DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

D.A. Retnowardani

Dwi Agustin Retnowardani

Mathematics Department, University of Airlangga, Surabaya

email: 2i.agustin@ikipjember.ac.id

0000-0002-1069-307X

M.I. Utoyo

Mohammad Imam Utoyo

Mathematics Department, University of Airlangga, Surabaya

email: m.i.utoyo@fst.unair.ac.id

0000-0003-2292-8443

Dafik

Dafik

Mathematics Education Department, University of Jember, Jember

email: d.dafik@unej.ac.id

0000-0003-0575-3039

L. Susilowati

Liliek Susilowati

Mathematics Department, University of Airlangga, Surabaya

email: liliek-s@fst.unair.ac.id

0000-0002-9149-3570

K. Dliou

Kamal Dliou

National School of Applied Sciences (ENSA), Ibn Zohr University, Agadir

email: dlioukamal@gmail.com

0000-0002-3791-6923

Title:

A study of a combination of distance domination and resolvability in graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(3) (2024) 1051-1078

Received: 2022-08-11 , Revised: 2023-01-18 , Accepted: 2023-01-27 , Available online: 2023-02-15 , https://doi.org/10.7151/dmgt.2484

Abstract:

For $k \geq 1$, in a graph $G=(V,E)$, a set of vertices $D$ is a distance $k$-dominating set of $G$, if any vertex in $V\setminus D$ is at distance at most $k$ from some vertex in $D$. The minimum cardinality of a distance $k$-dominating set of $G$ is the distance $k$-domination number, denoted by $\gamma_k(G)$. An ordered set of vertices $W=\{w_1,w_2,\ldots,w_r\}$ is a resolving set of $G$, if for any two distinct vertices $x$ and $y$ in $V\setminus W$, there exists $1\leq i\leq r$ such that $d_G(x,w_i)\neq d_G(y,w_i)$. The minimum cardinality of a resolving set of $G$ is the metric dimension of the graph $G$, denoted by $\dim(G)$. In this paper, we introduce the distance $k$-resolving dominating set which is a subset of $V$ that is both a distance $k$-dominating set and a resolving set of $G$. The minimum cardinality of a distance $k$-resolving dominating set of $G$ is called the distance $k$-resolving domination number and is denoted by $\gamma^r_k(G)$. We give several bounds for $\gamma^r_k(G)$, some in terms of the metric dimension $\dim(G)$ and the distance $k$-domination number $\gamma_k(G)$. We determine $\gamma^r_k(G)$ when $G$ is a path or a cycle. Afterwards, we characterize the connected graphs of order $n$ having $\gamma^r_k(G)$ equal to $1$, $n-2$, and $n-1$, for $k\geq 2$. Then, we construct graphs realizing all the possible triples $(\dim(G),\gamma_k(G),\gamma^r_k (G))$, for all $k\geq 2$. Later, we determine the maximum order of a graph $G$ having distance $k$-resolving domination number $\gamma^r_k(G)=\gamma^r_k\geq 1$, we provide graphs achieving this maximum order for any positive integers $k$ and $\gamma^r_k$. Then, we establish Nordhaus-Gaddum bounds for $\gamma^r_k(G)$, for $k\geq 2$. Finally, we give relations between $\gamma^r_k(G)$ and the $k$-truncated metric dimension of graphs and give some directions for future work.

Keywords:

resolving set, metric dimension, distance k-domination, distance k-resolving domination

References:

