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Abstract
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in the literature for k = 1 follow as corollaries of our main results.
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1. Introduction

Consider two graphs G1, G2 and k ≥ 1. A vertex set S ⊆ V (G) is said to be
k-independent if u, v ∈ S implies δG(u, v) > k where δG(u, v) is the shortest dis-
tance between vertices u and v in graph G. The k-independence number of graph
G, denoted by αk(G), is the size of the largest k-independent vertex set in graph
G. When k = 1 this reduces to the standard definition of independence num-
ber. We note that several conflicting definitions of the k-independence number
are used in existing literature, all generalizing the concept of the independence
number, for an overview see [2, Section 1].

The k-th graph power Gk of a graph G is the graph whose vertex set is
V (G) in which two distinct vertices are adjacent if and only if their distance in
graph G is at most k. The k-independence number is equivalently defined as the
independence number of the power graph, that is, αk(G) = α(Gk). However, even
the simplest algebraic or combinatorial parameters of power graph Gk cannot be
deduced easily from the corresponding parameters of the graph G. For instance,
in general neither the spectrum [7], [3, Section 2], nor the average degree [8],
nor the rainbow connection number [5] can be derived directly from the original
graph. This provides the main initial motivation for this work.

The k-independence number of a graph has received a considerable amount
of attention over the last years. From the complexity point of view, Kong and
Zhao [18], who showed that for every k ≥ 2, determining αk(G) is NP-complete
for general graphs, and it remains NP-complete when restricting to regular bi-
partite graphs [19]. There are several other algorithmic results on αk, see for
instance the work by Duckworth and Zito [9] or Hota, Pal and Pal [14]. Since
the k-independence number is an NP-hard parameter, it is desirable to obtain
sharp upper bounds. In this regard, Firby and Haviland [11] proved an upper
bound for αk(G) in terms of the average distance in an n-vertex connected graph.
Li and Wu [23] showed sharp upper bounds on αk for t-connected graphs. The
k-independence number has also been studied from an algebraic point of view
by Abiad et al. [1–3], Fiol [10] and O et al. [24]. Wocjan et al. [28] have shown
bounds on the quantum k-independence number, a related parameter which is
used to measure the benefit of quantum entanglement. For each fixed integer
k ≥ 2 and r ≥ 3, Beis, Duckworth, and Zito [6] proved several upper bounds for
αk(G) in random r-regular graphs. The k-independence number has also been
studied in the context of the random graph Gn,p by Atkinson and Frieze [4].

In this paper we show several sharp upper bounds for the k-independence
number of graph products. For a pair of graphs G1, G2, we consider the Cartesian
product, the tensor product, the strong product, and the lexicographic product,
denoted by G1�G2, G1×G2, G1⊠G2, and G1 ·G2, respectively. We note that the
tensor product is also known as the direct product, the Kronecker product, and
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the categorical product. The vertex set for all these product graphs is given by
the Cartesian product of the vertex sets V1 and V2. The edge sets of the product
graphs are given as follows.

E(G1�G2) = {((u1, u2), (v1, v2)) | (u1 = v1 ∧ (u2, v2) ∈ E(G2)) ∨ (u2 = v2 ∧ (u1, v1) ∈ E(G1))},

E(G1 ×G2) = {((u1, u2), (v1, v2)) | (u1, v1) ∈ E(G1) ∧ (u2, v2) ∈ E(G2)},

E(G1 ⊠G2) = E(G1�G2) ∪ E(G1 ×G2),

E(G1 ·G2) = {((u1, u2), (v1, v2)), | (u1, v1) ∈ E(G1) ∨ (u1 = v1 ∧ (u2, v2) ∈ E(G2))}.

There are several well-known results for the independence number of graph prod-
ucts. Instances of it are the work of Vizing [27], Sonnemann and Krafft [25], Jha
and Slutzki [16], Klavžar [17], Jha and Klavžar [15], Geller and Stahl [12], and
Špacapan [26], among others. Although αk(G) = α(Gk), in general it does not
hold that the k-independence number of the product of two graphs is equivalent to
the independence number of the product of the corresponding two graph powers
(in fact, this only holds for the strong product out of the four considered graph
products). In this paper we provide new tight bounds for the k-independence
number of the most well known graph products: the strong product (Section 2),
the Cartesian product (Section 3), the tensor product (Section 4), and the lex-
icographic product (Section 5). Some of the bounds previously known in the
literature for k = 1 follow as corollaries of our main results.

