I}_{g} \cup\left\{I^{\prime}\right\}$ are pairwise edge disjoint.

Proof. Denote $I=P\left[x_{1, p}, x_{1, p+1}\right]$, where $p \in[k-1]$. Set

$$
T=\left\{i \in[h]: E(I) \cap E\left(I_{i j}\right) \neq \emptyset \text { for some } I_{i j} \in F_{i}^{*}\right\}
$$

If $T=\emptyset$, then $I^{\prime}=I$ satisfies Claim 6. So, we assume $T \neq \emptyset$. Since every $I_{1 j} \in F_{1}^{*}$ is contained in a short F_{1}-interval, we conclude that $T \subseteq[2, h]$.

Since F_{1} is an $\left(u_{1}, P\right)$-fan of width $k, F_{1}\left[u_{1}, x_{1, p}\right]$ and $F_{1}\left[u_{1}, x_{1, p+1}\right]$ are two paths from H to P. Choose $I_{i j} \in \mathcal{F}_{i}^{*}, i \in T$. Note that $I_{i j}$ is a good u_{i}-interval. Let $P\left[y_{i j}, z_{i j}\right]=I_{i j}$ and $R_{i j}$ be an $\left(y_{i j}, u_{i}, z_{i j}\right)$-arc in G. Since $u_{1} \neq u_{i}$, by Claim 2(iii), $V\left(F_{1}\left[u_{1}, x_{1, p}\right]\right) \cap\left(V\left(R_{i j}\right) \cup V\left(P\left[y_{i j}, z_{i j}\right]\right)\right)=\emptyset$. Then $P\left[x_{1, p}, y_{i j}\right]$ is a normal H-interval. By (3), we have $\ell\left(P\left[x_{1 p}, y_{i j}\right]\right) \geq s$, which completes the proof of Claim 6.

By Claim 6, for each long F_{1}-interval $P\left[x_{1, p}, x_{1, p+1}\right]$, there exists a long interval $I_{p} \subseteq P\left[x_{1, p}, x_{1, p+1}\right]$ such that all intervals in $\mathcal{I}_{g} \cup\left\{I_{p}\right\}$ are pairwise edgedisjoint. Among all of these I_{p} 's, we specify one as I_{p}^{*}. Let $\mathcal{I}_{g^{\prime}}$ be the set of all such I_{p}^{*}. Clearly, $\mathcal{I}_{g^{\prime}}$ consists of t pairwise edge disjoint long intervals. By (4), we have

$$
\sum_{I \in \mathcal{I}_{g}} \ell(I)+\sum_{I \in \mathcal{I}_{g^{\prime}}} \ell(I) \geq s(k-t-1)+t s=(k-1) s
$$

Hence, $\mathcal{I}=\mathcal{I}_{g} \cup \mathcal{I}_{g^{\prime}}$ is a set of pairwise edge disjoint intervals of P that satisfies (2).

3. Proof of Theorem 10

In this section, we apply Lemma 11 and Theorem 7 to prove Theorem 10, which gives a lower bound on $d^{*}(x, y)$ in terms of a given path P and an induced subgraph of $G-V(P)$. We first give some definitions.

For any two induced subgraphs H_{1} and H_{2} of G, we let $H_{1} \cup H_{2}$ denotes the subgraph of G induced by $V\left(H_{1}\right) \cup V\left(H_{2}\right)$. Moreover, we write $H_{1} \uplus H_{2}$ to denote $H_{1} \cup H_{2}$ under the condition $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\emptyset$. For convenience, we allow some of the H_{i} to be an empty graph in this definition. If H is a graph, we use $G \supseteq_{s} H$ or $H \subseteq_{s} G$ to denote that H is a spanning subgraph of G, that is, $V(G)=V(H)$
and $E(G) \supseteq E(H)$. Clearly, if $G \supseteq_{s} H_{1} \uplus H_{2}$, then $\alpha(G) \leq \alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)$. We are interested in the class of graphs for which equality holds. Set

$$
\begin{aligned}
& \mathcal{G}^{*}=\left\{G: \text { there exist nonempty subgraphs } H_{1}, H_{2}\right. \text { such that } \\
&\left.G \supseteq_{s} H_{1} \uplus H_{2} \text { and } \alpha(G)=\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)\right\} .
\end{aligned}
$$

