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Abstract

For k ≥ 1, in a graph G = (V, E), a set of vertices D is a distance k-
dominating set of G, if any vertex in V \ D is at distance at most k from
some vertex in D. The minimum cardinality of a distance k-dominating set
of G is the distance k-domination number, denoted by γk(G). An ordered
set of vertices W = {w1, w2, . . . , wr} is a resolving set of G, if for any
two distinct vertices x and y in V \ W , there exists 1 ≤ i ≤ r such that
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dG(x, wi) 6= dG(y, wi). The minimum cardinality of a resolving set of G is
the metric dimension of the graph G, denoted by dim(G). In this paper,
we introduce the distance k-resolving dominating set which is a subset of
V that is both a distance k-dominating set and a resolving set of G. The
minimum cardinality of a distance k-resolving dominating set of G is called
the distance k-resolving domination number and is denoted by γr

k(G). We
give several bounds for γr

k(G), some in terms of the metric dimension dim(G)
and the distance k-domination number γk(G). We determine γr

k(G) when
G is a path or a cycle. Afterwards, we characterize the connected graphs
of order n having γr

k(G) equal to 1, n − 2, and n − 1, for k ≥ 2. Then,
we construct graphs realizing all the possible triples (dim(G), γk(G), γr

k(G)),
for all k ≥ 2. Later, we determine the maximum order of a graph G having
distance k-resolving domination number γr

k(G) = γr
k ≥ 1, we provide graphs

achieving this maximum order for any positive integers k and γr
k. Then, we

establish Nordhaus-Gaddum bounds for γr
k(G), for k ≥ 2. Finally, we give

relations between γr
k(G) and the k-truncated metric dimension of graphs

and give some directions for future work.

Keywords: resolving set, metric dimension, distance k-domination, dis-
tance k-resolving domination.
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1. Introduction

In this paper, we study finite, simple, and undirected graphs. For graph termi-
nology, we refer to [9].

In 1975, Meir and Moon [28] studied a combination of two concepts distance
and domination in graphs. For k ≥ 1, we call a distance k-dominating set in
a graph G = (V, E), a subset D of the vertex set V such that for any vertex
v ∈ V \ D, we have dG(v, D) = min{dG(v, x) : x ∈ D} ≤ k, where dG(v, x)
is the distance in G between the vertex v and x. The minimum cardinality
overall distance k-dominating sets of G, is the distance k-domination number
and is denoted by γk(G). When k = 1, the distance 1-domination number is
the well-known domination number of the graph denoted by γ(G). Distance
k-dominating sets find multiple applications in problems involving graphs like
communication networks [31], geometric problems [26], facility location problems
[19]. Results about this well-studied concept can be found surveyed in a recent
book chapter [18].

Another concept associated with distance in graphs is resolvability and the
metric dimension of graphs, introduced by Harary and Melter [17] and Slater
[30]. Let W = {w1, w2, . . . , wr} be an ordered set of vertices in a graph G,
the metric representation of v with respect to W is the r-vector c(v|W ) =
(dG(v, w1), dG(v, w2), . . . , dG(v, wr)). The set W is a resolving set of G, if for
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every two distinct vertices v, u ∈ V \ W , c(v|W ) 6= c(u|W ). The minimum cardi-
nality of a resolving set of G is the metric dimension of G, and is denoted dim(G).
Due to their important role from both a theoretical and a practical point of view,
resolving sets and the metric dimension of graphs attracted attention these past
years (see surveys [2, 32]). Resolving sets find many applications in several areas
like network verification [3], robot navigation [25], pharmaceutical chemistry [8],
coin weighing problems, Mastermind game (see references in [6, 23]) and more.

The problems of finding γk(G) and dim(G) are both NP-Hard problems in
general, see respectively [7] and [25].

To join the utility of resolving sets and distance k-dominating sets, we study
a set satisfying the two properties.

Definition 1.1. A distance k-resolving dominating set is a set S ⊆ V , where S
is both a resolving set and a distance k-dominating set of G. The distance k-
resolving domination number, denoted by γr

k(G), is the minimum cardinality of a
distance k-resolving dominating set of G, i.e., γr

k(G) = min{|S| : S is a distance
k-resolving dominating set of G}.

A situation where the uses of resolving sets and distance k-dominating sets
are both needed could represent a possible application of distance k-resolving
dominating sets. For example, consider a network of vehicles. We want to identify
the position of each vehicle, where the detection range within the network is
not limited, and every position must be within a specific distance of a station
that provides a service, such as energy supply or maintenance. The distance
k-resolving dominating sets are required.

Resolving sets that satisfy additional properties are known and studied. For
example, independent resolving set [11], is a resolving set that is also an indepen-
dent set. Connected resolving set [29], is a resolving set that is also a connected
set. For k = 1, the distance 1-resolving dominating set is a resolving set that
is also a dominating set, the minimum cardinality of such set was first stud-
ied under the name of resolving domination number in [4], while it appeared as
metric-location-domination number in [20]. More studies were done about that
case relating it with other graph parameters, see for example [5, 16, 22]. Here we
use the name resolving domination number and denote by γr(G).

For k ≥ 1 and v, u ∈ V , let dk(v, u) = min{dG(v, u), k + 1}. A variation of
the metric dimension that could be related to γr

k(G) is the k-truncated metric di-
mension, dimk(G), defined as the minimum cardinality of a k-truncated resolving
set of G, which is a set W ⊆ V verifying for any two distinct vertices v, u ∈ V ,
there exists a vertex x in W such that dk(v, x) 6= dk(u, x). The k-truncated
metric dimension was first studied when k = 1 in [24], also called adjacency di-
mension, where it was used to investigate the metric dimension of lexicographic
product of graphs. For k ≥ 1, the k-truncated metric dimension coincides with
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the (1, k + 1)-metric dimension of graphs in [13]. Results on dimk(G) can be
found in [14, 15, 33].

In Section 2, we give sharp bounds for γr
k(G) in terms of the metric dimension,

the distance k-domination number, the order, the diameter, the radius, and the
girth of the graph. Also, we give the distance k-resolving domination number of
the families of paths and cycles. In Section 3, for all k ≥ 1, we show that γr

k(G) is
equal to 1 if and only if G is a path of order at most k +1. For k ≥ 2, we show an
equivalence between γr

k(G) and dim(G), which we use to characterize all graphs of
order n having γr

k(G) equal to n − 1 and n − 2. In Section 4, we determine all the
realizable triples of positive integers (β, γ, α) by a graph G having dim(G) = β,
γk(G) = γ, and γr

k(G) = α when k ≥ 2, in particular the graphs we construct
realizing these values are all trees. In Section 5, for all k ≥ 1, we show that a
graph G having distance k-resolving domination number γr

k(G) = γr
k ≥ 1, has a

maximum order of γr
k +γr

k

∑k
p=1(2p+1)γr

k
−1. Also, we construct graphs attaining

this maximum order for any arbitrary positive integers k and γr
k. Section 6 is

devoted to Nordhaus-Gaddum bounds for the distance k-resolving domination
number of graphs for k ≥ 2. Finally, in Section 7, we discuss relations between
γr

k(G) and dimk(G), we then conclude with some open questions.

2. Preliminary Results and Bounds for γr
k(G)

Every superset of a distance k-dominating set is a distance k-dominating set.
It is true also for resolving sets. This means that every superset of a distance
k-resolving dominating set is also a distance k-resolving dominating set. We give
the following bounds that extend bounds given for k equal to 1 and 2, in [5] and
[34] respectively to all k ≥ 1.

Proposition 2.1. Let G be a connected graph of order n ≥ 2. For k ≥ 1, we
have

max{γk(G), dim(G)} ≤ γr
k(G) ≤ min{γk(G) + dim(G), n − 1}.

Proof. Let S be a minimum distance k-resolving dominating set of G. Since S
is both a resolving set and a distance k-dominating set, then dim(G) ≤ |S|, and
γk(G) ≤ |S|. Thus max{γk(G), dim(G)} ≤ γr

k(G).
Let D and W be respectively a minimum distance k-dominating set and

a minimum resolving set of G. The set S = D ∪ W is a distance k-resolving
dominating set of cardinality |S| = γk(G) + dim(G). Also, any subset of V of
cardinality n − 1 is both a resolving set and a distance k-dominating set. Then
we have γr

k(G) ≤ min{γk(G) + dim(G), n − 1}.

For any two positive integer k and k′ such that k ≥ k′ ≥ 1, every distance k′-
dominating set is a distance k-dominating set. Therefore any distance k′-resolving
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dominating set is a distance k-resolving dominating set.

Observation 2.2. For k ≥ k′ ≥ 1, if G is a connected graph, then we have
dim(G) ≤ γr

k(G) ≤ γr
k′(G) ≤ γr(G).

The eccentricity of a vertex v in G is the maximum distance between v
and any other vertex in G. The maximum and minimum eccentricity in G are
respectively the diameter and the radius of G denoted respectively diam(G) and
rad(G).

Lemma 2.3. Let G be a connected graph. For k ≥ diam(G), γr
k(G) = dim(G).

Proof. If k ≥ diam(G), then any non-empty set of vertices in V is a distance
k-dominating set. Hence any resolving set is also a distance k-dominating set of
G. Therefore, γr

k(G) ≤ dim(G). From Proposition 2.1 it follows that γr
k(G) =

dim(G).

Let Pn denote the path graph with V (Pn) = {1, 2, . . . , n} and E(Pn) =
{i(i + 1) : 1 ≤ i ≤ n − 1}. It is proved that dim(Pn) = 1 [8], and for k ≥ 1,
γk(Pn) =

⌈
n

2k+1

⌉
[12]. The values of the distance k-resolving domination number

of Pn for k equal to 1 and 2 are given respectively in [4] and [34]. In the following
we give γr

k(Pn) for all k ≥ 1.

Proposition 2.4. For k ≥ 1 and n ≥ 2,

γr
k(Pn) =







1, if k ≥ n − 1,
2, if

⌊
n
2

⌋
≤ k ≤ n − 2,

⌈
n

2k+1

⌉

, if 1 ≤ k ≤
⌊

n
2

⌋
− 1.