2. Strong Product

In this section we will show that one can use the equivalence αk(G) = α(Gk) to
upper bound the independence number of the strong product of two graphs. To
that aim, we require some preliminary results.

Proposition 1 [13, Proposition 5.4]. For any two graphs G1, G2, it holds for any

pair of vertices (u1, u2), (v1, v2) ∈ V (G1) × V (G2) in the product graph G1 ⊠ G2

that δG1⊠G2
((u1, u2), (v1, v2)) = max(δG1

(u1, v1), δG2
(u2, v2)).

For the strong product of two graphs, the next result shows that one can use
existing bounds for the independence number on power graphs.

Lemma 2. For any graphs G1, G2, it holds that Gk
1 ⊠Gk

2 = (G1 ⊠G2)
k.

Proof. Let the graphs G1 and G2 be given. We first observe that

V
(

Gk
1 ⊠Gk

2

)

= V
(

Gk
1

)

× V
(

Gk
2

)

= V (G1)× V (G2)

= V
(

G1 ⊠G2

)

= V
((

G1 ⊠G2

)k)
.

It thus remains to show that E(Gk
1 ⊠ Gk

2) = E
(

(G1 ⊠ G2)
k
)

. Let (u1, u2) and
(v1, v2) be two distinct elements in the set V (G1)× V (G2). By the definition of
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the strong graph product, we note that ((u1, u2), (v1, v2)) forms an edge in graph
Gk

1 ⊠ Gk
2 if and only if (u1, v1) ∈ E(Gk

1) or u1 = v1, and (u2, v2) ∈ E(Gk
2) or

u2 = v2. By the definition of graph powers, this holds if and only if

δG1
(u1, v1), δG2

(u2, v2) ≤ k.

We note that this expression is in turn equivalent to the inequality

max(δG1
(u1, v1), δG2

(u2, v2)) ≤ k.

By Proposition 1, this inequality is then equivalent to

δG1⊠G2
((u1, u2), (v1, v2)) ≤ k.

Finally, we observe that by the definition of graph powers, the inequality
δG1⊠G2

((u1, u2), (v1, v2)) ≤ k holds if and only if ((u1, u2), (v1, v2)) ∈ E
(

(G1 ⊠

G2)
k
)

. Thus, ((u1, u2), (v1, v2)) ∈ E
(

Gk
1 ⊠Gk

2

)

if and only if ((u1, u2), (v1, v2)) ∈
E
(

(G1 ⊠G2)
k
)

. Therefore, E
(

Gk
1 ⊠Gk

2

)

= E
(

(G1 ⊠G2)
k
)

, as desired.

Corollary 3. For any graphs G1, G2, it holds that α(Gk
1 ⊠Gk

2) = αk(G1 ⊠G2).

Note that Corollary 3 implies that the existing upper bounds for α for the
strong product of two graphs (see for instance Jha and Slutzki [16, Theorem 2.6])
can be used. As an application, one can easily extend [16, Theorem 2.6] to the
k-independence number αk.

Theorem 4. For all graphs G1, G2,

αk(G1 ⊠G2) ≥ αk(G1) · αk(G2).

Proof. It follows directly from Corollary 3 and applying [16, Theorem 2.6] to
the power graphs Gk

1 and Gk
2.

The relation given by Lemma 2 does not extend to the other graph products
considered in this paper. For k = 2, take for instance G1 to be a complete graph
K2, and G2 to be a path P4; then Gk

1�Gk
2 6= (G1�G2)

k, Gk
1 ×Gk

2 6= (G1 ×G2)
k,

and Gk
1 ·G

k
2 6= (G1 ·G2)

k.

3. Cartesian Product

Vizing [27] obtained the following celebrated bounds on α(G1�G2):

Theorem 5 [27]. For any two graphs G1, G2,

(i) α(G1�G2) ≥ α(G1) · α(G2) + min(|V (G1)| − α(G1), |V (G2)| − α(G2)),

(ii) α(G1�G2) ≤ min(α(G1) · |V (G2)|, α(G2) · |V (G1)|).
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It is easy to see that if both G1 and G2 are complete graphs, then Theorem 5
yields the exact value of α(G1�G2). However, in general, there is a gap between
the two bounds.

In this section we will extend Vizing’s bounds to the k-independence number.
To that purpose we will use the relation between distances in graphs and distances
in their graph products. Recall that δG(vi, vj) denotes the distance between two
vertices vi, vj in a graph G.

