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Abstract

In this paper we study domination between different types of walks con-
necting two non-adjacent vertices of a graph. In particular, we center our
attention on weakly toll walk and lk-path for k ∈ {2, 3}. A walk between two
non-adjacent vertices in a graph G is called a weakly toll walk if the first and
the last vertices in the walk are adjacent, respectively, only to the second
and second-to-last vertices, which may occur more than once in the walk.
And an lk-path is an induced path of length at most k between two non-
adjacent vertices in a graph G. We study the domination between weakly
toll walks, lk-paths (k ∈ {2, 3}) and different types of walks connecting two
non-adjacent vertices u and v of a graph (shortest paths, induced paths,
paths, tolled walks, weakly toll walks, lk-paths for k ∈ {3, 4}), and show
how these give rise to characterizations of graph classes.
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1. Introduction

Walks in graphs are subgraphs that tell us about topological structure of graphs.
From the trivial connectivity till no-trivial geometries [2–6, 10], the walks in

graphs are studied. For example, chordal graphs and ptolemaic graphs have been
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characterized as convex geometries with respect to the monophonic convexity
and the geodesic convexity, respectively [5]. Similarly, interval graphs have been
characterized as convex geometries with respect to the toll convexity [2]; and
proper interval graphs have been characterized as convex geometries with respect
to the weakly toll convexity [4].

In the present paper, we treat a different aspect that comes from interval
graphs, walk domination.

A graph is an interval graph if it has an intersection model consisting of
intervals on a straight line.

Let G be an interval graph, and let P and Q be two induced paths in G
between two non-adjacent vertices of G. Then, in every interval representation
(Iv)v∈V (G) of G, each internal vertex of P is adjacent or equal to some internal
vertex of Q and vice versa. Inspired in this property, Alcón [1] studied domination
between different types of walks connecting two non-adjacent vertices of a graph.

Given two non-adjacent vertices u and v, a uv-walk W dominates a uv-walk
W ′ if every internal vertex of W ′ is adjacent to some internal vertex of W or
belongs to W .

A class of walks A dominates a class of walks B if every uv-walk of A
dominates every a uv-walk ofB, for all pair of non-adjacent vertices of the graphs.

Given a class of graph it is natural to ask if for every graph in the class,
certain kind of walks dominate others.

In walk domination context not only this question is studied but if a class of
graphs is characterized for this property for certain types of walks.

In [1], Alcón considered walks, tolled-walks, paths, induced-paths or shortest-
paths. Therefore she found characterizations of standard graph classes likeChor-
dal, Interval and Superfragile.

In this paper, we study the domination between weakly toll walks [4], lk-
paths for k ∈ {2, 3} [6], and different types of walks connecting two non-adjacent
vertices u and v of a graphs (shortest paths, induced paths, paths, tolled walks,
weakly toll walks, lk-paths for k ∈ {2, 3}), and show how these give rise to
characterizations of graph classes.

The paper is organized as follows. In Section 2, we give necessary definitions,
in Section 3, it is presented the main results. In particular, we obtain a charac-
terization for
Interval ∩ {chair,dart}-free, Chordal ∩ {chair,dart,F4(6)}-free,
Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-free,
Chordal ∩ {F2,F4(n)n≥6, F5(n)n≥8, F6(n)n≥7,F7(n)n≥7}-free,
{C4,C5,C6}-free, {C4}-free and a new characterization of standard graph
classes like Chordal and Superfragile.

Conclusions are developed in Section 4.
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2. Preliminaries

In this section, we recall the definitions of the most used notions in this paper.

All the graphs in this paper are finite, undirected, simple, and connected.
We use standard graph terminology [12].

Let G be a graph. The subgraph induced in G by a subset S ⊆ V (G) is
denoted by G[S]. For any vertex v of G, the neighborhood of v is denoted by
N [v] = {u ∈ V (G)| uv is an edge of G} ∪ {v}.

For any pair of non-adjacent vertices u, v ∈ V (G) let us introduce the follow-
ing definitions. A uv-walk is a sequence W : u = v0, v1, . . . , vk−1, vk = v whose
terms are vertices, not necessarily distinct, such that u is adjacent to v1, vi is
adjacent to vi+1 for i ∈ {1, . . . , k − 2}, and vk−1 is adjacent to v. The vertices
u and v are called ends of the walk, and the vertices v1, . . . , vk−1 are its internal
vertices.