  1. M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161 (2013) 466-546.
    https://doi.org/10.1016/j.dam.2011.12.018
  2. R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of groups and graphs, Bull. Lond. Math. Soc. 43 (2011) 209–242.
    https://doi.org/10.1112/blms/bdq096
  3. Z. Beerliova, F. Eberhard, T. Eberhard, A. Hall, M. Hoffmann, M. Mihalák and L.S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006) 2168–2181.
    https://doi.org/10.1109/JSAC.2006.884015
  4. R.C. Brigham, G. Chartrand, R.D. Dutton and P. Zhang, Resolving domination in graphs, Math. Bohem. 128 (2003) 25–36.
    https://doi.org/10.21136/MB.2003.133935
  5. J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, Locating-dominating codes: Bounds and extremal cardinalities, Appl. Math. Comput. 220 (2013) 38–45.
    https://doi.org/10.1016/j.amc.2013.05.060
  6. J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423–441.
    https://doi.org/10.1137/050641867
  7. G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on graphs, Tech. Rep. 540 (School of Operations Res. and Industrial Eng., Cornell Univ., 1982) 332–345.
  8. G. Chartrand, L. Eroh, M.A. Jhonson and O.R. Oellermann, Resolvability in graphs and the metric dimenson of a graph, Discrete Appl. Math. 105 (2000) 99–113.
    https://doi.org/10.1016/S0166-218X(00)00198-0
  9. G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, 6th Ed. (Chapman & Hall, London, 2016).
    https://doi.org/10.1201/b19731
  10. G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs, Comput. Math. Appl. 39 (2000) 19–28.
    https://doi.org/10.1016/S0898-1221(00)00126-7
  11. G. Chartrand, V. Saenpholphat and P. Zhang, The independent resolving number of a graph, Math. Bohem. 128 (2003) 379–393.
    https://doi.org/10.21136/MB.2003.134003
  12. R.R. Davila, C. Fast, M.A. Henning and F. Kenter, Lower bounds on the distance domination number of a graph, Contrib. Discrete Math. 12 (2017).
    https://doi.org/10.11575/cdm.v12i2.62487
  13. A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, On the $($k,t$)$-metric dimension of graphs, Comput. J. 64 (2021) 707–720.
    https://doi.org/10.1093/comjnl/bxaa009
  14. R.M. Frongillo, J. Geneson, M.E. Lladser, R.C. Tillquist and E. Yi, Truncated metric dimension for finite graphs, Discrete Appl. Math. 320 (2022) 150–169.
    https://doi.org/10.1016/j.dam.2022.04.021
  15. J. Geneson and E. Yi, The distance-k dimension of graphs (2021).
    arXiv: 2106.08303v2
  16. A. González, C. Hernando and M. Mora, Metric-locating-dominating sets of graphs for constructing related subsets of vertices, Appl. Math. Comput. 332 (2018) 449–456.
    https://doi.org/10.1016/j.amc.2018.03.053
  17. F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
  18. M.A. Henning, Distance domination in graphs, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer, Cham 2020) 205–250.
    https://doi.org/10.1007/978-3-030-51117-3\_7
  19. M.A. Henning, Distance domination in graphs, in: Domination in Graphs: Advanced Topics, T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (Ed(s)), (Marcel Dekker, Inc. New York 1998) 321–349.
    https://doi.org/10.1201/9781315141428
  20. M.A. Henning and O.R. Oellermann, Metric-locating-dominating sets in graphs, Ars Combin. 73 (2004) 129–141.
  21. M.A. Henning, O.R. Oellermann and H.C. Swart, Relating pairs of distance domination parameters, J. Combin. Math. Combin. Comput. 18 (1995) 233–244.
  22. C. Hernando, M. Mora and I.M. Pelayo, Nordhaus-Gaddum bound for locating domination, European J. Combin. 36 (2014) 1–6.
    https://doi.org/10.1016/j.ejc.2013.04.009
  23. C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin. 17 (2010) #R30.
    https://doi.org/10.37236/302
  24. M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs, Discrete Math 312 (2012) 3349–3356.
    https://doi.org/10.1016/j.disc.2012.07.025
  25. S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229.
    https://doi.org/10.1016/0166-218X(95)00106-2
  26. D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329–343.
    https://doi.org/https://doi.org/10.1137/0211025
  27. A. Lobstein, O. Hudry and I. Charon, Locating-domination and identification, in: Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)), (Springer, Cham 2020) 251–299.
    https://doi.org/10.1007/978-3-030-51117-3\_8
  28. A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61(1) (1975) 225–233.
    https://doi.org/10.2140/pjm.1975.61.225
  29. V. Saenpholphat and P. Zhang, Connected resolvability of graphs, Czechoslovak Math. J. 53 (2003) 827–840.
    https://doi.org/10.1023/B:CMAJ.0000024524.43125.cd
  30. P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.
  31. P.J. Slater, $R$-domination in graphs, J. ACM 23 (1976) 446–450.
    https://doi.org/10.1145/321958.321964
  32. R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Getting the lay of the land in discrete space: A survey of metric dimension and its applications (2021).
    arXiv: 2104.07201
  33. R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Truncated metric dimension for finite graphs (2021).
    arXiv: 2106.14314v1
  34. D.A.R. Wardani, M.I. Utoyo, Dafik and K. Dliou, The distance $2$-resolving domination number of graphs, J. Phys. Conf. Ser. 1836 (2021) 012017.
    https://doi.org/10.1088/1742-6596/1836/1/012017

Close