DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

M. Gutierrez

Marisa Gutierrez

email: marisa@mate.unlp.edu.ar

S.B. Tondato

Silvia Beatriz Tondato

CMALP Dto de Matemática Facultad de Ciencias Exactas Universidad Nacional de La Plata

email: tondato@mate.unlp.edu.ar

Title:

On walk domination: weakly toll domination, $l_2$ and $l_3$ domination

PDF

Source:

Discussiones Mathematicae Graph Theory 44(3) (2024) 837-861

Received: 2021-12-16 , Revised: 2022-09-16 , Accepted: 2022-09-18 , Available online: 2022-11-04 , https://doi.org/10.7151/dmgt.2475

Abstract:

In this paper we study domination between different types of walks connecting two non-adjacent vertices of a graph. In particular, we center our attention on weakly toll walk and $l_k$-path for $k \in \{2,3\}$. A walk between two non-adjacent vertices in a graph $G$ is called a weakly toll walk if the first and the last vertices in the walk are adjacent, respectively, only to the second and second-to-last vertices, which may occur more than once in the walk. And an $l_k$-path is an induced path of length at most $k$ between two non-adjacent vertices in a graph $G$. We study the domination between weakly toll walks, $l_k$-paths ($k \in \{2,3\})$ and different types of walks connecting two non-adjacent vertices $u$ and $v$ of a graph (shortest paths, induced paths, paths, tolled walks, weakly toll walks, $l_k$-paths for $k \in \{3,4\}$), and show how these give rise to characterizations of graph classes.

Keywords:

domination, paths, geodesic, chordal graphs, interval graphs

References:

  1. L. Alcón, A note of path domination, Discuss. Math. Graph Theory 36 (2016) 1021–1034.
    https://doi.org/10.7151/dmgt.1917
  2. L. Alcón, B. Brešar, T. Gologranc, M. Gutierrez, T. Kraner Šumenjak, I. Peterin and A. Tepeh, Toll convexity, European J. Combin. 46 (2015) 161–175.
    https://doi.org/10.1016/j.ejc.2015.01.002
  3. F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1999) 119–135.
    https://doi.org/10.1137/S0895480195321718
  4. M.C. Dourado, M. Gutierrez, F. Protti and S. Tondato, Weakly toll convexity, submitted for publication.
  5. M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Methods 7 (1986) 433–444.
    https://doi.org/10.1137/0607049
  6. M. Gutierrez, F. Protti and S.B. Tondato, Convex geometries over induced paths with bounded length, Discrete Math. 346 (2023) 113133.
    https://doi.org/10.1016/j.disc.2022.113133
  7. E. Howorka, A characterization of distance-hereditary graphs, Q. J. Math. 28 (1977) 417–420.
    https://doi.org/10.1093/qmath/28.4.417
  8. C. Lekkerkerker and J. Boland, Representation of a finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45–64.
    https://doi.org/10.4064/fm-51-1-45-64
  9. S. Olariu, Weak bipolarizable graphs, Discrete Math. 74 (1989) 159–171.
    https://doi.org/10.1016/0012-365X(89)90208-2
  10. I.M. Pelayo, Geodesic Convexity in Graphs (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4614-8699-2
  11. M. Preissmann, D. de Werra and N.V.R. Mahadev, A note on superbrittle graphs, Discrete Math. 61 (1986) 259–267.
    https://doi.org/10.1016/0012-365X(86)90097-X
  12. D.B. West, Introduction to Graph Theory, 2nd. Edition (Prentice-Hall, Upper Saddle River, 2000).

Close