Proposition 6 [13, Proposition 5.1]. For any two graphs G1, G2, it holds for any

pair of vertices (u1, u2), (v1, v2) ∈ V (G1) × V (G2) in the product graph G1�G2

that

δG1�G2
((u1, u2), (v1, v2)) = δG1

(u1, v1) + δG2
(u2, v2).

The following two results extend Vizing’s lower and upper bounds from The-
orem 5.

Theorem 7. For any two graphs G1, G2,

(i) αk(G1�G2) ≥ αk(G1) · αk(G2),

(ii) αk(G1�G2) ≤ min(αk(G1) · |V (G2)|, αk(G2) · |V (G1)|).

Proof. (i) Let the graphs G1 and G2 and k ∈ N be given. Let S1 ⊆ V (G1) be
a set of vertices in graph G1 such that |S1| = αk(G1) and S1 is k-independent in
the graph G1. Similarly, let S2 ⊆ V (G2) be a set of vertices in graph G2 such
that |S2| = αk(G2) and S2 is k-independent in the graph G2. We claim that the
set of vertices S = S1 × S2 is k-independent in the product graph G1�G2.

Let (u1, u2), (v1, v2) ∈ S be two distinct vertices in the product graph G1�G2.
By Proposition 6,

δG1�G2
((u1, u2), (v1, v2)) = δG1

(u1, v1) + δG2
(u2, v2).

Because the vertices (u1, u2) and (v1, v2) are distinct, either u1 6= v1 or u2 6= v2
must hold. Without loss of generality, assume that u1 6= v1. In that case, it
follows that δG1�G2

((u1, u2), (v1, v2)) ≥ δG1
(u1, v1). As u1, v1 ∈ S1 and because

set S1 is k-independent in graph G1, it holds that δG1
(u1, v1) > k. Therefore it

follows that
δG1�G2

((u1, u2), (v1, v2)) > k.

But as vertices (u1, u2), (v1, v2) ∈ S were selected arbitrarily, we conclude that
the set S is k-independent in the product graph G1�G2. As |S| = |S1| · |S2| =
αk(G1) · αk(G2), we then conclude that

αk(G1�G2) ≥ αk(G1) · αk(G2).

(ii) Consider two graphs G1 and G2 and k ∈ N. Let S ⊆ V (G1) be a k-
independent set in graphG1 such that |S| = αk(G1). LetG

′
2 be the edgeless graph
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on the vertex set of graph G2, that is, V (G′
2) = V (G2) and E(G′

2) = ∅. Then,
as removing edges from a graph cannot result in a decrease of the k-indepen-
dence number, by the definition of the Cartesian graph product, αk(G1�G2) ≤
αk(G1�G′

2).

In the graph product G1�G′
2, due to the non-existence of edges in G′

2 and
the definition of the Cartesian graph product, we know that the sets Sv2 =
{(v1, v2) | v1 ∈ V (G1)} for vertex v2 ∈ V (G2) are anticomplete. Let the graph
Gv2 be the subgraph induced by set Sv2 in product graph G1�G′

2 for v2 ∈ V (G2).
Then, as the sets Sv2 for all vertices v2 ∈ V (G2) are anticomplete, αk(G1�G′

2) =
∑

v2∈V2
αk(Gv2). Moreover, as ((x, v2), (y, v2)) ∈ E(G1�G2) if and only if (x, y) ∈

E(G1), αk(Gv2) = αkG1 for all vertices v2 ∈ V (G2). Therefore, αk(G1�G′
2) =

αk(G1) · |V2|.
Thus, αk(G1�G2) ≤ αk(G1�G′

2) = αk(G1) · |V2|. Analogously, it follows that
αk(G1�G2) ≤ αk(G2) · |V1|.

While Theorem 7(ii) is tight for complete graphs when k = 1 [27], this is
not the case for k > 1. Indeed, take for example G1 = G2 = K2, and k = 2.
Then αk(G1�G2) = 1, while αk(G1) · |V2| = αk(G2) · |V1| = 2. On the other
hand, Theorem 7(i) is tight for G1, G2 being complete graphs and k > 1, as the
distance between any pair of vertices in the graph product G1�G2 is then at
most 2. Thus, for k > 1, αk(G1�G2) = 1 = 1 · 1 = αk(G1) · αk(G2). Observe
that if the graph G1 or G2 is edgeless, then the upper and lower bound coincide
and are thus tight.