The integer k is the length of the walk. The distance d(u, v) between vertices
u and v is the length of a shortest uv-walk.

A uv-path is a uv-walk with all its vertices distinct. The walk 1, 2, 3, 7 is a
17-path (Figure 1).

7

5

4
3 6

2

1

Figure 1.

A uv-induced path (or monophonic path [5]) is a uv-path such that two of
its vertices are adjacent if and only if are consecutive. The 15-path: 1, 2, 3, 4, 5
is a 15-induced path (Figure 1). Observe that the 17-path: 1, 2, 3, 7 is not a
17-induced path.

A uv-shortest path (or geodesic [5]) is a uv-path of length d(u, v). The induced
path 1, 7, 5 is a 15-shortest path (Figure 1). Observe that the induced path
1, 2, 3, 4, 5 is not a 15-shortest path.

A uv-weakly toll walk is a uv-walk such that u is adjacent only to the vertex
v1, with possibly {v1} ∩ {v2, . . . , vk−1} 6= ∅, and v is adjacent only to the vertex
vk−1, with possibly {vk−1} ∩ {v1, . . . , vk−2} 6= ∅ [4]. Note that v1 may be vk−1.
The walk 2, 3, 6, 3, 4 is a 24-weakly toll walk (Figure 1).

A uv-tolled walk is a uv-walk satisfying that u is adjacent only to the vertex
v1, v is adjacent only to the vertex vk−1, {v1} ∩ {v2, . . . , vk−1} = ∅ and {vk−1} ∩
{v1, . . . , vk−2} = ∅ [2]. Note that v1 may be vk−1, but if v1 = vk−1, then k = 2.
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The walk 1, 2, 3, 6, 3, 4, 5 is an 15-tolled walk (Figure 1). Observe that 2, 3, 6, 3, 4
is not a 24-tolled walk.

A uv-lk-path is a uv-induced path with length at most k. The 67-induced
path: 6, 3, 7 is a 67-lk-path for k ∈ {2, 3}.

Notice that every shortest path is an induced path, every induced path is
a tolled walk, and a tolled walk is a weakly toll walk. Also every lk-path is
an induced path. However, paths and tolled-walks are incomparable just like
lk-paths and shortest paths.

Definition 1. The walk W : v0, v1, . . . , vm contains the walk W ′ : v′0, v
′
1, . . . , v

′
n

if there exists an strict increasing function Θ : {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}
such that v′i = vΘ(i) for 0 ≤ i ≤ n.

It is known that every uv-walk contains some uv-path and that every uv-
path contains some uv-induced path [12]. However, not every uv-induced path
contains some uv-shortest path.

Definition 2. The uv-walk W : u, v1, . . . , vm−1, v dominates the uv-walk W ′ :
u, v′1, . . . , v

′
n−1, v if every internal vertex of W ′ is adjacent to some internal vertex

of W or belongs to W .

Now, we introduce the notation SP, IP, P, TW, W, WTW and lk for
k = 2, 3 to refer to the set of different types of walks connecting two non-adjacent
vertices u and v of a graph G.

SP(u, v) = {W : W is a uv -shortest path},
IP(u, v) = {W : W is a uv -induced path},
P(u, v) = {W : W is a uv -path},
TW(u, v) = {W : W is a uv -tolled walk},
W(u, v) = {W : W is a uv -walk},
WTW(u, v) = {W : W is a uv -weakly toll walk}.

In case of induced paths with bounded length, we use the following notation.

lk(u, v) = {W : W is a uv -lk-path} for k = 2, 3.

The following two remarks summarize the relation between the different types
of walks we have considered.

Remark 1. SP(u, v) ⊆ IP(u, v) ⊆ P(u, v) ⊆ W(u, v),

SP(u, v) ⊆ IP(u, v) ⊆ TW(u, v) ⊆ WTW(u, v) ⊆ W(u, v),

l2(u, v) ⊆ l3(u, v) ⊆ IP(u, v) ⊆ P(u, v) ⊆ W(u, v),

l2(u, v) ⊆ l3(u, v) ⊆ IP(u, v) ⊆ TW(u, v) ⊆ WTW(u, v) ⊆ W(u, v).

Remark 2. If W ∈ W(u, v), then W contains some W ′ ∈ IP(u, v).
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A cycle of length k in a graph G is a path C : v1, v2, . . . , vk plus and edge
between v1 and vk. Each edge of G between two non-consecutive vertices of C is
called a chord. The cycle of length k without chords is denoted by Ck.