Proof. In [8], we have dim(Pn) = 1. So by Proposition 2.1, γk(Pn) ≤ γr
k(Pn) ≤

γk(Pn) + 1. Also, for 1 ≤ i, j ≤ n, with i 6= j, we have dPn(i, j) = |i − j|. Then
any resolving set of cardinality 1 must be {1} or {n}.

• For k ≥ n − 1, since diam(Pn) = n − 1, it follows from Lemma 2.3 that
γr

k(Pn) = dim(Pn) = 1.

• For
⌊

n
2

⌋
≤ k ≤ n − 2, based on [12] γk(Pn) = 1, then γr

k(Pn) is equal to
1 or 2. It is clear that an end-vertex is not distance k-dominating. Thus,
γr

k(Pn) = γk(Pn) + 1 = 2.

• For 1 ≤ k ≤
⌊

n
2

⌋
− 1, in [12] we have γk(Pn) =

⌈
n

2k+1

⌉
≥ 2. Also, any set S

consisting of two or more distinct vertices in V (Pn) is a resolving set of Pn.
Thus, γr

k(Pn) = γk(Pn) =
⌈

n
2k+1

⌉
.

The path Pn is a graph achieving the bounds in Proposition 2.1. For k ≥ n−1,
we have γr

k(Pn) = dim(Pn). For 1 ≤ k ≤
⌊

n
2

⌋
− 1, γr

k(Pn) = γk(Pn), and for
⌊

n
2

⌋
≤ k ≤ n − 2, γr

k(Pn) = γk(Pn) + dim(Pn).
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Let Cn denote the cycle graph with n ≥ 3, where V (Cn) = {0, 1, . . . , n − 1}
and E(Cn) = {i(i + 1) (mod n) : 0 ≤ i ≤ n − 1}. We have dim(Cn) = 2 [10], and
for k ≥ 1, γk(Cn) =

⌈
n

2k+1

⌉
[12].

Proposition 2.5. For k ≥ 1 and n ≥ 3,

γr
k(Cn) =







2, if 4k + 1 ≥ n,
3, if 4k + 2 = n,
⌈

n
2k+1

⌉

, if 4k + 3 ≤ n.

Proof. We have dCn(i, j) = min{|i − j|, n − |i − j|}.

Claim 2.6. For n ≥ 2k + 2 and n 6= 4k + 2, the set of vertices W = {0, 2k + 1}
is a resolving set of Cn.

Proof. Let i, j ∈ V (Cn) \ W , with i 6= j. If dCn(i, 0) 6= dCn(j, 0), then S is a
resolving set. We suppose that dCn(i, 0) = dCn(j, 0), then either dCn(i, 0) = i
and dCn(j, 0) = n − j or dCn(i, 0) = n − i and dCn(j, 0) = j. Without loss of
generality we suppose that dCn(i, 0) = i and dCn(j, 0) = n − j, which means that
i+j = n. If dCn(i, 2k+1) = dCn(j, 2k+1), then min{|2k+1−i|, n−|2k+1−i|} =

min{|2k + 1 − j|, n − |2k + 1 − j|}. Since min{x, y} = x+y−|x−y|
2 , it follows that

|n − 2(|2k + 1 − i|)| = |n − 2(|2k + 1 − j|)|.
We suppose that n − 2|2k + 1 − i| = n − 2|2k + 1 − j|, which means that

|2k + 1 − i| = |2k + 1 − j|. Since i 6= j, necessarly 2k + 1 − i = j − 2k − 1. It
follows that i + j = 4k + 2 = n, a contradiction since n 6= 4k + 2.

Otherwise if n−2|2k+1−i| = 2|2k+1−j|−n, then n = |2k+1−i|+|2k+1−j|.
If |2k+1−i| = 2k+1−i and |2k+1−j| = 2k+1−j, then n = 2k+1−i+2k+1−j.
Assuming that i + j = n, it means that n = 2k + 1, a contradiction.

Now if |2k + 1 − i| = i − (2k + 1) and |2k + 1 − j| = j − (2k + 1), then
n = i + j − 2(2k + 1). Since i + j = n, it means that k = 0, a contradiction.

Finally if |2k + 1 − i| = i − (2k + 1) or |2k + 1 − j| = j − (2k + 1), we suppose
that |2k + 1 − i| = i − (2k + 1) and |2k + 1 − j| = 2k + 1 − j. Then we get that
n = i − j, again a contradiction.

It follows that dCn(i, 2k + 1) 6= dCn(j, 2k + 1). So for i, j ∈ V (Cn) \ W , if
i 6= j, then c(i|W ) 6= c(j|W ).

• If 2k + 1 ≥ n, then k ≥ diam(Cn). By Lemma 2.3, γr
k(Cn) = dim(Cn). Since

dim(Cn) = 2, we have γr
k(Cn) = 2.

If 4k + 1 ≥ n ≥ 2k + 2, we have γr
k(Cn) ≥ dim(Cn) = 2. From Claim 2.6, the

set {0, 2k + 1} is a resolving set of Cn, it is also a distance k-dominating set of
Cn for 4k + 1 ≥ n ≥ 2k + 2. Therefore γr

k(Cn) = 2.

• If 4k + 2 = n, based on [12] we have γk(C4k+2) = 2, then by Proposition 2.1,
γr

k(C4k+2) ≥ 2. By using contradiction we suppose that γr
k(C4k+2) = 2, and let
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S be a distance k-resolving dominating set of cardinality 2. Since all the vertices
have degree 2, if a vertex i is in a distance k-dominating set of cardinality 2, then
the set contains necessarily i + 2k + 1 (mod n). Since the cycle Cn is vertex-
transitive, we suppose without loss of generality that S = {0, 2k + 1}. If we take
the vertices 1 and 4k + 1, then clearly c(1|S) = c(4k + 1|S). It follows that S is
not a resolving set of C4k+2. Hence γr

k(C4k+2) > 2.
Now, let us consider the set S = {0, 1, 2k+1}, we will show first that {0, 1} ⊂

S is a resolving set of C4k+2. For i ∈ V (Cn)\S, we have c(i|{0, 1}) = (min{i, n−
i}, min{i−1, n− i+1}). For i, j ∈ V (Cn)\S, if c(i|{0, 1}) = c(j|{0, 1}), it means
that min{i, n−i} = min{j, n−j} and min{i−1, n−i+1} = min{j −1, n−j +1}.

Since min{x, y} = x+y−|x−y|
2 , it follows that |n − 2i| = |n − 2j| and |n − 2(i −

1)| = |n − 2(j − 1)|. Assuming that i 6= j, then necessarily n − 2i = 2j − n
and n − 2(i − 1) = 2(j − 1) − n, which is impossible. Then if i 6= j, we have
c(i|{0, 1}) 6= c(j|{0, 1}). Therefore {0, 1} is a resolving set of C4k+2.

Since {0, 2k + 1} is a distance k-dominating set of C4k+2, it follows that
S = {0, 1, 2k + 1} is a distance k-resolving dominating set of C4k+2. Therefore
γr

k(C4k+2) = 3.

• If 4k + 3 ≤ n, in [12] we have γk(Cn) =
⌈

n
2k+1

⌉
. Let us consider the set

S =
{
i(2k +1) : 0 ≤ i ≤

⌈
n

2k+1

⌉
−1

}
, we have |S| =

⌈
n

2k+1

⌉
. Claim 2.6 shows that

the set {0, 2k + 1} ⊂ S is a resolving set of Cn. Also, it is easy to see that the
set S is a distance k-dominating set of Cn. It follows that γr

k(Cn) =
⌈

n
2k+1

⌉
.

Proposition 2.7. For k ≥ 1, let G be a connected graph such that rad(G) ≤ k
or diam(G) = k + 1. Then we have dim(G) ≤ γr

k(G) ≤ dim(G) + 1.

Proof. Let G be a connected graph with rad(G) ≤ k. This means that γk(G) =
1. Then by Proposition 2.1, we have dim(G) ≤ γr

k(G) ≤ dim(G) + 1.
If diam(G) = k + 1, let W ⊂ V be a minimum resolving set of G. Let

v ∈ V \ domk(W ), where domk(W ) = {v ∈ V : dG(v, W ) ≤ k}. Then v must be
at distance greater or equal to k + 1 from all the vertices of W . Since diam(G) =
k+1, the only possible metric representation with respect to W of a vertex v such
that dG(v, W ) ≥ k + 1, is a vector having k + 1 as a value in all its coordinates.
Since W is a resolving set, then there is at most one such vertex in G. Hence,
dim(G) ≤ γr

k(G) ≤ dim(G) + 1.

For all k ≥ 1 both bounds in Proposition 2.7 can be achieved. For
⌊

n
2

⌋
≤

k ≤ n − 2, the graph Pn has rad(Pn) ≤ k, from Proposition 2.4, γr
k(Pn) =

dim(Pn)+1. From Lemma 2.3, if rad(G) ≤ diam(G) ≤ k, then for any G we have
γr

k(G) = dim(G). The cycle graphs C2k+2 or C2k+3 according to Proposition 2.5
are examples of graphs with diam(G) = k + 1 having γr

k(G) = dim(G). Also
from Proposition 2.4, the path Pk+2 is a graph of diam(G) = k + 1 having
γr

k(G) = dim(G) + 1.
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Lemma 2.8 [21]. For k ≥ 1, let G be a connected graph of order n ≥ k + 1 and
diameter diam(G) ≥ k. Then there exists a minimum distance k-dominating set
D of G satisfying for every vertex v ∈ D there is a vertex x ∈ V \ D such that
dG(v, x) = k and Nk(x) ∩ D = {v}.

The following upper bound proved for dim(G) in [4] is true also for γr
k(G),

the proofs are similar.

Proposition 2.9. For k ≥ 1, let G be a connected graph of order n ≥ k + 1 with
diam(G) ≥ k. Then γr

k(G) ≤ n − kγk(G), and this upper bound is achieved for
any positive integers k and γk(G).