For k = 1, Theorem 7 yields Vizing’s bounds from Theorem 5 (see [27] for
more details) and Jha and Slutzki ( [16], Corollary 2.5). Next, we investigate
other tight cases of Theorem 7.

Remark 8.

(i) Theorem 7(i) is tight for all even k ∈ N for graphsG1 andG2 both isomorphic
to the path Pk+2.

(ii) Theorem 7(i) is tight for two graphs G1 and G2 if and only if there exists a
maximum k-independent set S in the graph product G1�G2 such that for
all the vertices (u1, v1) and (u2, v2) in set S, it holds that vertices (u1, v2)
and (u2, v1) are contained in the set S as well.

(iii) Theorem 7(ii) is tight for all k ∈ N
+, if the graph G1 is K2, and G2 is C2k+1.

Proof. (i) Let the vertices of the paths G1 and G2 be labelled by u1, u2, . . . , uk+2

and v1, v2, . . . , vk+2, respectively, and such that (ui, ui+1) ∈ E(G1) and (vi, vi+1) ∈
E(G2) for i = 1, 2, . . . , k + 1. Trivially, αk(G1) = αk(G2) = 2. Thus, it suffices
to show that αk(G1�G2) ≤ 4. Let S be a maximum k-independent set of ver-
tices in G1�G2. We aim to show that |S| ≤ 4. To that purpose, we consider a
partitioning of the vertex set V (G1�G2) given by the sets
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V1 =

{

(ui, vj) | 1 ≤ i ≤
k

2
+ 1, 1 ≤ j ≤

k

2
+ 1

}

,

V2 =

{

(ui, vj) | 1 ≤ i ≤
k

2
+ 1,

k

2
+ 2 ≤ j ≤ k + 2

}

,

V3 =

{

(ui, vj) |
k

2
+ 2 ≤ i ≤ k + 2, 1 ≤ j ≤

k + 2

2

}

,

V4 =

{

(ui, vj) |
k

2
+ 2 ≤ i ≤ k + 2,

k

2
+ 2 ≤ j ≤ k + 2

}

.

We note that as k is even, the partitioning is well-defined. Next, we observe that
for any pair of vertices (ui1 , vj1), (ui2 , vj2) ∈ V1, by Proposition 6, it follows that

δG1�G2
((ui1 , vj1), (ui2 , vj2)) = δG1

(ui1 , ui2) + δG2
(vj1 , vj2)

= |i2 − i1|+ |j2 − j1| ≤
k

2
+

k

2
= k.

Thus, a maximum k-independent set S contains at most one vertex in set V1.
Analogously, it follows that S contains at most one vertex of each of the sets
V2, V3, and V4. Then, as the sets V1, V2, V3, and V4 partition the vertex set
V (G1�G2), we find that S contains at most four vertices, as desired.

(ii) Let S1 and S2 be maximum k-independent sets inG1 and G2, respectively.
As shown in the proof of Theorem 7(i), the set S = S1 × S2 is a k-independent
set in the graph product G1�G2. If the bound is tight for G1 and G2, the set S
must be a maximum k-independent set in G1�G2. Because S is the Cartesian
product of two sets, it trivially holds that for all vertices (u1, v1) and (u2, v2) in
S, that vertices (u1, v2) and (u2, v1) are in S as well.

Next consider a set S ⊆ V (G1) × V (G2) such that S is a maximum k-
independent set in the product G1�G2 such that for all vertices (u1, v1) and
(u2, v2) in set S, vertices (u1, v2) and (u2, v1) are elements of set S as well. Then,
clearly, there must exist sets S1 ⊆ V1 and S2 ⊆ V2 such that S1 × S2 = S. But
then, by reversing the argument in the proof of Theorem 7(i), S1 and S2 must be
k-independent in graphs G1 and G2, respectively. Hence, as |S1| ≤ αk(G1) and
|S2| ≤ αk(G2), the bound must be attained tightly.

Thus both directions of the bi-implication hold.

(iii) It suffices to show that for all k ∈ N
+ there exists a k-independent set

S ⊆ V (G) such that |S| = min(αk(K2) · |V (C2k+1)|, αk(C2k+1) · |V (K2)|). We
observe that αk(C2k+1) = 1, αk(K2) = 1, |V (C2k+1)| = 2k + 1, and |V (K2)| = 2.
Hence, it suffices to show that for each k ∈ N

+ there exists a k-independent set
S ⊆ V (G) such that |S| = 2.