A graph is chordal if every cycle of length at least 4 has a chord. LetChordal
denote the class of chordal graphs. Note that Chordal = {Ck : k > 3}-free

A graph is an interval graph if it has an intersection model consisting of
intervals on a straight line. Let Interval denote the class of interval graphs.

An asteroidal triple of a graph G is a set of 3 non-adjacent vertices of G such
that each pair is connected by a path avoiding the neighborhood of the third
vertex.

Lekkerkerker and Boland [8] proved the following.

1. For any graph G, G is an interval graph if and only if G is chordal and
contains no asteroidal triple.

2. Interval = Chordal ∩ {F1,F2,F3(n)n≥6,F4(n)n≥6}-free (see Figure 2).

Let Interval+ be the class of those chordal graphs G that contain none of the
graphs F2 or F4(n)n≥6 as induced subgraph, and satisfy the following condition.
If G has an induced subgraph H isomorphic to F1 (F3(n)n≥6), then the distance
in G between the vertices of F1 (F3(n)n≥6) labelled u and v in Figure 2 is 2, and
any vertex of G adjacent to both u and v is universal to F1 (F3(n)n≥6) [1].

ww

F1 F2 F3(n)n≥6 F4(n)n≥6

u v u v

Figure 2. Chordal forbidden induced subgraphs for interval graphs.

The closed geodesic interval for two vertices u and v of a graph G is the set
of all vertices lying on some uv-shortest-path of G.

Let g −Chordal denote the class of graphs G in which any closed geodesic
interval induces a chordal subgraph [1].

A graph is ptolematic if for every four vertices v1, v2, v3, and v4, d(v1, v2) ·
d(v3, v4) ≤ d(v1, v2) ·d(v2, v4)+d(v1, v4) ·d(v2, v3). It is well known that the class
of ptolematic graphs, denoted by Ptolematic, corresponds to the class of gem-
free chordal graphs [7] (see Figure 3). Following the notation [1], in this article we
also consider Ptolematic− as the class of those ptolematic graphs which contain
none of the graphs co-chair o dart in Figure 3.

A graph is superfragile if it has a vertex elimination order with respect to the
two rules below, such that at each stage every vertex is eligible for elimination.
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Rule 1. If v does not appear as an end vertex in an induced P3, then v may be
removed.

Rule 2. If v does not appear as an internal vertex in an induced P3, then v may
be removed.

Let Supergragile denote the class of superfragile graphs. Note that Super-
fragile = {C4,P4,dart}-free [11] (see Figure 3).

Figure 3 shows some special graphs used to describe the graphs classes con-
sidered in our results.

dart gem co-chair D
5 3 4

1 2

P4
C4 5

1

3

2

4

chair

Figure 3. Graphs used to describe the graphs classes considered in our results.

Definition 3. Let A,B ∈ {SP, IP,P,TW,WTW,W, l2, l3}. A/B is the class
formed by those graphs G such that for every pair of non-adjacent vertices u and
v of G, every W ∈ A(u, v) dominates every W ′ ∈ B(u, v) i.e., W ∈ A(u, v) and
W ′ ∈ B(u, v) implies W dominates W ′.

Some important classes of graphs have been characterized by domination
between different types of walks [1]. These results are summarized in Table 1.

SP IP P TW W

SP g −Chordal Chordal Ptolematic− Superfragile

IP Chordal Chordal Ptolematic− Interval Superfragile

P Chordal Chordal Ptolematic− Interval Superfragile

TW Chordal Chordal Ptolematic− Interval Superfragile

W Chordal Chordal Ptolematic− Interval Superfragile

Table 1. With A ∈ {SP, IP,P,TW,W} in the first column and B ∈ {SP, IP,P,TW,
W} in the first row, the table describes each one of the graph classes A/B. Observe
that SP/TW has a partial characterization, SP/TW ⊆ Interval+ [1].
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3. Main Results

The aim of the present paper is to describe the graph classes A/B with A,B ∈
{l2, l3,SP, IP,P,TW,WTW,W}. Our main results are summarized in Table
2. As Table 1, with A ∈ {l2, l3,SP, IP,P,TW,WTW,W} in the first column
and B ∈ {l2, l3,SP, IP,P,TW,WTW,W} in the first row, the table describes
each one of the graph classes A/B.