For convenience, the following equivalent definition is also used.

$$
\begin{aligned}
& \mathcal{G}^{*}=\left\{G \text { : there exist nonempty subgraphs } H_{1}, H_{2}\right. \text { such that } \\
&\left.G \supseteq_{s} H_{1} \uplus H_{2} \text { and } \alpha(G) \geq \alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)\right\} .
\end{aligned}
$$

We say that a graph G satisfies property \mathcal{H}_{c} if for every two distinct vertices $u, v \in V(G)$, there exists a path $P=P[u, v]$ in G such that $\alpha(G-V(P)) \leq$ $\alpha(G)-1$. Let \mathcal{H}_{c}^{*} denote the class of graphs satisfying property \mathcal{H}_{c}. Clearly, every Hamilton-connected graph is in \mathcal{H}_{c}^{*}. The empty graph is not an element of \mathcal{H}_{c}^{*}.

Lemma 12. Let G be a graph and α be the independence number of G. Then there are two induced subgraphs H_{1} and H_{2} such that $G \supseteq_{s} H_{1} \uplus H_{2}, H_{2} \in \mathcal{H}_{c}^{*}$ and $\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leq \alpha$ (H_{1} may be an empty graph).

Proof. By Theorem 7, $G \in \mathcal{G}^{*} \cup \mathcal{H}_{c}^{*}$. If $G \in \mathcal{H}_{c}^{*}$, then we are done with $H_{1}=\emptyset$ and $H_{2}=G$. In what follows, we assume $G \in \mathcal{G}^{*}$. Then, $G \supseteq_{s} H_{1} \uplus H_{2}$, where H_{1}, H_{2} are induced subgraphs of G with $\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leq \alpha(G)$ and $\alpha\left(H_{1}\right) \geq \alpha\left(H_{2}\right) \geq 1$. Choose $\left(H_{1}, H_{2}\right)$ such that $\alpha\left(H_{2}\right)$ achieves the minimum. If $H_{2} \in \mathcal{H}_{c}^{*}$, then we are done. We may assume that $H_{2} \notin \mathcal{H}_{c}^{*}$. Then, by Theorem 7, we have $H_{2} \in \mathcal{G}^{*}$. So, $H_{2} \supseteq_{s} H_{21} \uplus H_{22}$, where H_{21}, H_{22} are induced subgraphs of H_{2} such that $\alpha\left(H_{21}\right)+\alpha\left(H_{22}\right) \leq \alpha\left(H_{2}\right)$ and $\alpha\left(H_{2 i}\right) \geq 1, i=1,2$. Set $H_{1}^{\prime}=G\left[V\left(H_{1}\right) \cup V\left(H_{21}\right)\right]$. Then, $\alpha\left(H_{1}^{\prime}\right)+\alpha\left(H_{22}\right) \leq\left(\alpha\left(H_{1}\right)+\alpha\left(H_{21}\right)\right)+\alpha\left(H_{22}\right) \leq$ $\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leq \alpha(G)$. This together with $G \supseteq_{s} H_{1}^{\prime} \uplus H_{22}$ implies that $\left(H_{1}^{\prime}, H_{22}\right)$ is a pair of induced subgraphs of G that contradicts the choice of $\left(H_{1}, H_{2}\right)$. This completes the proof of Lemma 12 .

Before proving Theorem 10, we restate it for reference.
Theorem 10. Let G be a k-connected graph with $k \geq 2$, let $x \neq y \in V(G)$, and let P be an (x, y)-path in G. Then,

$$
d^{*}(x, y) \geq \min \{(k-1) s,|P|+|H|-\alpha(H)(s-2)-1\}
$$

where H is any subgraph of $G-V(P)$ and s is any integer with $s \geq 2$.
Proof. Suppose the contrary that

$$
\begin{equation*}
\text { for some integer } s \geq 2, d^{*}(x, y)<(k-1) s \tag{5}
\end{equation*}
$$

and there exists an (x, y)-path P in G and a subgraph H of $G-V(P)$ such that

$$
\begin{equation*}
d^{*}(x, y)<|P|+|H|-\alpha(H)(s-2)-1 . \tag{6}
\end{equation*}
$$

Note that $|H| \neq 0$. Moreover, we choose P and H such that
(i) $|H|$ achieves the minimum, and
(ii) subject to (i), $|P|$ achieves the maximum.