Let V (K2) = {u1, u2} and let V (C2k+1) = {v1, v2, . . . , v2k+1} such that
E(C2k+1) = {(vi, vi+1) | i ∈ [2k]} ∪ {(v1, v2k+1)}. Then we claim that S =
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{(u1, v1), (u2, vk+1)} is k-independent in the graph product K2�C2k+1. It suf-
fices to show that δK2�C2k+1

((u1, v1), (u2, vk+1)) > k. From Proposition 6, it
follows that

δK2�C2k+1
((u1, v1), (u2, vk+1)) = δK2

(u1, u2) + δC2k+1
(v1, vk+1) = 1 + k > k,

as desired.

4. Tensor Product

We first note that the tensor graph product does not preserve the connectedness
of the original graphs (take for instance the graph product P2×P3). Moreover, the
distance between two vertices in the graph product can generally not be derived
directly from the distances between the corresponding vertices in the graphs G1

and G2.

Proposition 9 [13, Proposition 5.7]. For any two graphs G1, G2, it holds that

for any pair of vertices (u1, u2), (v1, v2) ∈ V (G1) × V (G2) in the graph product

G1 × G2 that δG1×G2
((u1, u2), (v1, v2)) equals the minimum number ℓ ∈ N such

that there exists both a walk between vertices u1 and v1 in graph G1 of length ℓ

and a walk between vertices u2 and v2 in graph G2 of length ℓ. If no such value

ℓ ∈ N exists, then δG1×G2
((u1, u2), (v1, v2)) = ∞.

Corollary 10. For any two graphs G1, G2, it holds for any pair of vertices

(u1, u2), (v1, v2) ∈ V (G1)× V (G2) in the graph product G1 ×G2 that

δG1×G2
((u1, u2), (v1, v2)) ≥ max(δG1

(u1, v1), δG2
(u2, v2)).

The next result extends a lower bound by Jha and Slutzki [16, Theorem 2.4].

Theorem 11. For all graphs G1, G2,

αk(G1 ×G2) ≥ αk(G1) · αk(G2).

Proof. Consider two graphs G1 and G2 and k ∈ N. Let S1 ⊆ V (G1) and S2 ⊆
V (G2) be sets of vertices such that |S1| = αk(G1) and |S2| = αk(G2), and sets
S1 and S2 be k-independent in G1 and G2, respectively. Let S ⊆ V (G1)×V (G2)
be the vertex set given by S1 × S2.

We will show that S is k-independent in G1 × G2. For two distinct vertices
(u1, u2), (v1, v2) ∈ S, we consider the distance δG1×G2

((u1, u2), (v1, v2)). Because
vertices (u1, u2) and (v1, v2) are distinct, either u1 6= v1 or u2 6= v2 must hold.
Without loss of generality, assume that u1 6= v1. Then, because by Corollary 10,

δG1×G2
((u1, u2), (v1, v2)) ≥ δG1

(u1, v1),
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and because u1, v1 ∈ S1 and set S1 is k-independent in graph G1,

δG1×G2
((u1, u2), (v1, v2)) ≥ δG1

(u1, v1) > k.

Thus, S is k-independent in the product graph G1 × G2. Since |S| = αk(G1) ·
αk(G2), we conclude that αk(G1 ×G2) ≥ αk(G1) · αk(G2), as desired.

We note that for k = 1, the lower bound by Jha and Slutzki [16, Theorem 2.4]
generally gives a better bound than Theorem 11. Next, we present a tight case
of Theorem 11.

Remark 12. Theorem 11 is tight for all even k ∈ N and for G1 and G2 both
being Pk+2.

Proof. Consider the paths G1 and G2 and label their vertices as u1, u2, . . . , uk+2

and v1, v2, . . . , vk+2, respectively, such that (ui, ui+1) ∈ E(G1) and (vi, vi+1) ∈
E(G2) for i = 1, 2, . . . , k + 1. Trivially, αk(G1) = αk(G2) = 2. Thus, it suffices
to show that αk(G1 ×G2) ≤ 4.