- l2 l3 SP IP P TW WTW W

l2 {C4}-free Ch {C4}-free Ch Pt− Ch ∩ F2,4,5,6,7-free Ch ∩ {chair,dart,F4(6)}-free S

l3 {C4,C5,C6}-free Ch Ch Pt− Ch ∩ F2,3,4,5-free Int ∩ {chair,dart}-free S

SP {C4}-free {C4,C5,C6}-free T1 T1 T1 Int ∩ {chair,dart}-free T1

IP Ch Ch T1 T1 T1 T1 Int ∩ {chair,dart}-free T1

P Ch Ch T1 T1 T1 T1 Int ∩ {chair,dart}-free T1

TW Ch Ch T1 T1 T1 T1 Int ∩ {chair,dart}-free T1

WTW Ch Ch Ch Ch Pt− Int Int ∩ {chair,dart}-free Sup

W Ch Ch T1 T1 T1 T1 Int ∩ {chair,dart}-free T1

Table 2. T1 results Table 1, we denote by Ch the class of chordal graphs, by Int the
class of interval graphs, by Sup the class of superfragile graphs, by Pt− the class
Ptolematic−, by F2,4,5,6,7 = {F2,F4(n)n≥6,F5(n)n≥8,F6(n)n≥7,F7(n)n≥7}, and
by F2,3,4,5 = {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}.

In [1], Alcón presented the following lemma.

Lemma 1 [1]. For A ∈ {SP, IP,P,TW,W}, the following statements hold.

1. A/W ⊆ A/P ⊆ A/IP ⊆ A/SP.

2. A/W ⊆ A/TW ⊂ A/IP ⊆ A/SP.

3. TW/W ⊆ TW/P ⊂ TW/IP ⊆ TW/SP.

4. TW/W ⊆ TW/TW ⊆ TW/IP ⊆ TW/SP.

5. W/A = TW/A = P/A = IP/A ⊂ SP/A.

6. W/TW = TW/TW = P/TW = IP/TW ⊆ SP/TW.

Now, we consider lk for k ∈ {2, 3} and WTW.

Note that for example W/WTW ⊆ IP/WTW, since every induced path
is a walk (Remark 1). On the other hand, as every walk contains some induced
paths (Remark 2), it follows that IP/WTW ⊆ W/WTW.

Thus, using Remark 1, Remark 2 and Lemma 1, the proof of the next lemma
does not represent difficulty and is left to the reader.

Lemma 2. For A,B ∈ {IP,P,W} and for k = 2, 3, the following statements

hold.

1. A/W ⊆ A/WTW ⊆ A/TW ⊆ A/IP ⊆ A/l3 ⊆ A/l2, and W/lk ⊆
P/lk ⊆ IP/lk ⊆ l3/lk ⊆ l2/lk.
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2. WTW/W ⊆ WTW/TW ⊆ WTW/IP ⊆ WTW/lk and WTW/IP ⊆
WTW/SP.

3. W/A = WTW/A = TW/A = IP/A ⊆ SP/A and IP/A ⊆ lk/A.

4. lk/W ⊆ lk/WTW ⊆ lk/TW ⊆ lk/IP ⊆ lk/l3 ⊆ lk/l2.

5. A/B ⊆ lk/B, TW/B ⊆ lk/B and WTW/B ⊆ lk/B.

6. W/lk = WTW/lk = TW/lk = IP/lk = SP/lk ⊆ l3/lk ⊆ l2/lk.

7. IP/WTW ⊆ lk/WTW.

W/WTW = WTW/WTW = TW/WTW = IP/WTW = P/WTW.

8. W/TW = IP/TW = WTW/TW.

Note that the previous lemma implies that the last five rows of Table 2 must
be the same.

The following theorem provides a characterization for Interval ∩ {chair,
dart}-free, obtained in terms of domination between induced paths versus weakly
toll walks.

Theorem 3. IP/WTW = Interval ∩ {chair,dart}-free.

Proof. By Lemma 2, IP/WTW ⊆ IP/TW, and by Table 1, IP/TW =
Interval. Thus IP/WTW ⊆ Interval.

On the other hand, as it is shown in Figure 3, chair has a pair of non-adjacent
vertices 4 and 5, a 45-weakly toll walk: 4, 3, 2, 1, 2, 3, 5 which is not dominated
by the 45-induced path. Also, dart has a pair of non-adjacent vertices 2 and 5, a
25-weakly toll walk: 2, 3, 4, 3, 5 which is not dominated by the 25-induced path:
2, 1, 5 (see Figure 3).