Proof. Suppose that γk(G) = γ. Based on Lemma 2.8, let us consider D =
{1, 2, . . . , γ} a minimum distance k-dominating set such that for all 1 ≤ i ≤ γ,
there exists a vertex wi,k verifying that dG(i, wi,k) = k, and for j 6= i, dG(j, wi,k) >
k. Now let Pi = iwi,1wi,2 · · · wi,k be a shortest (i, wi,k)-path. We can see that for
1 ≤ p ≤ k, we have dG(i, wi,p) = p and dG(j, wi,p) > p. For any two different
vertices wi,p, wj,q, with 1 ≤ i, j ≤ γ and 1 ≤ p, q ≤ k, we will check the vector of
distances with respect to the set D, we discuss the following two cases.

(i) If i 6= j, we suppose without loss of generality that q ≥ p. We have
dG(i, wi,p) = p and dG(i, wj,q) ≥ q + 1 > p.

(ii) If i = j and p 6= q, we have dG(i, wi,p) = p and dG(i, wi,q) = q 6= p.

It follows that the set D resolves all the vertices wi,p, where 1 ≤ i ≤ γ, and
1 ≤ p ≤ k. Then the set S = V \

⋃γ
i=1{wi,j}k

j=1 is both a distance k-dominating

set and a resolving set. Hence γr
k(G) ≤ |S| = |V \

⋃γ
i=1{wi,j}k

j=1| = n − kγ =
n − kγk(G).

The family of trees {Tγ : γ ≥ 1} illustrated as an example in Figure 1
has γr

k(Tγ) = n − kγ, for k, γ ≥ 1, where γk(Tγ) = γ. We have any distance k-
dominating set in Tγ must contain at least one vertex in each branch iwi,1 · · · wi,k,
with 1 ≤ i ≤ γ. Also, the set of vertices {1, 2, . . . , γ} is a distance k-dominating
set of Tγ . Then clearly γk(Tγ) = γ. We can check as above that the set of
vertices {1, 2, . . . , γ} is a resolving set of Tγ . It follows from Proposition 2.1
that it is a minimum distance k-resolving dominating set of Tγ of cardinality
n − kγ = n − kγk(Tγ).

For a connected graph G of order n and diameter d, we have dim(G) ≤ n − d
[8]. The graphs achieving equality are characterized in [23]. This type of bound
involving the order and the diameter of the graph was provided for the resolving
domination number in [5]. We give a general upper bound for all k ≥ 1.
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1 2 γ

wγ,1w2,1

w2,2

w2,k

w1,1

w1,2

w1,k

wγ,2

wγ,k

Figure 1. Tree graph Tγ having γr
k(Tγ) = n − kγk(Tγ).

Proposition 2.10. For k ≥ 1, let G be a connected graph of order n and diameter
d. Then

γr
k(G) ≤







n − d, if d ≤ k,
n − d + 1, if k + 1 ≤ d ≤ 2k,

n − d +
⌊

d
2k+1

⌋
, if d ≥ 2k + 1.

These bounds are sharp.

Proof. Let P = (0, 1, . . . , d) be a diametral path in G, i.e., P is a shortest path
of length d. For any two vertices i and j in P , we have dG(i, j) = |i − j|.

If d ≤ k, then by Lemma 2.3, γr
k(G) = dim(G). Based on [8], we have

γr
k(G) ≤ n − d.

If k + 1 ≤ d ≤ 2k, we consider the set of vertices {k, d}. For 0 ≤ l, m ≤ d − 1,
with l 6= m, we have dG(l, d) = |l − d| 6= |m − d| = dG(m, d). Also, for any
0 ≤ l ≤ d, we have dG(l, k) = |l − k| ≤ k. This means that the set {k, d} is
resolving and distance k-dominating of the vertices i /∈ {k, d}. Now, let S′ =
V \{i : i /∈ {k, d}}. Then S′ is a distance k-resolving dominating set of G. Hence,
γr

k(G) ≤ |S′| = n − d + 1.

If d ≥ 2k + 1, let us consider the set of vertices S = {k, k + (2k + 1), . . . , k +
j(2k + 1), . . . , min{k +

⌊
d

2k+1

⌋
(2k + 1), d}}. Let l be a vertex in P \ S. If min{k +

⌊
d

2k+1

⌋
(2k + 1), d} = k +

⌊
d

2k+1

⌋
(2k + 1), then either k +

⌊
d

2k+1

⌋
(2k + 1) < l ≤ d

or there exists 1 ≤ i ≤
⌊

d
2k+1

⌋
such that k + (i − 1)(2k + 1) < l < k + i(2k + 1),

or 0 ≤ l < k. In all those cases there exists a vertex in S at distance less or
equal to k from l. The same can be observed when min{k +

⌊
d

2k+1

⌋
(2k + 1), d} =

d. Furthermore, since |S| ≥ 2 and for 0 ≤ i, j ≤ d, dG(i, j) = |i − j|, it is
straightforward that S resolves the vertices in P \ S.

If we consider the set S′ = V \ {P \ S}, then S′ is a distance k-resolving
dominating set of the graph G. Hence, γr

k(G) ≤ |S′| = n − d +
⌊

d
2k+1

⌋
.
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The graph path Pn has diameter n − 1. From Proposition 2.4 it is a graph
achieving the upper bound n − d for n ≤ k + 1. It achieves the upper bound
n − d + 1 when k + 2 ≤ n ≤ 2k + 1. The path graph Pn also achieves the upper
bound n − d +

⌊
d

2k+1

⌋
when n ≥ 2k + 2.

If k = 1, for a connected graph of diameter d ≥ 3, the upper bound in Propo-
sition 2.10 is precisely the bound given in terms of the order and the diameter in
[5].

The girth of the graph is the length of a shortest cycle in the graph. The
following lower bounds proved in [12] for γk(G) holds also for γr

k(G) and they are
achieved.

Proposition 2.11. For k ≥ 1, let G be a connected graph having diameter d,
radius r, and girth g. Then we have

(1) γr
k(G) ≥ d+1

2k+1 ;

(2) γr
k(G) ≥ 2r

2k+1 ;

(3) γr
k(G) ≥ g

2k+1 , if g < ∞.

These bounds are sharp.

Proof. In [12], it is shown that if G is a connected graph of diameter d, then
γk(G) ≥ d+1

2k+1 . In the same paper we have if G has radius r, then γk(G) ≥ 2r
2k+1 .

Also in [12], for a connected graph of girth g < ∞, we have γk(G) ≥ g
2k+1 . Since

γr
k(G) ≥ γk(G), the above lower bounds for γk(G) are true also for γr

k(G).
Some graphs in Proposition 2.4 and 2.5 are examples of graphs attaining

these bounds. In (1) consider the path graph of order n = p(2k + 1) for p ≥ 2,
since d = n−1, we get that γr

k(G) = d+1
2k+1 . In (2) consider the path graph of order

n = 2p(2k +1). We have r = p(2k +1), then from proposition 2.4, γr
k(G) = 2r

2k+1 .
In (3) take a cycle graph of order n = p(2k + 1) for p ≥ 3, since g = n, then this
is a graph having γr

k(G) = g
2k+1 .

3. Graphs with γr
k(G) Equal to 1, n − 2, and n − 1

Further, let Kn denote the complete graph on n vertices, and let Ks,t with s, t ≥ 1
denote the complete bipartite graph. For two graphs G1 and G2 the disjoint union
of G1 and G2, denoted by G1 ∪ G2, is the graph with vertex set V (G1 ∪ G2) =
V (G1)∪V (G2) and edge set E(G1 ∪G2) = E(G1)∪E(G2). The join graph of G1

and G2, denoted by G1 + G2, is the graph obtained from G1 ∪ G2 by joining each
vertex from V (G1) to each vertex in V (G2). We denote by G the complement
graph of G.

Theorem 3.1 [8]. For a connected graph G of order n ≥ 2, we have the following.
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• dim(G) = 1 if and only if G ∼= Pn.

• If n ≥ 4, then dim(G) = n−2 if and only if G ∈ {Ks,t(s, t ≥ 1), Ks +Kt(s ≥
1, t ≥ 2), Ks + (K1 ∪ Kt)(s, t ≥ 1)}.

• dim(G) = n − 1 if and only if G ∼= Kn.

In a connected graph G of order n ≥ k + 1, any subset of V of order greater
or equal to n − k is a distance k-dominating set.

Lemma 3.2. Let k ≥ 2. For 1 ≤ i ≤ k, if G is a connected graph of order n ≥
i + 2 that is not a path graph, then γr

k(G) = n − i if and only if dim(G) = n − i.

Proof. For all 1 ≤ i ≤ k, if dim(G) = n − i, any subset of V of cardinality
n − i ≥ n − k is a distance k-dominating set. Then a resolving set of cardinality
dim(G) = n− i is also a distance k-dominating set. Therefore γr

k(G) = dim(G) =
n − i.

Conversely, if γr
k(G) = n − i, by Proposition 2.1, we have dim(G) ≤ n − i.

If n = i + 2, then γr
k(G) = n − i = 2. It follows that dim(G) is equal to 1 or

2. Based on Theorem 3.1, the only graphs with dim(G) = 1 are path graphs, it
follows that dim(G) = 2.

If n ≥ i + 3, we suppose that dim(G) < n − i. If i ≤ k − 1, then a resolving
set of cardinality n − (i + 1) ≥ n − k is also a distance k-dominating set. Thus
γr

k(G) ≤ n − (i + 1), which is impossible. Now if i = k, let W ⊆ V be a resolving
set of cardinality n−(k+1), and let us denote 1, 2, . . . , k + 1 the vertices in V \W .
Assuming that γr

k(G) = n − k, then there is at least one vertex v in V \ W such
that dG(v, W ) = k+1. Let w ∈ W be such that dG(v, w) = dG(v, W ) = k+1, and
let Q be a shortest (v, w)-path. Since dG(v, w) = dG(v, W ), and G is a connected
graph, the only vertex in W ∩Q is w. We have |Q| = k +2 and |W | = n− (k +1),
which means that the subgraph induced by the vertices 1, 2, . . . , k + 1 and w is the
path Q. Without loss of generality, we suppose that the path Q is (k +1)k · · · 1w.
Now, let S = (W \ {w}) ∪ {k}. We have dG(k, k + 1) = dG(k, k − 1) = 1,
dG(k, w) = k ≥ 2, and if k ≥ 3, for 1 ≤ j ≤ k − 2, we have dG(k, j) = k − j ≥ 2.
Also dG(k + 1, S \ {k}) ≥ k + 1, since G is a connected graph and n ≥ k + 3, then
there exists a vertex u ∈ S \ {k} such that either or both 1 and w are adjacent
to u. This means that dG(k − 1, u) ≤ k. It follows that S is a resolving set of G.
Since dG(k, i) ≤ k, for 1 ≤ i ≤ k + 1, i 6= k, and dG(k, w) = k, it means that the
set S is also a distance k-dominating set of G. Hence γr

k(G) ≤ |S| = n − (k + 1),
a contradiction. Therefore dim(G) = n − k.