A simple calculation shows that, for any (x, y)-path P^{\prime} with $V\left(P^{\prime}\right) \supseteq V(P)$ and $H^{\prime}=H-V\left(P^{\prime}\right)$, we have $\left|P^{\prime}\right|+\left|H^{\prime}\right|-\alpha\left(H^{\prime}\right)(s-2) \geq|P|+|H|-\alpha(H)(s-2)$. So, by (ii), P is a maximal (x, y)-path in G.

It follows from Lemma 12 that there exist two induced subgraphs H_{1}, H_{2} of H (H_{1} may be an empty graph) such that $H \supseteq_{s} H_{1} \uplus H_{2}, H_{2} \in \mathcal{H}_{c}^{*}$, and $\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leq \alpha(H)$. We consider two cases.

Case 1. $\left|H_{2}\right| \leq s-2$. Since $H_{2} \neq \emptyset, \alpha\left(H_{1}\right)=\alpha(H)-\alpha\left(H_{2}\right) \leq \alpha(H)-1$. By the choice of (P, H), Theorem 10 holds for $\left(P, H_{1}\right)$, and hence

$$
\begin{aligned}
d^{*}(x, y) & \geq|P|+\left|H_{1}\right|-\alpha\left(H_{1}\right)(s-2)-1 \\
& \geq|P|+\left(|H|-\left|H_{2}\right|\right)-(\alpha(H)-1)(s-2)-1 \\
& \geq|P|+|H|-\alpha(H)(s-2)-1,
\end{aligned}
$$

contrary to (6).
Case 2. $\left|H_{2}\right| \geq s-1$. By $(5), \ell(P) \leq d^{*}(x, y)<(k-1) s$. By applying Lemma 11 with $H=H_{2}$, we see that there is a normal H_{2}-interval $P\left[x_{1}, x_{2}\right]$ of P with $\ell\left(P\left[x_{1}, x_{2}\right]\right) \leq s-1$.

Since $P\left[x_{1}, x_{2}\right]$ is a normal H_{2}-interval, there exist two internally vertex disjoint paths $P_{1}=P_{1}\left[u_{1}, x_{1}\right], P_{2}=P_{2}\left[u_{2}, x_{2}\right]$ in G from H_{2} to P such that $\left|V\left(H_{2}\right) \cap\left(V\left(P_{1}\right) \cup V\left(P_{2}\right)\right)\right|=\min \left\{\left|H_{2}\right|, 2\right\}$. Since $H_{2} \in \mathcal{H}_{c}^{*}$, there exists a path $Q=Q\left[u_{1}, u_{2}\right]$ in H_{2} such that $\alpha\left(H_{2}-V(Q)\right) \leq \alpha\left(H_{2}\right)-1$. (Note that this is also true if $u_{1}=u_{2}$, which implies $|H|=1$ and $s=2$).

Set $P^{*}=x \vec{P} x_{1} \overleftarrow{P_{1}} u_{1} \vec{Q} u_{2} \overrightarrow{P_{2}} x_{2} \vec{P} y$ and $H^{*}=H-V\left(P^{*}\right)$. Then, H^{*} is a subgraph of $G-V\left(P^{*}\right)$ with

$$
\begin{align*}
\alpha\left(H^{*}\right) & =\alpha\left(H\left[V\left(H_{1}\right) \cup V\left(H_{2}\right)-V\left(P^{*}\right)\right]\right) \\
& \leq \alpha\left(H_{1}-V\left(P^{*}\right)\right)+\alpha\left(H_{2}-V\left(P^{*}\right)\right) \tag{7}\\
& \leq \alpha\left(H_{1}\right)+\alpha\left(H_{2}-V(Q)\right) \leq \alpha\left(H_{1}\right)+\alpha\left(H_{2}\right)-1=\alpha(H)-1 .
\end{align*}
$$

Note that P^{*} is an (x, y)-path in G such that

$$
\begin{align*}
\left|P^{*}\right|+\left|H^{*}\right| & \geq\left|V\left(P^{*}\right) \cap V(P)\right|+\left|V\left(P^{*}\right) \cap V(H)\right|+\left|H^{*}\right| \\
& =\left(|P|-\left|P\left(x_{1}, x_{2}\right)\right|\right)+|H| \geq|P|-(s-2)+|H| . \tag{8}
\end{align*}
$$