Thus the class IP/WTW is contained in Interval ∩ {chair,dart}-free.

We will now prove that Interval ∩ {chair,dart}-free ⊆ IP/WTW.

Let G be an Interval ∩ {chair,dart}-free. Suppose, in order to derive a
contradiction, that G /∈ IP/WTW. Then there exist two non-adjacent vertices
u and v, a uv-induced path W : u = x0, . . . , xn = v and a uv-weakly toll walk
W ′ : u = x′0, . . . , x

′
m = v satisfying that W does not dominate W ′. Thus, there

is some internal vertex of W ′ that is neither a vertex of W nor adjacent to any
internal vertex of W .

Let k be the first index such that x′k is neither a vertex of W nor adjacent
to any interval vertex of W . Let also Iu = [yu, wu] and Iv = [yv, wv] with
yu < wu < yv < wv be the intervals corresponding to vertices u and v in a given
interval representation of G.

Clearly the segment of line [wu, yv] is contained in the union of the intervals
corresponding to the internal vertices of W , then we can assume that the interval
Ix′

k
is contained in (wv,∞).
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u v = x′m = xn x′k

x′m−1

Figure 4.

Then since W ′ is a uv-weakly toll walk, Iv ⊂ Ix′

m−1
=

[

yx′

m−1
, wx′

m−1

]

with

wv < wx′

m−1
(Figure 4).

By the choice of k, x′k−1 is not a vertex of W , in particular x′k−1 6= xn−1. It
follows that x′k−1 is adjacent to an internal vertex of W .

To show that G has a chair or dart as induced subgraph, we consider the
following cases.

Case 1. Ix′

k−1
∩ Iv = ∅. Then the interval Ix′

k−1
is contained in (wv,+∞).

By the choice of k, xn−1 must be adjacent to x′k−1. Thus the interval Iv is
contained in the interval Ixn−1

. Since W is a uv-induced path, there exists xn−2,
wxn−2

< yv < wv < yx′

k−1
. It follows that xn−2 is not adjacent to x′k−1. Note

that xn−2 may be u. Thus G
[

xn−2, xn−1, xn = v, x′k−1, x
′
k

]

is a chair, which
contradicts our assumption.

Case 2. Ix′

k−1
∩ Iv 6= ∅. Since W ′ is a uv-weakly toll walk, it follows that

x′k−1 = x′m−1. Observe that there exists x′k−2, which may be u, and wx′

k−2
< yv.

Clearly xn−1 is adjacent to x′k−1. Since W is a uv-induced path, there exists
xn−2. Note that xn−2 may be a vertex of W ′ − {x′k−1}.

Case 2.1. Suppose that xn−2 is not a vertex of W ′. If xn−2 is adjacent
to x′k−1, then G

[

xn−2, xn−1, xn = v, x′k−1, x
′
k

]

is a dart, in contradiction with
our assumption. If xn−2 is not adjacent to x′k−1, then wxn−2

< yx′

k−1
. And so

x′k−2 must be adjacent to xn−1. Note that x′k−2 is not xn−1 because x′k−2 is not
adjacent to v, since W ′ ∈ WTW. Thus G

[

x′k−2, xn−1, xn = v, x′k−1, x
′
k

]

is a dart,
a contradiction.

Case 2.2. Suppose now that xn−2 is a vertex of W ′. If it is adjacent to x′k−1,
then G

[

xn−2, xn−1, xn = v, x′k−1, x
′
k

]

is a dart, a contradiction. If xn−2 is not
adjacent to x′k−1, then there exists x′k−2 such that wxn−2

< yx′

k−1
≤ wx′

k−2
and also

x′k−2 is not adjacent to v, sinceW
′ ∈ WTW. Observe that as yx′

k−1
≤ wx′

k−2
< yv

results x′k−2 must be adjacent to xn−1. Thus G
[

x′k−2, xn−1, xn = v, x′k−1, x
′
k

]

is
a dart, a contradiction.

Hence Interval∩{chair,dart}-free ⊆ IP/WTW. Therefore IP/WTW =
Interval ∩ {chair,dart}-free.

In [1] it was proved that SP/TW is not hereditary, and SP/TW ⊆
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Interval+. However, note that SP/WTW is hereditary as we will show in
Theorem 4. Moreover, SP/WTW = IP/WTW.