By combining Theorem 3.1 and Lemma 3.2 with Proposition 2.4, we give the
following characterizations.

Theorem 3.3. For any graph G of order n ≥ 2, the following statements hold.

(a) For all k ≥ 1, γr
k(G) = 1 if and only if G ∈ {Pi}

k+1
i=2 .
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(b) If G is a connected graph of order n ≥ 4, γr
2(G) = n − 2 if and only if

G ∈ {P4, Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥ 2), Ks + (K1 ∪ Kt)(s, t ≥ 1)}. For
all k ≥ 3, γr

k(G) = n−2 if and only if G ∈ {Ks,t(s, t ≥ 1), Ks +Kt(s ≥ 1, t ≥
2), Ks + (K1 ∪ Kt)(s, t ≥ 1)}.

(c) If G is a connected graph, for any k ≥ 2, γr
k(G) = n−1 if and only if G ∼= Kn.

Proof. (a) For k ≥ 1, if γr
k(G) = 1, then G is a connected graph and from

Proposition 2.1, dim(G) = 1. The equivalence is completed by Theorem 3.1 and
Proposition 2.4.

(b) If G is a connected graph of order n ≥ 4 different from a path graph, then
by Lemma 3.2 we have γr

k(G) = n−2 if and only if dim(G) = n−2. Which means
by Theorem 3.1 that it is equivalent to G ∈ {Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥
2), Ks + (K1 ∪ Kt)(s, t ≥ 1)}. From Proposition 2.4, we have γr

k(Pn) = n − 2,
it occurs only when k = 2 and n = 4. Then γr

2(G) = n − 2 if and only if
G ∈ {P4, Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥ 2), Ks + (K1 ∪ Kt)(s, t ≥ 1)}. Also,
for k ≥ 3, γr

k(G) = n − 2 if and only if G ∈ {Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥
2), Ks + (K1 ∪ Kt)(s, t ≥ 1)}.

(c) The only connected graphs of order 2 and 3 are respectively K2 and P3

or K3. For k ≥ 2, from Proposition 2.4 and Theorem 3.1, we have γr
k(K2) = 1,

γr
k(P3) = 1, and γr

k(K3) = 2. If G has order n ≥ 4, then by Lemma 3.2 and
Theorem 3.1, we have γr

k(G) = n − 1 if and only if G ∼= Kn.

For k = 1, we have γr(G) = n − 1 if and only if G ∈ {K1,n−1, Kn} [4, 20].
The graphs having γr(G) equal to 2 and n − 2 are fully determined in [5] and
[20], respectively.

4. Realizable Values for dim(G), γk(G), and γr
k(G).

In Proposition 2.1, we have max{γk(G), dim(G)} ≤ γr
k(G) ≤ γk(G) + dim(G).

For k = 1, in [5] it is shown that for any three positive integers β, γ, and α,
verifiying that max{γ, β} ≤ α ≤ γ + β, and (β, γ, α) /∈ {(1, γ, γ + 1) : γ ≥ 2},
there is always a graph G having dim(G) = β, γ(G) = γ, and γr(G) = α. We
give a similar result for dim(G), γk(G), and γr

k(G), for all k ≥ 2.

The graph families we provide in Theorem 4.2 are all trees. To determine
γr

k(G) of some of these graphs, we will need the next formula for the metric
dimension of trees that appeared in [8, 17, 30]. We will recall some terminology
given in [8]. In a tree T for v ∈ V , if the degree deg(v) ≥ 3, then v is called a
major vertex. A leaf l, i.e., a vertex of degree one, in T is a terminal vertex of
a major vertex v, if v is the closest major vertex in terms of distance to l, i.e.,
for u a major vertex in T different from v, we have dT (v, l) < dT (u, l). If v is
a major vertex having at least one terminal vertex, then v is called an exterior
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major vertex. Let L(T ) and EX(T ) denote respectively the number of leaves and
the number of exterior major vertices in a tree T .

Theorem 4.1 [8, 17, 30]. If T is a tree that is not a path graph, then dim(T ) =
L(T )−EX(T ). Also, any resolving set of T must contain at least one vertex from
each branch at an exterior major vertex containing its terminal vertices with at
most one exception.

Theorem 4.2. For any three positive integers β, γ, and α such that max{γ, β} ≤
α ≤ γ + β and (β, γ, α) /∈ {(1, γ, γ + 1) : γ ≥ 2}, and for all k ≥ 2, there always
exists a tree graph T having dim(T ) = β, γk(T ) = γ, and γr

k(T ) = α. There is
no graph realizing the triples {(1, γ, γ + 1) : γ ≥ 2}.

Proof. Let β, γ, α ≥ 1 be such that max{γ, β} ≤ α ≤ γ + β. We discuss the
possible values for the triple (dim(G), γk(G), γr

k(G)) = (β, γ, α), according to the
following cases.

• If β = 1, then γ ≤ α ≤ γ + 1. Also by Theorem 3.1 we have the path graphs
are the only graphs having the metric dimension equal to 1. For k ≥ 2, in a
path graph any subset of vertices of order greater or equal to 2 is a resolving set.
Then if γ ≥ 2, we have α = γ. This means that the triple (1, γ, γ + 1) is not
realizable by any graph for γ ≥ 2. Also, according to Proposition 2.4 the path
graphs realizes the following cases. (i) If k + 1 ≥ n, then we have γ = β = α = 1.
(ii) If

⌊
n
2

⌋
≤ k ≤ n−2, then γ = β = 1 and α = 2 = γ +β. (iii) If 1 ≤ k ≤

⌊
n
2

⌋
−1,

then β = 1 < γ = α =
⌈

n
2k+1

⌉
≥ 2.

• If γ = 1, for any β ≥ 2, then we have β ≤ α ≤ β + 1. The star graph
K1,β+1 has γk(K1,β+1) = 1, and from Theorem 3.1 and Theorem 3.3 we have
γr

k(K1,β+1) = dim(K1,β+1) = β, for any k ≥ 2. This means that for k ≥ 2, the
triple (β, 1, β) is realized for all β ≥ 2. For the case of the triple (β, 1, β + 1),
we consider the spider tree graph, denoted by Sβ+1,k, having one vertex v0 of
degree β + 1 with β + 1 leaves li, 1 ≤ i ≤ β + 1, at distance k from v0. Note
that all the vertices of Sβ+1,k are of degree less or equal to 2 except v0. Clearly
γk(Sβ+1,k) = 1, and based on Theorem 4.1, we have dim(Sβ+1,k) = β. Also any
resolving set must contain at least one vertex in all but one of the (v0, li)-paths,
where 1 ≤ i ≤ β + 1. By using contradiction, we suppose that γr

k(Sβ+1,k) = β.
From Theorem 4.1, we consider that a minimum distance k-resolving dominating
set W of Sβ+1,k having cardinality β contains one vertex in any of the (v0, li)-
paths, with 1 ≤ i ≤ β. We have the vertex lβ+1 is at distance greater than k
from the vertices in W . This means that W is not a distance k-dominating set,
a contradiction. Hence, γr

k(Sβ+1,k) = β + 1.

• If β ≥ 2 and γ ≥ 2, with max(γ, β) ≤ α ≤ γ + β, then the realizable values for
the triple (β, γ, α) are considered depending on the following five subcases.
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(i) If 2 ≤ β = γ < α, then the trees T 1 =
{
T 1

k,m,l : m ≥ 0, l ≥ 1, k ≥ 2
}

in
Figure 2 illustrate graphs realizing this case.

Claim 4.3. We have γk(T 1
k,m,l) = dim(T 1

k,m,l) = m + l, and γr
k(T 1

k,m,l) = m + 2l.

Proof. Suppose that γk(T 1
k,m,l) = γ, dim(T 1

k,m,l) = β, and γr
k(T 1

k,m,l) = α. It

is clear that {vi}
m
i=1 ∪ {wi}

l
i=1 is a minimum distance k-dominating set. Then

γ = m + l. Based on Theorem 4.1, we have β = m + l, and for each 1 ≤ i ≤ l, a
resolving set must contain one vertex from the set of vertices {vi,j}k

j=0. Also, for
each 1 ≤ i ≤ m, a resolving set must contain one vertex from the set of vertices
{wi,j , w′

i,j}k
j=0. Now, let S be a minimum distance k-resolving dominating set

of cardinality α. We suppose without loss of generality, that S contain a vertex
from each {vi,j}k

j=0 with 1 ≤ i ≤ m, and one vertex from each {wi,j}k
j=0 with

1 ≤ i ≤ l. Since dG(wi, w′
i,k) = k, and for x /∈ {wi, w′

i,j} we have dG(x, w′
i,k) > k.

Then to be a distance k-dominating set, S must contain for each 1 ≤ i ≤ l, at
least wi or a vertex in {w′

i,j}k
j=0. Hence α ≥ m + 2l. It is easy to check that the

set of vertices {vi,1}m
i=1 ∪ {wi,k}l

i=1 ∪ {wi}
l
i=1 is a distance k-resolving dominating

set. Thus α ≤ m + 2l. It follows that α = m + 2l.

w1 vm v2
v1

v1,0

v1,2

v1,k

v2,0

v2,2

v2,k

vm,0

vm,2

vm,k

w2

w1,2

w1,k

w′

1,2

w′

1,k

v2,1 v1,1
vm,1w1,1

w′

1,1

w2,1

w′

2,1

w2,2

w′

2,2

w2,k

w′

2,k

wl

wl,1

w′

l,1

wl,2

w′

l,2

wl,k

w′

l,k

Figure 2. Tree T 1

k,m,l.

