DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

A. Abiad

Aida Abiad

Department of Mathematics and Computer Science, Eindhoven University of
Technology, The Netherlands
Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent
University, Belgium
Department of Mathematics and Data Science of Vrije Universiteit Brussel, Belgium

email: aidaabiad@gmail.com

0000-0003-4003-4291

H. Koerts

Hidde Koerts

Department of Combinatorics and Optimization, University of Waterloo

email: hkoerts@uwaterloo.ca

0000-0002-7694-0440

Title:

On the $k$-independence number of graph products

PDF

Source:

Discussiones Mathematicae Graph Theory 44(3) (2024) 983-996

Received: 2022-06-23 , Revised: 2022-11-30 , Accepted: 2022-11-30 , Available online: 2022-12-17 , https://doi.org/10.7151/dmgt.2480

Abstract:

The $k$-independence number of a graph, $\alpha_k(G)$, is the maximum size of a set of vertices at pairwise distance greater than $k$, or alternatively, the independence number of the $k$-th power graph $G^k$. Although it is known that $\alpha_k(G)=\alpha(G^k)$, this, in general, does not hold for most graph products, and thus the existing bounds for $\alpha$ of graph products cannot be used. In this paper we present sharp upper bounds for the $k$-independence number of several graph products. In particular, we focus on the Cartesian, tensor, strong, and lexicographic products. Some of the bounds previously known in the literature for $k=1$ follow as corollaries of our main results.

Keywords:

graph products, $k$-independence number, Cartesian graph product, tensor graph product, strong graph product, lexicographic graph product

References:

  1. A. Abiad, S.M. Cioabă and M. Tait, Spectral bounds for the $k$-independence number of a graph, Linear Algebra Appl. 510 (2016) 160–170.
    https://doi.org/10.1016/j.laa.2016.08.024
  2. A. Abiad, G. Coutinho and M.A. Fiol, On the $k$-independence number of graphs, Discrete Math. 342 (2019) 2875–2885.
    https://doi.org/10.1016/j.disc.2019.01.016
  3. A. Abiad, G. Coutinho, M.A. Fiol, B.D. Nogueira and S. Zeijlemaker, Optimization of eigenvalue bounds for the independence and chromatic number of graph powers, Discrete Math. 345 (2022) 112706.
    https://doi.org/10.1016/j.disc.2021.112706
  4. G. Atkinson and A. Frieze, On the $b$-independence number of sparse random graphs, Combin. Probab. Comput. 13 (2004) 295-309.
    https://doi.org/10.1017/S0963548304006108
  5. M. Basavaraju, L.S. Chandran, D. Rajendraprasad and A. Ramaswamy, Rainbow connection number of graph power and graph products, Graphs Combin. 30 (2014) 1363–1382.
    https://doi.org/10.1007/s00373-013-1355-3
  6. M. Beis, W. Duckworth and M. Zito, Large $k$-independent sets of regular graphs, Electron. Notes Discrete Math. 19 (2005) 321–327.
    https://doi.org/10.1016/j.endm.2005.05.043
  7. K.Ch. Das and J.-M. Guo, Laplacian eigenvalues of the second power of a graph, Discrete Math. 313 (2013) 626–634.
    https://doi.org/10.1016/j.disc.2012.12.009
  8. M. DeVos, J. McDonald and D. Scheide, Average degree in graph powers, J. Graph Theory 72 (2013) 7–18.
    https://doi.org/10.1002/jgt.21628
  9. W. Duckworth and M. Zito, Large $2$-independent sets of regular graphs, Electron. Notes Theor. Comput. Sci. 78 (2003) 223-235.
    https://doi.org/10.1016/S1571-0661(04)81015-6
  10. M.A. Fiol, A new class of polynomials from the spectrum of a graph, and its application to bound the $k$-independence number, Linear Algebra Appl. 605 (2020) 1–20.
    https://doi.org/10.1016/j.laa.2020.07.009
  11. P. Firby and J. Haviland, Independence and average distance in graphs, Discrete Appl. Math. 75 (1997) 27–37.
    https://doi.org/10.1016/S0166-218X(96)00078-9
  12. D. Geller and S. Stahl, The chromatic number and other functions of the lexicographic product, J. Combin. Theory Ser. B 19 (1975) 87–95.
    https://doi.org/10.1016/0095-8956(75)90076-3
  13. R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (Boca Raton, CRC Press, Inc., 2011).
    https://doi.org/10.1201/b10959
  14. M. Hota, M. Pal and T.K. Pal, An efficient algorithm for finding a maximum weight $k$-independent set on trapezoid graphs, Comput. Optim. Appl. 18 (2001) 49–62.
    https://doi.org/10.1023/A:1008791627588
  15. P.K. Jha and S. Klavžar, Independence in direct-product graphs, Ars Combin. 50 (1998) 53–60.
  16. P.K. Jha and G. Slutzki, Independence numbers of product graphs, Appl. Math. Lett. 7 (1994) 91–94.
    https://doi.org/10.1016/0893-9659(94)90018-3
  17. S. Klavžar, Some new bounds and exact results on the independence number of Cartesian product graphs, Ars Combin. 74 (2005) 173–186.
  18. M.C. Kong and Y. Zhao, On computing maximum $k$-independent sets, Congr. Numer. 95 (1993) 47–60.
  19. M.C. Kong and Y. Zhao, Computing $k$-independent sets for regular bipartite graphs, Congr. Numer. 143 (2000) 65–80.
  20. F. Kramer and H. Kramer, Un probleme de coloration des sommets d'un graphe, C.R. Acad. Sci. Paris, Ser. A 268 (1969) 46–48.
  21. F. Kramer and H. Kramer, Ein Färbungsproblem der Knotenpunkte eines Graphen bezüglich der Distanz p, Rev. Roumaine Math. Pures Appl. 14 (1969) 1031–1038.
    https://doi.org/10.13140/RG.2.2.24729.83047
  22. F. Kramer and H. Kramer, A survey on the distance-colouring of graphs, Discrete Math. 308 (2008) 422–426.
    https://doi.org/10.1016/j.disc.2006.11.059
  23. Z. Li and B. Wu, The $k$-independence number of $t$-connected graphs, Appl. Math. Comput. 409 (2021) 126412.
    https://doi.org/10.1016/j.amc.2021.126412
  24. S. O, Y. Shi and Z. Taoqiu, Sharp upper bounds on the $k$-independence number in graphs with given minimum and maximum degree, Graphs Combin. 37 (2021) 393–408.
    https://doi.org/10.1007/s00373-020-02244-y
  25. E. Sonnemann and O. Krafft, Independence numbers of product graphs, J. Combin. Theory Ser. B 17 (1974) 133–142.
    https://doi.org/10.1016/0095-8956(74)90081-1
  26. S. Špacapan, The $k$-independence number of direct products of graphs and Hedetniemi's conjecture, European J. Combin. 32 (2011) 1377–1383.
    https://doi.org/10.1016/j.ejc.2011.07.002
  27. V.G. Vizing, The Cartesian product of graphs, Vyčisl. Sistemy 9 (1963) 30–43.
  28. P. Wocjan, C. Elphick and A. Abiad, Spectral upper bound on the quantum $k$-independence number of a graph, Electron. J. Linear Algebra 38 (2022) 331–338.
    https://doi.org/10.13001/ela.2022.6675

Close