We first observe that between any pair of vertices ui, uj ∈ V (G1) there exists
only a single path in G1, and analogously for any pair of vertices vi, vj ∈ V (G2)
in G2. Hence, by Proposition 9, for any pair of vertices (ui, vj), (ui′ , vj′) ∈
V (G1 × G2) in the product graph G1 × G2 with i, i′, j, j′ ∈ [k + 2], it holds
that δG1×G2

((ui, vj), (ui′ , vj′)) ≤ ℓ if and only if δG1
(ui, ui′) and δG2

(vj , vj′) are
both at most ℓ and of the same parity. Moreover, by the structure of path graphs
G1 and G2, it holds that δG1

(ui, ui′) = |i− i′| and δG2
(vj , vj′) = |j − j′|.

By considering the maximum distance ℓ = |V (G1 × G2)| = (k + 2)2, we
then note that the product graph G1 × G2 consists of two disjoint connected
components C1 and C2, induced by the sets S1 = {(ui, vj) ∈ V (G1 × G2) | i ≡ j

(mod 2)} and S2 = {(ui, vj) ∈ V (G1 × G2) | i 6≡ j (mod 2)}, respectively. We
moreover note that because k is even, and as G1 and G2 are path graphs of even
lengths, the components C1 and C2 are isomorphic. It thus suffices to show that
αk(C1) ≤ 2.

We consider the set S′
1 = {(ui, vj) ∈ S1 | i ≡ 0 (mod 2)}. Let (ui, vj), (ui′ , vj′)

be a pair of vertices in S′
1. By the definition of S1, it follows that |i−i′| and |j−j′|

have the same parity, and hence δG1×G2
((ui, vj), (ui′ , vj′)) = max(|i− i′|, |j− j′|).

Next, by the definition of S′
1, it follows that i, i′, j, j′ 6= 1. Hence, i, i′, j, j′ ∈

[2, k + 2], and thus δG1×G2
((ui, vj), (ui′ , vj′)) ≤ k. Thus, as S′

1 does not contain
two vertices at distance greater than k, we conclude that the k-independence
number of the subgraph of component C1 induced by the set S′

1 is at most 1.

Analogously, it follows that the k-independence number of the subgraph of
component C1 induced by the set S1 \S

′
1 is also at most 1. Then, as V (C1) = S1,

we find that αk(C1) ≤ 2, as desired.
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5. Lexicographic Product

The lexicographic product differs from the other graph products previously dis-
cussed in that it is non-commutative. That is, for graphs G1 and G2 it does
generally not hold that G1 · G2 = G2 · G1. Moreover, as shown by Geller and
Stahl [12], the independence number of a lexicographic product graph G1 ·G2 can
directly be computed from the independence numbers of the factors G1 and G2.

Theorem 13 [12, Theorem 1]. For all graphs G1, G2, α(G1 ·G2) = α(G1)·α(G2).

We note that while the lexicographic product is non-commutative, the order
of the factors does not influence the independence number of the product graph.
Moreover, we observe that it does not in general hold that αk(G1 ·G2) = αk(G1) ·
αk(G2). Consider for instance the case where k = 2, G1 = K2, and G2 = 2K1.

We investigate the k-independence number of lexicographic product graphs,
and specifically the case where k ≥ 2. To that aim, we need some preliminary
results.

Proposition 14. Let G be a graph and let C be a collection of graphs such that

graph G is the disjoint union of the graphs in C. Then, for all k ∈ N
+,

αk(G) =
∑

C∈C

αk(C).

Proposition 15 [13, Proposition 5.12]. For any two graphs G1, G2, it holds for

any pair of vertices (u1, u2), (v1, v2) ∈ V (G1)×V (G2) in the product graph G1 ·G2

that

δG1·G2
((u1, u2), (v1, v2)) =











δG1
(u1, v1) if u1 6= v1,

δG2
(u2, v2) if u1 = v1 and degG1

(u1) = 0,

min(δG2
(u2, v2), 2) if u1 = v1 and degG1

(u1) > 0.

We use Propositions 14 and 15 to provide a characterization of the
k-independence number of lexicographic graph products for k ≥ 2. Let ι(G)
denote the number of isolated vertices of graph G, and let C(G) denote the set
of connected components of graph G.

Theorem 16. For all graphs G1, G2 and all values k ≥ 2,

αk(G1 ·G2) = αk(G1) + ι(G1)(αk(G2)− 1).