The proofs for the remaining cases use similar arguments as in the proof
of Claim 4.3. In the following, we only provide examples of minimum distance
k-dominating sets, minimum resolving sets, and minimum distance k-resolving
dominating sets for each family of trees.

(ii) If 2 ≤ γ ≤ β = α, then the family of trees T 2 =
{
T 2

k,m,l : m ≥ 1, l ≥ 1, k ≥ 2
}

represented in Figure 3 realizes this case. The set of vertices {vi}
m
i=1 ∪ {w} is a

minimum distance k-dominating set of cardinality m+1. Also, the set of vertices
{vi,1}m

i=1 ∪ {wi,1}l
i=1 is both a minimum resolving set and a minimum distance

k-resolving dominating set of cardinality m + l.
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w vm
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wl,1

Figure 3. Tree T 2

k,m,l.

(iii) If 2 ≤ β < γ = α, then the family of trees T 3 =
{
T 3

k,m,l : m ≥ 1, l ≥

1, k ≥ 2
}

represented in Figure 4 realizes this case. From Theorem 4.1, we
have dim(T 3

k,m,l) = m + 1. Also, the set {vi}
m
i=1 ∪ {wi}

l
i=1 ∪ {u} is a minimum

distance k-dominating set of T 3
k,m,l of cardinality m + l + 1. Finally, the set

{vi,1}m
i=1 ∪ {wi}

l
i=1 ∪ {u1} is a distance k-resolving dominating set of cardinality

m + l + 1. It follows that γr
k(T 3

k,m,l) = γk(T 3
k,m,l) = m + l + 1.
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vm,2

vm,k

w2
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v2,1 v1,1vm,1w1,1w2,1

w2,2
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wl,2

wl,k

u

u1

u2

uk
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Figure 4. Trees T 3

k,m,l.

(iv) If 2 ≤ γ < β < α, then the family of trees T 4 =
{
T 4

k,m,l,r : m ≥ 0, l ≥ 0,

r ≥ 3, k ≥ 2
}

represented in Figure 5 illustrates graphs realizing this case, where
(m, l) 6= (0, 0). The set of vertices {vi,k}m

i=1 ∪ {wi,k}l
i=1 ∪ {ui,k}r−1

i=1 is a minimum
resolving set of cardinality m+l+r−1. The set of vertices {vi}

m
i=1 ∪{wi}

l
i=1 ∪{u}

is a minimum distance k-dominating set of cardinality m + l + 1. The set of
vertices {vi,1}m

i=1∪{wi,k, wi}
l
i=1∪{ui,k}r−1

i=1 ∪{u} is a minimum distance k-resolving
dominating set of cardinality m + 2l + r.

(v) If 2 ≤ β < γ < α, then Figure 6 illustrates a family of trees T 5 =
{
T 5

k,m,l,r :

m ≥ 0, l ≥ 0, r ≥ 2, k ≥ 2
}

realizing this case, where (m, l) 6= (0, 0). The set
of vertices {vi,k}m

i=1 ∪ {wi,k}l
i=1 ∪ {ur,k} is a minimum resolving set of cardinality
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Figure 5. Tree T 4

k,m,l,r.

m + l + 1. The set of vertices {vi}
m
i=1 ∪ {wi}

l
i=1 ∪ {ui}

r
i=1 is a minimum distance

k-dominating set of cardinality m+l+r. The set of vertices {vi,1}m
i=1∪{wi,k}l

i=1∪
{wi}

l
i=1 ∪ {ui}

r
i=1 ∪ {ur,k} is a minimum distance k-resolving dominating set of

cardinality m + 2l + r + 1.
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Figure 6. Tree T 5

k,m,l,r.

5. Maximum Order Graphs

The maximum order n of a graph G having diameter d and metric dimension
dim(G) = β, was shown to be β + dβ [8, 25]. This was proved by considering
the maximum possible number of distinct metric representations with respect to
a minimum resolving set. But this maximum order is only achieved when d ≤ 3
or β = 1. Later, Hernando et al. [23] proved a stronger result by showing that

n ≤
(⌊

2d
3

⌋
+ 1

)β
+ β

⌈
d
3

⌉

∑

i=1
(2i − 1)β−1, where the maximum order is achieved for any

arbitrary positive integers d and β.
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Cáceres et al. [5] showed that for a graph G of order n having γr(G) = γr,
then n ≤ γr + γr · 3γr−1. They also provided graphs achieving this maximum
order. Next, we generalize this result for γr

k(G) for all k ≥ 1.

Theorem 5.1. For k ≥ 1, the maximum order of a connected graph G having
distance k-resolving domination number γr

k is γr
k + γr

k

∑k
p=1(2p + 1)γr

k
−1. This

maximum order is achieved for any k, γr
k ≥ 1.

Proof. Let G be a graph of order n and let S be a minimum distance k-resolving
dominating set of G. For any vertex x ∈ V \ S, let us consider vi a vertex in S
such that dG(x, vi) = p ≤ k. If γr

k(G) = γr
k ≥ 2, for any vertex vj from S different

from vi, the triangle inequality gives |dG(x, vj) − dG(vi, vj)| ≤ dG(x, vi) = p. It
follows that the metric representation of x with respect to S has the coordinate
corresponding to vi equal to p and for the other coordinates there are at most
2p + 1 possible values in each of the other γr

k − 1 coordinates. Therefore, there
are at most (2p + 1)γr

k
−1 possible metric representations of x with respect to the

set S. Since 1 ≤ p ≤ k, there are at most
∑k

p=1(2p + 1)γr
k

−1 distinct metric
representations for the vertices at distance less or equal to k from vi. Since
|S| = γr

k, we have n ≤ γr
k + γr

k

∑k
p=1(2p + 1)γr

k
−1.

Let k and γr
k be two arbitrary positive integers, we will prove that there

exists a graph having distance k-resolving domination number γr
k and order γr

k +
γr

k

∑k
p=1(2p + 1)γr

k
−1.

If γr
k = 1, then from Theorem 3.3 the graph G is a path graph of maximum

order k + 1, which coincides with the maximum order bound. If γr
k = r ≥ 2, we

consider the following subsets of Zr,

Q0 = {(0, 2k + 1, 2k + 1, . . . , 2k + 1), (2k + 1, 0, 2k + 1, . . . , 2k + 1), . . . ,

(2k + 1, 2k + 1, . . . , 2k + 1, 0)}.

For all 1 ≤ i ≤ r,

Qi = {(q1, q2, . . . , qr) : 1 ≤ qi ≤ k, and for j 6= i, 2k − qi + 1 ≤ qj ≤ 2k + qi + 1}.

Let Gr be the graph whose vertex set is V (Gr) =
⋃r

i=0 Qi. For which two vertices
q = (q1, q2, . . . , qr) and q′ = (q′

1, q′
2, . . . , q′

r) are adjacent if and only if |qj − q′
j | ≤ 1

for each 1 ≤ j ≤ r.

Claim 5.2. The graph Gr is a connected graph.

Proof. If qi,0, qj,0 ∈ Q0, where qi,0 has the i-th element equal to 0 and qj,0 has
the j-th element equal to 0, we construct a (qi,0, qj,0)-path as following,
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(2k + 1, . . . , 0
i
, 2k + 1, . . . , 2k + 1

j

, . . . , 2k + 1)(2k + 1, . . . , 1
i
, 2k + 1, . . . , 2k

j
, 2k + 1, . . . , 2k + 1)

(2k + 1, . . . , 2
i
, 2k + 1, . . . , 2k − 1

j

, 2k + 1, . . . , 2k + 1) . . . . . .

(2k + 1, . . . , k
i
, 2k + 1, . . . , k + 1

j

, 2k + 1, . . . , 2k + 1)(2k + 1, . . . , k + 1
i

, 2k + 1, . . . , k
j
, 2k + 1, . . . , 2k + 1)

(2k + 1, . . . , k + 2
i

, 2k + 1, . . . , k − 1
j

, 2k + 1, . . . , 2k + 1) . . . . . .

(2k + 1, . . . , 2k
i

, 2k + 1 . . . , 1
j
, 2k + 1 . . . , 2k + 1)(2k + 1, . . . , 2k + 1

i

, 2k + 1, . . . , 0
j
, 2k + 1, . . . , 2k + 1).

Also, for each 1 ≤ i ≤ r, if q = (q1, q2, . . . , qr) ∈ Qi, it is easy to see from the
definition of the adjacency in Gr, that there is a (q, qi,0)-path. Hence, the graph
Gr is a connected graph.

For 1 ≤ i ≤ r and q ∈ V (Gr) \ Q0, we denote Li(q) = (fi(q1), fi(q2), . . . ,
fi(qr)), where fi is an integer-valued function defined as following.

If q = (q1, q2, . . . , qr) ∈ Qs, with s 6= i.

• For j /∈ {s, i}, fi(qj) =







qj , if qj = 2k + 1,

qj − 1, if qj > 2k + 1,

qj + 1, if qj < 2k + 1.

• fi(qs) =

{

qs, if qs = k,

qs + 1, if qs < k or qi = k + 1.

• fi(qi) = qi − 1.

If q = (q1, q2, . . . , qr) ∈ Qi.

• For j 6= i, fi(qj) =







qj , if qj = 2k + 1,

qj − 1, if qj > 2k + 1,

qj + 1, if qj < 2k + 1.

• fi(qi) = qi − 1.

For t ≥ 1, we define Lt
i(q) with L1

i (q) = Li(q). For t ≥ 2, Lt
i(q) =

Li(L
t−1
i (q)) = (f t

i (q1), f t
i (q2), . . . , f t

i (qr)), where f t
i is the t-th iterated function of

fi, i.e., f t
i = fi ◦ fi ◦ · · · ◦ fi

︸ ︷︷ ︸

t times

.