Since $\left|H^{*}\right|<|H|$, by the choice of (P, H), we have $d^{*}(x, y) \geq\left|P^{*}\right|+\left|H^{*}\right|-$ $\alpha\left(H^{*}\right)(s-2)-1$. This together with (7) and (8) implies that

$$
\begin{aligned}
d^{*}(x, y) & \geq\left|P^{*}\right|+\left|H^{*}\right|-\left(\alpha\left(H^{*}\right)+1\right)(s-2)-1 \\
& \geq|P|+|H|-\alpha(H)(s-2)-1,
\end{aligned}
$$

contrary to (6). This completes the proof of Theorem 10.

4. Proof of Theorem 6.

It suffices to prove the following equivalent form of Theorem 6 .
Theorem 6. Let G be a k-connected graph, $k \geq 2$, of order n and let V_{0} be a nonempty subset of $V(G)$. Then for any two distinct vertices x, y of G,

$$
d^{*}(x, y) \geq \min \left\{\left|V_{0}\right|-1,(k-1) \max \left\{f_{1}\left(V_{0}\right),\left\lfloor f_{2}\left(V_{0}\right)\right\rfloor\right\}\right\},
$$

where $f_{i}\left(V_{0}\right)=f_{i}\left(G\left[V_{0}\right]\right)=\frac{\left(\left|V_{0}\right|-1\right)+i\left(\alpha\left(G\left[V_{0}\right]\right)-k+1\right)}{\alpha\left(G\left[V_{0}\right]\right)}, i=1,2$.
Proof. Let $s_{i}=f_{i}\left(V_{0}\right), i=1,2$. By applying Theorem 9 with $H=G\left[V_{0}\right]$, we get an (x, y)-path P in G such that either $V(P) \supseteq V_{0}$ or $\alpha\left(G\left[V_{0}\right]-V(P)\right) \leq$ $\alpha\left(G\left[V_{0}\right]\right)-k+1$. Clearly, Theorem 5 holds if $V(P) \supseteq V_{0}$. We assume $V_{0} \nsubseteq V(P)$ and $\alpha\left(G\left[V_{0}\right]-V(P)\right) \leq \alpha\left(G\left[V_{0}\right]\right)-k+1$. Let $H^{\prime}=G\left[V_{0}-V(P)\right]$. Then, $\alpha\left(H^{\prime}\right)=\alpha\left(G\left[V_{0}\right]-V(P)\right) \leq \alpha\left(G\left[V_{0}\right]\right)-k+1$, in particular, $\alpha\left(G\left[V_{0}\right]\right) \geq k$. This implies $\left|V_{0}\right| \geq k$ and hence $s_{1}=\frac{\left|V_{0}\right|+\alpha\left(G\left[V_{0}\right]\right)-k}{\alpha\left(G\left[V_{0}\right]\right)} \geq 1$. We consider the following two cases.

Case 1. $s_{1} \geq\left\lfloor s_{2}\right\rfloor$. If $d^{*}(x, y) \geq(k-1) s_{1}$, we are done. Assume $d^{*}(x, y)<$ $(k-1) s_{1}$. Set

$$
s=\left\{\begin{array}{cc}
\left\lceil s_{1}\right\rceil, & \text { if } s_{1}>1 \\
2, & \text { if } s_{1}=1 .
\end{array}\right.
$$

Then, s is an integer with $s \geq 2$ and $s-2 \leq s_{1}-1$. By Theorem 10, we get

$$
\begin{aligned}
d^{*}(x, y) & \geq|P|+|H|-\alpha(H)(s-2)-1 \\
& \geq\left|V_{0}\right|-\left(\alpha\left(G\left[V_{0}\right]\right)-k+1\right)\left(s_{1}-1\right)-1 \\
& =\left(\left|V_{0}\right|+\alpha\left(G\left[V_{0}\right]\right)-k\right)-\left(\alpha\left(G\left[V_{0}\right]\right)-k+1\right) s_{1} .
\end{aligned}
$$

This together with $d^{*}(x, y)<(k-1) s_{1}$ implies that $s_{1}>\frac{\left|V_{0}\right|+\alpha\left(G\left[V_{0}\right]\right)-k}{\alpha\left(G\left[V_{0}\right]\right)}$, a contradiction.

