Article in volume
Authors:
Title:
The $m$-bipartite Ramsey number $BR_m(H_1,H_2)$
PDFSource:
Discussiones Mathematicae Graph Theory 44(3) (2024) 893-911
Received: 2022-02-10 , Revised: 2022-10-17 , Accepted: 2022-10-18 , Available online: 2022-11-26 , https://doi.org/10.7151/dmgt.2477
Abstract:
In a $(G^1,G^2)$ coloring of a graph $G$, every edge of $G$ is in $G^1$ or
$G^2$. For two bipartite graphs $H_1$ and $H_2$, the bipartite Ramsey number
$BR(H_1, H_2)$ is the least integer $b\geq 1$, such that for every $(G^1, G^2)$
coloring of the complete bipartite graph $K_{b,b}$, results in either
$H_1\subseteq G^1$ or $H_2\subseteq G^2$. As another view, for bipartite graphs
$H_1$ and $H_2$ and a positive integer $m$, the $m$-bipartite Ramsey number
$BR_m(H_1, H_2)$ of $H_1$ and $H_2$ is the least integer $n$ $(n\geq m)$ such
that every subgraph $G$ of $K_{m,n}$ results in $H_1\subseteq G$ or
$H_2\subseteq \overline{G}$. The size of $m$-bipartite Ramsey number
$BR_m(K_{2,2}, K_{2,2})$, the size of $m$-bipartite Ramsey number $BR_m(K_{2,2},
K_{3,3})$ and the size of $m$-bipartite Ramsey number $BR_m(K_{3,3}, K_{3,3})$
have been computed in several articles up to now. In this paper we determine
the exact value of $BR_m(K_{2,2}, K_{4,4})$ for each $m\geq 2$.
Keywords:
Ramsey numbers, bipartite Ramsey numbers, complete graphs, $m$-bipartite Ramsey number
References:
- L.W. Beineke and A.J. Schwenk, On a bipartite form of the Ramsey problem, in: Proc. Fifth British Combinatorial Conference, Aberdeen, 1975, Util. Math. 15 (1976) 17–22.
- Z. Bi, G. Chartrand and P. Zhang, Another view of bipartite Ramsey numbers, Discuss. Math. Graph Theory 38 (2018) 587–605.
https://doi.org/10.7151/dmgt.2034 - M. Bucić, S. Letzter and B. Sudakov, Multicolour bipartite Ramsey number of paths, Electron. J. Combin. 26 (2019) #P3.60.
https://doi.org/10.37236/8458 - M. Bucić, S. Letzter and B. Sudakov, $3$-color bipartite Ramsey number of cycles and paths, J. Graph Theory 92 (2019) 445–459.
https://doi.org/10.1002/jgt.22463 - G. Chartrand and P. Zhang, New directions in Ramsey theory, Discrete Math. Lett. 6 (2021) 84–96.
https://doi.org/10.47443/dml.2021.s110 - A.F. Collins, Bipartite Ramsey Numbers and Zarankiewicz Numbers, M.Sc. Thesis (Rochester Institute of Technology, 2015).
- A.F. Collins, A.W.N. Riasanovsky, J.C. Wallace and S.P. Radziszowski, Zarankiewicz numbers and bipartite Ramsey numbers, J. Algorithms Comput. 47 (2016) 63–78.
https://doi.org/10.22059/jac.2016.7943 - D. Day, W. Goddard, M.A. Henning, and H.C. Swart, Multipartite Ramsey numbers, Ars Combin. 58 (2001) 23–32.
- J. Dybizbański, T. Dzido and S. Radziszowski, On some Zarankiewicz numbers and bipartite Ramsey Numbers for quadrilateral, Ars Combin. 119 (2016) 275–287.
- R.J. Faudree and R.H. Schelp, Path-path Ramsey-type numbers for the complete bipartite graph, J. Combin. Theory Ser. B 19 (1975) 161–173.
https://doi.org/10.1016/0095-8956(75)90081-7 - M. Gholami and Y. Rowshan, The bipartite Ramsey numbers $BR(C_8,C_{2n})$ (2021).
arXiv: 2108.02630 - W. Goddard, M.A. Henning and O.R. Oellermann, Bipartite Ramsey numbers and Zarankiewicz numbers, Discrete Math. 219 (2000) 85–95.
https://doi.org/10.1016/S0012-365X(99)00370-2 - A. Gyárfás and J. Lehel, A Ramsey-type problem in directed and bipartite graphs, Period. Math. Hungar. 3 (1973) 299–304.
https://doi.org/10.1007/BF02018597 - I. Hatala, T. Héger, and S. Mattheus, New values for the bipartite Ramsey number of the four-cycle versus stars, Discrete Math. 344 (2021) 112320.
https://doi.org/10.1016/j.disc.2021.112320 - J. Hattingh and M. Henning, Bipartite Ramsey theory, Util. Math. 53 (1998) 217–230.
- J.H. Hattingh and M.A. Henning, Star-path bipartite Ramsey numbers, Discrete Math. 185 (1998) 255–258.
https://doi.org/10.1016/S0012-365X(97)00205-7 - R. Lakshmi and D. Sindhu, Three-colour bipartite Ramsey number $R_b (G_1, G_2, P_3)$, Electron. J. Graph Theory Appl. (EJGTA) 8 (2020) 195–204.
https://doi.org/10.5614/ejgta.2020.8.1.14 - V. Longani, Some bipartite Ramsey numbers, Southeast Asian Bull. Math. 26 (2003) 583–592.
https://doi.org/10.1007/s100120200062 - G. Raeisi, Star-path and star-stripe bipartite Ramsey numbers in multicoloring, Trans. Comb. 4 (2015) 37–42.
https://doi.org/https://doi.org/10.22108/toc.2015.7275 - Y. Rowshan and M. Gholami, Another view of bipartite Ramsey numbers, (2022).
https://doi.org/10.48550/arXiv.2201.12844 - Y. Rowshan, M. Gholami and S. Shateyi, A proof of a conjecture on bipartite Ramsey numbers $B(2, 2, 3)$, Mathematics 10 (2022) 701.
https://doi.org/10.3390/math10050701 - Y. Rowshan, M. Gholami and S. Shateyi, The size, multipartite Ramsey numbers for $nK_2$ versus path–path and cycle, Mathematics 9 (2021) 764.
https://doi.org/10.3390/math9070764
Close