Claim 5.3. For all 1 ≤ i ≤ r, for any vertex q = (q1, q2, . . . , qr) ∈ V (Gr) \ Q0,
we have Li(q) ∈ V (Gr). Also, Li(q) is adjacent in Gr to q, and Lqi

i (q) = q0,i.

Proof. Let q = (q1, q2, . . . , qr) ∈ V (Gr) \ Q0. For 1 ≤ i ≤ r, we have Li(q) =
(fi(q1), fi(q2), . . . , fi(qr)). If q ∈ Qs, where s 6= i, for j 6= s, we have 2k −qs +1 ≤
qj ≤ 2k + qs + 1 and 1 ≤ qs ≤ k. We discuss the membership of Li(q) according
to the following cases.

(i) If qs < k, then we have fi(qs) = qs + 1 ≤ k, fi(qi) = qi − 1 ≥ 2k − qs, and for
j /∈ {i, s}, 2k−qs+2 ≤ fi(qj) ≤ 2k+qs. So Li(q) = (fi(q1), fi(q2), . . . , fi(qr))
∈ Qs.
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(ii) If qs = k and qi > k + 1, then fi(qi) = qi − 1 ≥ k + 1, fi(qs) = k, and for
j /∈ {i, s}, k+1 ≤ fi(qj) ≤ 3k+1. So Li(q) = (fi(q1), fi(q2), . . . , fi(qr)) ∈ Qs.

(iii) If qi = k + 1, then qs = k. It follows that fi(qi) = k, fi(qs) = k + 1, and for
j /∈ {i, s}, k + 1 ≤ fi(qj) ≤ 3k + 1. Therefore, Li(q) ∈ Qi.

Now, if q ∈ Qi, from the definition of f it is easy to see that Li(q) ∈ Qi.
Hence, for any vertex q ∈ V (Gr) \ Q0, we have Li(q) ∈ V (Gr). Moreover, for
q ∈ V (Gr) \ Q0, and all 1 ≤ i, j ≤ r, we have |fi(qj) − qj | ≤ 1, f qi

i (qi) = 0, and
for j 6= i, f qi

i (qj) = 2k + 1. Thus, Li(q)q ∈ E(Gr), and Lqi

i (q) = q0,i.

Claim 5.4. For all 1 ≤ i ≤ r, for any vertex q = (q1, q2, . . . , qr) ∈ V (Gr) \ Q0,
dGr (q, q0,i) = qi.

Proof. Based on Claim 5.3 for 1 ≤ i ≤ r, we have qLi(q)L2
i (q) · · · Lqi

i (q) = q0,i

is a (q, q0,i)-path in Gr of length qi. Hence dGr (q, q0,i) ≤ qi. Since q0,i and q are
vertices having respectively 0 and qi at the i-th coordinate and any two vertices
in Gr can be adjacent only if the difference between the respective coordinates is
at most 1, it follows that dGr (q, q0,i) ≥ qi. Therefore, dGr (q, q0,i) = qi.

From above we can conclude that for any two different vertices q and q′ in
V (Gr)\Q0, there exists 1 ≤ i ≤ r such that dGr (q, q0,i) = qi 6= dGr (q′, q0,i) = q′

i. It
follows that the set of vertices Q0 is a resolving set of Gr. Also, for all 1 ≤ i ≤ r,
and any vertex q ∈ Qi, dGr (q, q0,i) = qi ≤ k. Hence, the set Q0 is as well a
distance k-dominating set of Gr. Hence, γr

k(Gr) ≤ |Q0| = r.

Suppose that γr
k(Gr) ≤ r−1. We have the order of the graph Gr is |Gr| = r+

r
∑k

p=1(2p+1)r−1. Also the maximum order of a graph having γr
k(Gr) ≤ r−1 was

previously proved to be less or equal to γr
k(Gr) + γr

k(Gr)
∑k

p=1(2p + 1)γr
k

(Gr)−1 ≤

(r − 1) + (r − 1)
∑k

p=1(2p + 1)r−2, it is a contradiction. Therefore, γr
k(Gr) = r.

For k = 1, the maximum order in Theorem 5.1 is precisely the maximum
order given in [5].

6. Nordhaus-Gaddum Type Bounds

Nordhaus-Gaddum bounds are sharp bounds on the sum or the product of a
parameter of a graph G and its complement G. The survey [1] contains a bibliog-
raphy of these types of bounds for some graph parameters. Hernando et al. [22]
found Nordhaus-Gaddum type of bounds for the metric dimension and the resolv-
ing domination number. We provide those bounds for the distance k-resolving
domination number for k ≥ 2.

Theorem 6.1. For any graph G of order n ≥ 2, we have the following.
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• If k = 2, then

3 ≤ γr
2(G) + γr

2(G) ≤ 2n − 1 and 2 ≤ γr
2(G) · γr

2(G) ≤ n(n − 1).

The lower bounds are attained if and only if G ∈ {K2, K2, P3, P 3}.
The upper bounds are attained if and only if G ∈ {Kn, Kn}.

• If k ≥ 3, then

2 ≤ γr
k(G) + γr

k(G) ≤ 2n − 1 and 1 ≤ γr
k(G) · γr

k(G) ≤ n(n − 1).

The lower bounds are attained if and only if G ∼= P4.
The upper bounds are attained if and only if G ∈ {Kn, Kn}.

Proof. If k = 2, then we have from Theorem 3.3 (a), γr
2(G) = 1 if and only

if G is K2 or P3. Also, for any other graph G, we have γr
2(G) ≥ 2. This

means that γr
2(G) + γr

2(G) ≥ 3 and γr
2(G) · γr

2(G) ≥ 2. Since γr
2(K2) = 2 and

γr
2(P 3) = 2, we can conclude that these lower bounds are attained if and only if

G ∈ {K2, K2, P3, P 3}.
If k ≥ 3, then based on Theorem 3.3 (a), we have γr

k(G) = 1 if and only
if G ∈ {P2, P3, . . . , Pk+1}. The graph P4 is a self-complementary graph, i.e.,
P 4

∼= P4, we have γr
k(P 4) = γr

k(P4) = 1. Also, P4 is the only graph whose
complement is also a path and has a distance k-resolving domination number
equal to 1. Therefore γr

k(G) + γr
k(G) ≥ 2 and γr

k(G) · γr
k(G) ≥ 1, also these lower

bounds are achieved if and only if G is P4.
Otherwise, for k ≥ 2, we have γr

k(G) = n if and only if G is the empty graph
on n vertices Kn, whose complement graph is the complete graph Kn. According
to Theorem 3.3 (c), we have γr

k(Kn) = n−1. Therefore, for any graph G of order
n ≥ 2, for k ≥ 2, we have γr

k(G) + γr
k(G) ≤ 2n − 1 and γr

k(G) · γr
k(G) ≤ n(n − 1).

Moreover, these upper bounds are achieved if and only if G ∈ {Kn, Kn}.

Let G be a connected graph with V (G) = {1, 2, . . . , n}. The graph G[H i]
is the graph obtained from G by replacing the vertex i with a graph H and
joining each vertex of H to every vertex adjacent to i in G. Let H1 and H2 be
two graphs, the graph G[H i

1, Hj
2 ] is the graph obtained from G by replacing the

vertex i (respectively, j) with the graph H1 (respectively, H2) and joining each
vertex of H1 (respectively, H2) to every vertex adjacent to i (respectively, j) in
G. If i and j are adjacent in G, join every vertex of H1 to every vertex of H2.
The Bull graph B is the graph with vertex set V (B) = {1, 2, 3, 4, 5} and edge
set V (B) = {12, 13, 23, 14, 25}. The graph B is a self-complementary graph, i.e.,
B ∼= B.

Theorem 6.2. If G and G are both connected graphs of order n ≥ 4, we have
the following.
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• If k = 2, then

4 ≤ γr
2(G) + γr

2(G) ≤ 2n − 4 and 4 ≤ γr
2(G) · γr

2(G) ≤ (n − 2)2.

The upper bounds are attained if and only if G ∼= P4.

• If k ≥ 3, then

2 ≤ γr
k(G) + γr

k(G) ≤ 2n − 6 and 1 ≤ γr
k(G) · γr

k(G) ≤ (n − 3)2.

The lower bounds are attained if and only if G ∼= P4.
The upper bounds are attained if and only if G ∈ {P4, C5, B} ∪ {P4[K1

n−3],

P4[K
1
n−3], P4[K2

n−3], P4[K
2
n−3]} ∪ {P4[K1

r , K2
n−r−2] : 1 ≤ r ≤ n − 3} ∪ {P4[K

1
r ,

K
3
n−r−2] : 1 ≤ r ≤ n − 3}.

Proof. For k = 2, let G be a graph such that G and G are connected graphs.
From Theorem 3.3 (a), γr

2(G) = 1 if and only if G is either K2 or P3. Then both
G and G have distance 2-resolving domination number greater or equal to 2.
Hence, γr

2(G) + γr
2(G) ≥ 4 and γr

2(G) · γr
2(G) ≥ 4. Also based on Proposition 2.9

we have γr
2(P4) = γr

2(P 4) = 2, then the lower bounds are sharp.
Otherwise, we have from Theorem 3.3 (c), Kn is the only connected graph

with distance 2-resolving domination number equal to n − 1. Since the com-
plement of the complete graph is disconnected, it follows that γr

2(G) ≤ n − 2.
Moreover, from Theorem 3.3 (b), for n ≥ 4, γr

2(G) = n−2 if and only if G is either
P4, Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥ 2), or Ks + (K1 ∪ Kt)(s, t ≥ 1). The only
graph from these graphs whose complement graph is also connected is the path
P4. Since P4 is self-complementary, we can conclude that γr

2(G)+γr
2(G) ≤ 2n−4

and γr
2(G) · γr

2(G) ≤ (n − 2)2, where the equality holds if and only if G ∼= P4.
For k ≥ 3, we have γr

k(P4) = 1. The graph P4 is self-complementary and
is the only graph in Theorem 3.3 (a) whose complement is a path graph having
γr

k(G) = 1. Then γr
k(G) + γr

k(G) ≥ 2 and γr
k(G) · γr

k(G) ≥ 1, and these lower
bounds are achieved if and only if G is P4.