Case 2. $s_{1}<\left\lfloor s_{2}\right\rfloor$. Then, $\left\lfloor s_{2}\right\rfloor \geq 2$. If $d^{*}(x, y) \geq(k-1)\left\lfloor s_{2}\right\rfloor$, we are done. Assume $d^{*}(x, y)<(k-1)\left\lfloor s_{2}\right\rfloor$. By taking $s=\left\lfloor s_{2}\right\rfloor$ in Theorem 10, we have

$$
\begin{aligned}
d^{*}(x, y) & \geq|P|+|H|-\alpha(H)\left(\left\lfloor s_{2}\right\rfloor-2\right)-1 \\
& \geq\left|V_{0}\right|-\left(\alpha\left(G\left[V_{0}\right]\right)-k+1\right)\left(\left\lfloor s_{2}\right\rfloor-2\right)-1 \\
& =\left(\left|V_{0}\right|+2 \alpha\left(G\left[V_{0}\right]\right)-2 k+1\right)-\left(\alpha\left(G\left[V_{0}\right]\right)-k+1\right)\left\lfloor s_{2}\right\rfloor .
\end{aligned}
$$

This together with $d^{*}(x, y)<(k-1)\left\lfloor s_{2}\right\rfloor$ implies $\left\lfloor s_{2}\right\rfloor>\frac{\left|V_{0}\right|+2 \alpha\left(G\left[V_{0}\right]\right)-2 k+1}{\alpha\left(G\left[V_{0}\right]\right)}$, giving a contradiction.

Acknowledgements

We thank the referees for their time and comments. This work is supported by by NSFC grants 11771172 and 11871239; and supported by Research Project of Jianghan university 2021yb056.

References

[1] G.T. Chen, Z.Q. Hu and Y.P. Wu, Circumferences of k-connected graphs involving independence numbers, J. Graph Theory 68 (2011) 55-76.
https://doi.org/10.1002/jgt. 20540
[2] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
https://doi.org/10.1016/0012-365X(72)90079-9
[3] J.L. Fouquet and J.L. Jolivet, Graphes hypohamiltoniens orientés, in: Problèmes combinatoires et thèorie des graphes, Proc. Coll. Orsay, 1976, (CNRS Publ., Paris, 1978) 149-151.
[4] I. Fournier, Longest cycles in 2-connected graphs of independence number α, Ann. Discrete Math. 27 (1985) 201-204.
https://doi.org/10.1016/S0304-0208(08)73010-X
[5] I. Fournier, Thesis (Ph.D. Thesis, University Paris-XI, Orsay, 1982).
[6] Z.Q. Hu and F.F. Song, Long cycles passing through $\left\lfloor\frac{4 k+1}{3}\right\rfloor$ vertices in k-connected graphs, J. Graph Theory 87 (2018) 374-393.
https://doi.org/10.1002/jgt. 22164
[7] Z.Q. Hu, F. Tian and B. Wei, Long cycles through a linear forest, J. Combin. Theory Ser. B 82 (2001) 67-80.
https://doi.org/10.1006/jctb.2000.2022
[8] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315-318. https://doi.org/10.1006/jctb.1994.1023
[9] Y. Manoussakis, Longest cycles in 3-connected graphs with given independence number, Graphs Combin. 25 (2009) 377-384.
https://doi.org/10.1007/s00373-009-0846-8
[10] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927) 95-115. https://doi.org/10.4064/fm-10-1-96-115
[11] S. O, D.B. West and H.H. Wu, Longest cycles in k-connected graphs with given independence number, J. Combin. Theory Ser. B 101 (2011) 480-485. https://doi.org/10.1016/j.jctb.2011.02.005
[12] D.B. West, Introduction to Graph Theory (Prentice Hall Inc., Upper Saddle River, NJ, 1996).
[13] Y.P. Wu, On the Length of Longest Cycles and Codiameter of k-Connected Graphs (Ph.D Thesis, 2011).

Received 14 April 2022
Revised 3 March 2023
Accepted 3 March 2023
Available online 11 April 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

[^0]: ${ }^{1}$ Corresponding author.