Proof. Let C(G1) be the collection of connected components of graph G1. More-
over, let C(G1) be partitioned by the sets C1 and C2, where C1 is the set of all
isolated vertices of graph G1, and C2 is the set of all connected components of
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graph G1 containing at least two vertices. We note that product graph G1 ·G2 is
the disjoint union of the graphs C ·G2 for C ∈ C(G1). Then, by Proposition 14,
it follows that

αk(G1 ·G2) =
∑

C∈C(G1)

αk(C ·G2) =
∑

C∈C1

αk(C ·G2) +
∑

C∈C2

αk(C ·G2).

Consider a component C ∈ C1. By the definition of set C1, component C

consists of a single vertex. Therefore, C ·G2 = G2, and thus αk(C ·G2) = αk(G2).
Moreover, by the definition of set C1, |C1| = ι(G1). It then follows that

∑

C∈C1

αk(C ·G2) = ι(G1) · αk(G2).

Next, consider a component C ∈ C2. By the definition of set C2, component
C is connected and contains at least two vertices.

Let S ⊆ V (G1)×V (G2) be a maximum k-independent set in the graph C ·G2.
We observe that set S does not contain a pair of vertices (u, v1), (u, v2) such that
v1 6= v2. Namely, as component C is connected, and as |V (C)| ≥ 2, vertex u

has degree at least one. Hence, by Proposition 15, δC·G2
((u, v1), (u, v2)) ≤ 2 ≤ k.

Thus, by the definition of k-independent sets, set S contains at most one vertex
with vertex u as the first coordinate for all vertices u ∈ V (C).

Let set S′ ⊆ V (C) be defined as S′ = {u ∈ V (C) | (u, v) ∈ S}. Thus,
|S′| = |S|. We moreover note that by Proposition 15 and as k ≥ 2, set S is
k-independent in product graph C · G2 if and only if set S′ is k-independent in
component C. Thus, αk(C) ≥ αk(C ·G2).

Next, let S∗ ⊆ V (C) be a maximum k-independent set in component C.
Furthermore, let v ∈ V (G2) be an arbitrary vertex in graph G2. Then, by
Proposition 15 and as k ≥ 2, it follows that the set S∗ × {v} ⊆ V (C) × V (G2)
forms a k-independent set in product graph C · G2. Because |S∗ × {v}| = |S∗|,
we find that αk(C ·G2) ≥ αk(C).

Thus, αk(C ·G2) = αk(C). We note that by Proposition 14,

αk(G1) =
∑

C∈C(G1)

αk(C) =
∑

C∈C1

αk(C) +
∑

C∈C2

αk(C).

Because each component C ∈ C1 consists of a single vertex by the definition of
set C1, it follows that αk(C) = 1 for each C ∈ C1. Hence, and due to |C1| = ι(G1),

∑

C∈C2

αk(C) = αk(G1)− ι(G1).

Therefore,
∑

C∈C2

αk(C ·G2) =
∑

C∈C2

αk(C) = αk(G1)− ι(G1),
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and thus,

αk(G1 ·G2) =
∑

C∈C1

αk(C ·G2) +
∑

C∈C2

αk(C ·G2)

= ι(G1) · αk(G2) + αk(G1)− ι(G1) = αk(G1) + ι(G1)(αk(G2)− 1),

as desired.

6. Concluding Remarks

We conclude by observing a relationship between the k-independence numbers of
the four considered graph products.

Theorem 17. For all graphs G1, G2,

αk(G1 ·G2) ≤ αk(G1 ⊠G2) ≤ min{αk(G1�G2), αk(G1 ×G2)}.

Proof. By the definitions of the graph products, it holds that

E(G1�G2), E(G1 ×G2) ⊆ E(G1 ⊠G2) ⊆ E(G1 ·G2),

from which the result directly follows.

Theorem 17 extends [16, Theorem 2.6]. Note that as a result of Theorem 17,
also Theorem 4 is tight for G1, G2 both complete graphs and k > 1. We addition-
ally observe that the inequality α(G1�G2) ≤ α(G1 × G2) in [16, Theorem 2.6]
does not extend, as α2(P3�K1,3) > α2(P3 ×K1,3).

The distance-k chromatic number, which is the chromatic number of Gk,
has also received quite some attention since its introduction by Kramer and
Kramer [20, 21], see for instance the survey by Kramer and Kramer [22]. Our
upper bounds on the k-independence number of graph products directly yield
lower bounds on the corresponding distance-k chromatic number.

Acknowledgements

The research of Aida Abiad has been partially supported by the FWO grant
1285921N.

References
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