Otherwise, we have from Theorem 3.3 (c), γr
k(G) = n − 1 if and only if G is

a complete graph. It follows that γr
k(G) ≤ n − 2. Furthermore, in Theorem 3.3

(b), γr
k(G) = n − 2 if and only if G is either Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥ 2),

or Ks + (K1 ∪ Kt)(s, t ≥ 1). Since the complements of these graphs are all
disconnected, it follows that γr

k(G) ≤ n − 3 and γr
k(G) ≤ n − 3. Therefore, for

k ≥ 3, γr
k(G) + γr

k(G) ≤ 2n − 6 and γr
k(G) · γr

k(G) ≤ (n − 3)2. The only connected
graph of order 4 whose complement graph is also a connected graph is P4, we
have γr

k(P4) = γr
k(P 4) = 1. Also for n ≥ 5, based on Lemma 3.2, we have

γr
k(G) = γr

k(G) = n − 3 if and only if dim(G) = dim(G) = n − 3. It follows that
γr

k(G)+γr
k(G) = 2n−6 if and only if dim(G)+dim(G) = 2n−6. In [22], if G and

G are both conncted graphs, we have dim(G) + dim(G) = 2n − 6 if and only if



1072 D.A. Retnowardani, M.I.Utoyo, Dafik, L.Susilowati andK. Dliou

G ∈ {P4, C5, B}∪{P4[K1
n−3], P4[K

1
n−3], P4[K2

n−3], P4[K
2
n−3]}∪{P4[K1

r , K2
n−r−2] :

1 ≤ r ≤ n − 3} ∪ {P4[K
1
r , K

3
n−r−2] : 1 ≤ r ≤ n − 3}.

7. Some Relations Between γr
k(G) and dimk(G)

For k ≥ 1, let W be a k-truncated resolving set of a graph G. For any two
distinct vertices v, u ∈ V , there exists a vertex x in W such that dk(v, x) =
min{dG(v, x), k +1} 6= dk(u, x) = min{dG(u, x), k +1}. We have W is a resolving
set of G. Also, at least one of u and v is at distance at most k from x. Based on
this observation we get the following upper bound for γr

k(G) in terms of dimk(G).

Proposition 7.1. For k ≥ 1, let G be a connected graph. Then we have γr
k(G) ≤

dimk(G) + 1.

Proof. Let W be a minimum k-truncated resolving set of G. Then there is at
most one vertex v in V such that dG(v, W ) > k. Otherwise, if v and u are two
distinct vertices at distance greater than k from W , then dk(v, x) = dk(u, x) =
k + 1, for every x ∈ W . Now, suppose that there exists a vertex v such that
dG(v, W ) > k, then the set W ∪ {v} is a distance k-dominating set of G. Since
W is a resolving set of G, we have W ∪ {v} is a distance k-resolving dominating
set of G. Thus, γr

k(G) ≤ |W | + 1 = dimk(G) + 1.

If there exists a minimum k-truncated resolving set W of a connected graph
G such that dG(v, W ) ≤ k for any v ∈ V , then necessarily γr

k(G) ≤ dimk(G).
In the following, we show that every k-truncated resolving set is a distance

(k + 1)-resolving dominating set.

Proposition 7.2. For k ≥ 1, let G be a connected graph. Then we have
γr

k+1(G) ≤ dimk(G).

Proof. Let W be a minimum k-truncated resolving set of G. Suppose that there
is a vertex v in V such that dG(v, W ) ≥ k + 2. Let u be a vertex adjacent to
v. Then necessarily dG(u, W ) ≥ k + 1, otherwise dG(v, W ) ≤ k + 1. This means
that dk(v, x) = dk(u, x) = k + 1, for all x ∈ W , a contradiction. Therefore
dG(v, W ) ≤ k + 1, for any vertex v in V . Thus W is a distance (k + 1)-resolving
dominating set. Hence γr

k+1(G) ≤ |W | = dimk(G).

For k ≥ 1, for a connected graph G of order n, we have 1 ≤ dimk(G) ≤ n−1.
A characterization of connected graphs of order n having dimk(G) ∈ {1, n − 2,
n − 1} is given in the following.

Theorem 7.3. For a connected graph G of order n ≥ 2, the following statements
hold.



A Study of a Combination of Distance Domination and . . . 1073

(a) [13] For k ≥ 1, dimk(G) = 1 if and only if G ∈ {Pi}
k+2
i=2 .

(b) [14] For n ≥ 4, dim1(G) = n − 2 if and only if G ∈ {P4, Ks,t(s, t ≥ 1), Ks +
Kt(s ≥ 1, t ≥ 2), Ks +(K1 ∪Kt)(s, t ≥ 1)}. For k ≥ 2 and n ≥ 4, dimk(G) =
n − 2 if and only if G ∈ {Ks,t(s, t ≥ 1), Ks + Kt(s ≥ 1, t ≥ 2), Ks + (K1 ∪
Kt)(s, t ≥ 1)}.

(c) [14] For k ≥ 1, dimk(G) = n − 1 if and only if G ∼= Kn.

In Theorems 3.3 and 7.3, if G is a connected graph of order n ≥ 2, we can
see that for k ≥ 1 and r ∈ {1, n − 2, n − 1}, we have dimk(G) = r if and only if
γr

k+1(G) = r.

Proposition 7.4. For k ≥ 1, and any positive integers β ≥ 1 and β ≤ γ ≤ β +1,
there exists a connected graph G having dimk(G) = β and γr

k(G) = γ. For β ≥ 2,
the pair (β, 1) is not realizable.

Proof. Let β ≥ 1 and β ≤ γ ≤ β + 1. If γ = β ≥ 1, we have γr(Kβ+1) = β [4].
By Theorem 3.3 and Theorem 7.3, for k ≥ 1, dimk(Kβ+1) = γr

k(Kβ+1) = β.

If γ = β + 1, then for k ≥ 1, if β = 1, according to Theorem 7.3 and
Proposition 2.4, the path graph Pk+2 has dimk(Pk+2) = 1 and γr

k(Pk+2) = 2.
Now let k ≥ 1 and β ≥ 2. Let Sβ+1,k be the spider tree graph considered
in the proof of Theorem 4.2 having one vertex v0 of degree β + 1 and β + 1
leaves at distance k from v0. As shown previously in Theorem 4.2, we have
dim(Sβ+1,k) = β and γr

k(Sβ+1,k) = β + 1. Let v1, v2, . . . , vβ+1 be the neighbors
of v0 in Sβ+1,k and let W = {v1, v2, . . . , vβ}. It is easy to check that W is a
k-truncated resolving set of Sβ+1,k. Therefore, dimk(Sβ+1,k) ≤ |W | = β. Since
dimk(Sβ+1,k) ≥ dim(Sβ+1,k) = β, it follows that dimk(Sβ+1,k) = β.

From Theorem 3.3, we have γr
k(G) = 1 if and only if G is a path graph of

order at most k + 1. If n ≤ k + 1, in Theorem 7.3, we have dimk(Pn) = 1.
Therefore, there is no connected graph G having γr

k(G) = 1 and dimk(G) ≥ 2.

The case γ = β + 1, in Proposition 7.4, proves the sharpness of the upper
bound in Proposition 7.1.

To provide examples of connected graphs having dimk(G) > γr
k(G), we give

the k-truncated metric dimension of path graphs which appeared in [14].

Theorem 7.5 [14]. For k ≥ 1, we have

• dimk(Pn) = 1 for 2 ≤ n ≤ k + 2;

• dimk(Pn) = 2 for k + 3 ≤ n ≤ 3k + 3;

• for n ≥ 3k + 4, we have
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dimk(Pn) =







⌊
2n+3k−1

3k+2

⌋

, if n ≡ 0, 1, . . . , k + 2 (mod (3k + 2)),
⌊

2n+4k−1
3k+2

⌋

, if n ≡ k + 3, . . . ,
⌈

3k+5
2

⌉

− 1 (mod (3k + 2)),
⌊

2n+3k−1
3k+2

⌋

, if n ≡
⌈

3k+5
2

⌉

, . . . , 3k + 1 (mod (3k + 2)).

From Theorem 7.5 and Proposition 2.4, we can see, for example, that if G
is a path graph of order 6k + 3, then dimk(G) = 4 > γr

k(G) = 3. Moreover, we
remark that the difference dimk(G) − γr

k(G) can be arbitrarily large.

Proposition 7.6. Let k ≥ 1. For any positive integer N there exists a connected
graph G with dimk(G) − γr

k(G) > N .

Proof. For k ≥ 1, let G be a path graph of order n = i(3k + 2) where i ≥ 1.
Based on Theorem 7.5, we have dimk(G) = 2i. From Proposition 2.4, γr

k(G) =
⌈

i(3k+2)
2k+1

⌉

< i(3k+2)
2k+1 + 1 ≤ 5

3 i + 1. It follows that dimk(G) − γr
k(G) > 2i − 5

3 i − 1 =
1
3 i − 1 → ∞ as i → ∞.

The upper bound in Proposition 2.9 holds for dimk(G) the proofs are similar.

Proposition 7.7. For k ≥ 1, let G be a connected graph of order n ≥ k +1, with
diam(G) ≥ k. Then dimk(G) ≤ n − kγk(G).

8. Concluding Remarks

The study of the distance k-resolving domination number could be extended to
other graph families and operations on graphs not discussed here. For example
for trees, a formula in [20] is provided to compute efficiently γr(T ) for any tree
T . We ask if it would be possible also for γr

k(T ) when k ≥ 2. Also, it would be
interesting to investigate the following questions.

• Is there a characterization of graphs achieving the bounds in Proposition 2.1?

• For k ≥ 1 and 2 ≤ γ ≤ n − 3, can we characterize the connected graphs G of
order n having γr

k(G) = γ?

A characterization of connected graphs G with γr
2(G) = 2 will provide all the

graphs having γr
2(G) + γr

2(G) = 4 and γr
2(G) · γr

2(G) = 4 in Theorem 6.2, where
G and G are both connected graphs.

In view of the discussion in Section 7 the following questions naturally arise.

