DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

M.G.S. Thankachy

Maya G.S. Thankachy

Department of Mathematics, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram-695004, Kerala

email: mayagsthankachy@gmail.com

U. Chandran S.V.

Ullas Chandran S.V.

Department of Mathematics, Mahatma Gandhi College, University of Kerala, Thiruvananthapuram-695004, Kerala

email: svuc.math@gmail.com

0000-0002-2081-9094

J. Tuite

James Tuite

School of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

email: james.t.tuite@open.ac.uk

0000-0003-2604-7491

E.J. Thomas

Elias John Thomas

Department of Mathematics, Mar Ivanios College, University of Kerala

email: eliasjohnkalarickal@gmail.com

0000-0003-0598-4726

G. Di Stefano

Gabriele Di Stefano

Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila

email: gabriele.distefano@univaq.it

0000-0003-4521-8356

G. Erskine

Grahame Erskine

School of Mathematics and Statistics, Open University, Walton Hall, Milton Keynes MK7 6AA, UK

email: grahame.erskine@open.ac.uk

0000-0001-7067-6004

Title:

On the vertex position number of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(3) (2024) 1169-1188

Received: 2022-09-14 , Revised: 2023-02-23 , Accepted: 2023-02-23 , Available online: 2023-03-19 , https://doi.org/10.7151/dmgt.2491

Abstract:

In this paper we generalise the notion of visibility from a point in an integer lattice to the setting of graph theory. For a vertex $x$ of a graph $G$, we say that a set $S \subseteq V(G)$ is an $x$-position set if for any $y \in S$ the shortest $x,y$-paths in $G$ contain no point of $S\setminus \{ y\}$. We investigate the largest and smallest orders of maximum $x$-position sets in graphs, determining these numbers for common classes of graphs and giving bounds in terms of the girth, vertex degrees, diameter and radius. Finally we discuss the complexity of finding maximum vertex position sets in graphs.

Keywords:

geodesic, vertex position set, vertex position number, general position number

References:

  1. B.S. Anand, U. Chandran S.V., M. Changat, S. Klavžar and E.J. Thomas, Characterization of general position sets and its applications to cographs and bipartite graphs., Appl. Math. Comput. 359 (2019) 84–89.
    https://doi.org/10.1016/j.amc.2019.04.064
  2. T.M. Apostol, Introduction to Analytic Number Theory (Springer-Verlag, New York, 1976).
    https://doi.org/10.1007/978-1-4757-5579-4
  3. V.G. Boltjansky and I. Gohberg, Results and Problems in Combinatorial Geometry (Cambridge University Press, Cambridge, 1985).
    https://doi.org/10.1017/CBO9780511569258
  4. F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley, Redwood City, CA, 1990).
  5. U. Chandran S.V. and G.J. Parthasarathy, The geodesic irredundant sets in graphs, Int. J. Math. Combin. 4 (2016) 135–143.
  6. G. Chartrand and P. Zhang, Introduction to Graph Theory (Tata McGraw-Hill Pub. Co., New Delhi, 2006).
  7. G. Di Stefano, Mutual visibility in graphs, Appl. Math. Comput. 419 (2022) 126850.
    https://doi.org/10.1016/j.amc.2021.126850
  8. H.E. Dudeney, Amusements in Mathematics (T. Nelson and Sons, Ltd., London, 1917).
  9. P. Erdős, P.M. Gruber and J. Hammer, Lattice Points (Longman Scientific $\&$ Technical, Harlow, 1989).
  10. V. Froese, I. Kanj, A. Nichterlein and R. Niedermeier, Finding points in general position, Internat. J. Comput. Geom. Appl. 27 (2017) 277–296.
    https://doi.org/10.1142/S021819591750008X
  11. M. Ghorbani, H.R. Maimani, M. Momeni, F.R. Mahid, S. Klavžar and G. Rus, The general position problem on Kneser graphs and on some graph operations, Discuss. Math. Graph Theory 41 (2021) 1199–1213.
    https://doi.org/10.7151/dmgt.2269
  12. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).
    https://doi.org/10.1016/C2013-0-10739-8
  13. J. Hammer, Unsolved Problems Concerning Lattice Points, in: Res. Notes Math. 15 (Publishing Ltd., London, 1977).
  14. G.H. Hardy, E.M. Wright, J. Silverman and A. Wiles, An Introduction to the Theory of Numbers (Oxford University Press, Oxford, 2008).
  15. P. Manuel and S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc. 98 (2018) 177–187.
    https://doi.org/10.1017/S0004972718000473
  16. P. Manuel and S. Klavžar, The graph theory general position problem on some interconnection networks, Fund. Inform. 163 (2018) 339–350.
    https://doi.org/10.3233/FI-2018-1748
  17. B. Patkós, On the general position problem on Kneser graphs, Ars Math. Contemp. 18 (2020) 273–280.
    https://doi.org/10.26493/1855-3974.1957.a0f
  18. M.S. Payne and D.R. Wood, On the general position subset selection problem, SIAM J. Discrete Math. 27 (2013) 1727–1733.
    https://doi.org/10.1137/120897493
  19. J. O'Rourke, Art Gallery Theorems and Algorithms (Oxford University Press, New York, Oxford, 1987).
  20. J.J. Sylvester, Sur le nombre de fractions ordinaires inégales qu'on peut exprimer en se servant de chiffres qui n’excèdent pas un nombre donné, C.R. Acad. Sci. Paris 96 (1883) 409–413.
  21. E.J. Thomas and U. Chandran S.V., Characterization of classes of graphs with large general position number, AKCE Int. J. Graphs Comb. 17 (2020) 935–939.
    https://doi.org/10.1016/j.akcej.2019.08.008
  22. J. Tian and K. Xu, The general position number of Cartesian products involving a factor with small diameter, Appl. Math. Comput. 403 (2021) 126206.
    https://doi.org/10.1016/j.amc.2021.126206
  23. J. Tian, K. Xu and S. Klavžar, The general position number of the Cartesian product of two trees, Bull. Aust. Math. Soc. 104 (2021) 1–10.
    https://doi.org/10.1017/S0004972720001276

Close