• What is a sharp upper bound for dimk(G) in terms of γr
k(G) and what can

be said about the ratio dimk(G)
γr

k
(G) for a connected graph G?
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• Is there a characterization of graphs G having γr
k(G) = dimk(G) + 1 or

γr
k+1(G) = dimk(G)?

• For which pair β, γ of positive integers with γ < β does there exist a con-
nected graph G such that dimk(G) = β and γr

k(G) = γ?

For k ≥ 1, we denote Nk(v) = {x ∈ V : 0 < dG(v, x) ≤ k}, the open k-
neighborhood of a vertex v in V . The k-locating-dominating set defined as a set
X ⊆ V , verifying for every v, u ∈ V \X, we have ∅ 6= Nk(v)∩X 6= Nk(u)∩X 6= ∅.
The minimum cardinality of such set is called the k-locating-domination number
denoted by LDk(G). Results about the k-locating-domination number can be
found surveyed in [27]. Necessarily every k-locating-dominating set is a distance
k-resolving dominating set, the opposite is not true. Therefore for all k ≥ 1, we
have γr

k(G) ≤ LDk(G). For k = 1, in [5] it is shown that LD1(T ) ≤ 2γr(T ) − 2
for any tree T different from P6. In [16], it is proved that LD1(G) ≤ (γr(G))2 for
any graph G not containing C4 or C6 as a subgraph. Finding an upper bound
for LD1(G) in terms of γr(G) for graphs in general is still open, it is shown [16]
that such an upper bound is at least exponential in terms of γr(G). Is it possible
to find upper bounds for LDk(G) in terms of γr

k(G) when k ≥ 2 for graphs?

Acknowledgement

We gratefully acknowledge Airlangga University, Indonesia, and Ibn Zohr Uni-
versity, Morocco, for their supervision and support in accomplishing this work.
The authors are grateful to the reviewers for all of their careful and valuable
comments, which contributed to improve the paper.

References

[1] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete
Appl. Math. 161 (2013) 466-546.
https://doi.org/10.1016/j.dam.2011.12.018

[2] R.F. Bailey and P.J. Cameron, Base size, metric dimension and other invariants of
groups and graphs, Bull. Lond. Math. Soc. 43 (2011) 209–242.
https://doi.org/10.1112/blms/bdq096

[3] Z. Beerliova, F. Eberhard, T. Eberhard, A. Hall, M. Hoffmann, M. Mihalák and L.S.
Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006)
2168–2181.
https://doi.org/10.1109/JSAC.2006.884015

[4] R.C. Brigham, G. Chartrand, R.D. Dutton and P. Zhang, Resolving domination in
graphs, Math. Bohem. 128 (2003) 25–36.
https://doi.org/10.21136/MB.2003.133935

[5] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, Locating-
dominating codes: Bounds and extremal cardinalities, Appl. Math. Comput. 220
(2013) 38–45.
https://doi.org/10.1016/j.amc.2013.05.060

https://doi.org/10.1016/j.dam.2011.12.018
https://doi.org/10.1112/blms/bdq096
https://doi.org/10.1109/JSAC.2006.884015
https://doi.org/10.21136/MB.2003.133935
https://doi.org/10.1016/j.amc.2013.05.060


1076 D.A. Retnowardani, M.I.Utoyo, Dafik, L.Susilowati andK. Dliou

[6] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R.
Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete
Math. 21 (2007) 423–441.
https://doi.org/10.1137/050641867

[7] G.J. Chang and G.L. Nemhauser, The k-domination and k-stability problem on
graphs, Tech. Rep. 540 (School of Operations Res. and Industrial Eng., Cornell
Univ., 1982) 332–345.

[8] G. Chartrand, L. Eroh, M.A. Jhonson and O.R. Oellermann, Resolvability in graphs
and the metric dimenson of a graph, Discrete Appl. Math. 105 (2000) 99–113.
https://doi.org/10.1016/S0166-218X(00)00198-0

[9] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs, 6th Ed. (Chapman &
Hall, London, 2016).
https://doi.org/10.1201/b19731

[10] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of
graphs, Comput. Math. Appl. 39 (2000) 19–28.
https://doi.org/10.1016/S0898-1221(00)00126-7

[11] G. Chartrand, V. Saenpholphat and P. Zhang, The independent resolving number
of a graph, Math. Bohem. 128 (2003) 379–393.
https://doi.org/10.21136/MB.2003.134003

[12] R.R. Davila, C. Fast, M.A. Henning and F. Kenter, Lower bounds on the distance
domination number of a graph, Contrib. Discrete Math. 12 (2017)
.https://doi.org/10.11575/cdm.v12i2.62487

[13] A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, On the (k,t)-metric
dimension of graphs, Comput. J. 64 (2021) 707–720.
https://doi.org/10.1093/comjnl/bxaa009

[14] R.M. Frongillo, J. Geneson, M.E. Lladser, R.C. Tillquist and E. Yi, Truncated metric
dimension for finite graphs, Discrete Appl. Math. 320 (2022) 150–169.
https://doi.org/10.1016/j.dam.2022.04.021

[15] J. Geneson and E. Yi, The distance-k dimension of graphs (2021).
arXiv:2106.08303v2

[16] A. González, C. Hernando and M. Mora, Metric-locating-dominating sets of graphs
for constructing related subsets of vertices, Appl. Math. Comput. 332 (2018) 449–
456.
https://doi.org/10.1016/j.amc.2018.03.053

[17] F. Harary and R.A. Melter, On the metric dimension of a graph, Ars Combin. 2
(1976) 191–195.

[18] M.A. Henning, Distance domination in graphs, in: Topics in Domination in Graphs,
T.W. Haynes, S.T. Hedetniemi and M.A. Henning (Ed(s)) (Springer, Cham, 2020)
205–250.
https://doi.org/10.1007/978-3-030-51117-3_7

https://doi.org/10.1137/050641867
https://doi.org/10.1016/S0166-218X\(00\)00198-0
https://doi.org/10.1201/b19731
https://doi.org/10.1016/S0898-1221\(00\)00126-7
https://doi.org/10.21136/MB.2003.134003
https://doi.org/10.11575/cdm.v12i2.62487
https://doi.org/10.1093/comjnl/bxaa009
https://doi.org/10.1016/j.dam.2022.04.021
https://arxiv.org/abs/2106.08303v2
https://doi.org/10.1016/j.amc.2018.03.053
https://doi.org/10.1007/978-3-030-51117-3_7


A Study of a Combination of Distance Domination and . . . 1077

[19] M.A. Henning, Distance domination in graphs, in: Domination in Graphs: Advanced
Topics, T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (Ed(s)) (Marcel Dekker, Inc.
New York, 1998) 321–349.
https://doi.org/10.1201/9781315141428

[20] M.A. Henning and O.R. Oellermann, Metric-locating-dominating sets in graphs, Ars
Combin. 73 (2004) 129–141.

[21] M.A. Henning, O.R. Oellermann and H.C. Swart, Relating pairs of distance domi-
nation parameters, J. Combin. Math. Combin. Comput. 18 (1995) 233–244.

[22] C. Hernando, M. Mora and I.M. Pelayo, Nordhaus-Gaddum bound for locating dom-
ination, European J. Combin. 36 (2014) 1–6.
https://doi.org/10.1016/j.ejc.2013.04.009

[23] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory
for metric dimension and diameter , Electron. J. Combin. 17 (2010) #R30.
https://doi.org/10.37236/302

[24] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of
graphs, Discrete Math 312 (2012) 3349–3356.
https://doi.org/10.1016/j.disc.2012.07.025

[25] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl.
Math. 70 (1996) 217–229.
https://doi.org/10.1016/0166-218X(95)00106-2

[26] D. Lichtenstein, Planar formulae and their uses, SIAM J. Comput. 11 (1982) 329–
343.
https://doi.org/https://doi.org/10.1137/0211025

[27] A. Lobstein, O. Hudry and I. Charon, Locating-domination and identification, in:
Topics in Domination in Graphs, T.W. Haynes, S.T. Hedetniemi and M.A. Henning
(Ed(s)) (Springer, Cham, 2020) 251–299.
https://doi.org/10.1007/978-3-030-51117-3_8

[28] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree,
Pacific J. Math. 61(1) (1975) 225–233.
https://doi.org/10.2140/pjm.1975.61.225

[29] V. Saenpholphat and P. Zhang, Connected resolvability of graphs, Czechoslovak
Math. J. 53 (2003) 827–840.
https://doi.org/10.1023/B:CMAJ.0000024524.43125.cd

[30] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549–559.

[31] P.J. Slater, R-domination in graphs, J. ACM 23 (1976) 446–450.
https://doi.org/10.1145/321958.321964

[32] R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Getting the lay of the land in
discrete space: A survey of metric dimension and its applications (2021).
arXiv:2104.07201

https://doi.org/10.1201/9781315141428
https://doi.org/10.1016/j.ejc.2013.04.009
https://doi.org/10.37236/302
https://doi.org/10.1016/j.disc.2012.07.025
https://doi.org/10.1016/0166-218X\(95\)00106-2
https://doi.org/https://doi.org/10.1137/0211025
https://doi.org/10.1007/978-3-030-51117-3_8
https://doi.org/10.2140/pjm.1975.61.225
https://doi.org/10.1023/B:CMAJ.0000024524.43125.cd
https://doi.org/10.1145/321958.321964
https://arxiv.org/abs/2104.07201


1078 D.A. Retnowardani, M.I.Utoyo, Dafik, L.Susilowati andK. Dliou

[33] R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Truncated metric dimension for
finite graphs (2021).
arXiv:2106.14314v1

[34] D.A.R. Wardani, M.I. Utoyo, Dafik and K. Dliou, The distance 2-resolving domina-
tion number of graphs, J. Phys. Conf. Ser. 1836 (2021) 012017.
https://doi.org/10.1088/1742-6596/1836/1/012017

Received 11 August 2022
Revised 18 January 2023

Accepted 27 January 2023
Available online 15 February 2023

This article is distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-
es/by-nc-nd/4.0/

Powered by TCPDF (www.tcpdf.org)

https://arxiv.org/abs/2106.14314v1
https://doi.org/10.1088/1742-6596/1836/1/012017
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tcpdf.org