Theorem 4. SP/WTW = Interval ∩ {chair,dart}-free.

Proof. By Lemma 2, SP/WTW ⊆ SP/TW, and by [1], SP/TW⊆ Interval+.
So SP/WTW does not contain none of the graphs F2 or F4(n)n≥6 as induced
subgraph.

On the other hand, as it is shown in Figure 3, chair has a pair of non-adjacent
vertices 4 and 5, a 45-weakly toll walk: 4, 3, 2, 1, 2, 3, 5 which is not dominated
by the 45-shortest path. Thus chair is not in SP/WTW. Since a chair is an
induced subgraph of F1, F1 is not in SP/WTW.

Also dart has a pair of non-adjacent vertices 2 and 5, a 25-weakly toll walk:
2, 3, 4, 3, 5 which is not dominated by the 25-shortest path: 2, 1, 5 (see Figure
3). Thus dart is not in SP/WTW.

Note that dart is an induced subgraph of F3(n)n>6. Thus F3(n)n>6 /∈
SP/WTW. On the other hand, it is easy to check that F3(6) /∈ SP/WTW.

By before exposed, F3(n)n≥6 is not in SP/WTW. Hence SP/WTW does
not contain none of the graphs chair, dart Fi for i = 1, 2, Fj(n)n≥6 for j = 3, 4,
as induced subgraph. Therefore, SP/WTW ⊆ Interval ∩ {chair,dart}-free.

In that follows, we will show that Interval∩{chair,dart}-free⊆SP/WTW.
Let G be an Interval ∩ {chair,dart}-free. Assume, in order to obtain a

contradiction that G is not in SP/WTW. Then there exist two non-adjacent
vertices u and v, a uv-shortest path W : u = x0, . . . , xn = v and a uv-weakly toll
walk W ′ : u = x′0, . . . , x

′
m = v satisfying that W does not dominate W ′. Thus,

there is some internal vertex of W ′ that is neither a vertex of W nor adjacent to
any internal vertex of W .

As in the proof of Theorem 3, let k be the first index such that x′k is neither
a vertex of W nor adjacent to any interval vertex of W . Let Iu = [yu, wu] and
Iv = [yv, wv] with yu < wu < yv < wv be the intervals corresponding to vertices u
and v in a given interval representation of G. Clearly the segment of line [wu, yv]
is contained in the union of the intervals corresponding to the internal vertices
of W , then we can assume that the interval Ix′

k
is contained in (wv,∞).

Then since W ′ is a uv-weakly toll walk, Iv ⊂ Ix′

m−1
=

[

yx′

m−1
, wx′

m−1

]

. By

the choice of k, x′k−1 is not a vertex of W , in particular x′k−1 6= xn−1. However
it is adjacent to an internal vertex of W .

Suppose that Ix′

k−1
is contained in (wv,∞), it follows that x′k−1 is adjacent to

xn−1. Since W ∈ SP, xn−2 is not adjacent to v. Thus G[xn−2, xn−1, v, x
′
k−1, x

′
k]

is a chair, a contradiction.
Suppose that Ix′

k−1
is not contained in (wv,∞). We can assume that x′k−1

is adjacent to v, and since W ′ ∈ WTW results Iv ⊂ Ix′

k−1
. Note that xn−1 /∈

W ′. If xn−2 is adjacent to x′k−1, since W ∈ SP results wxn−2
< yv, and then
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G
[

xn−2, xn−1, xn = v, x′k−1, x
′
k

]

is a dart in contradiction with our assumption.
If xn−2 is not adjacent to x′k−1, since W ′ is a uv-weakly toll walk, then x′k−2 is
not xn−1. Thus G

[

x′k−2, xn−1, xn = v, x′k−1, x
′
k

]

is a dart, a contradiction.
Hence Interval∩{chair,dart}-free⊆ SP/WTW. Therefore SP/WTW =

Interval ∩ {chair,dart}-free.

As a consequence of Lemma 2, Theorem 3, and Theorem 4, we obtain the
following.

Corollary 5. SP/WTW = IP/WTW = P/WTW = W/WTW = TW/
WTW = WTW/WTW = Interval ∩ {chair,dart}-free.

In the rest of this section we will study the domination between lk-paths for
k ∈ {2, 3} and different types of walks.

Lemma 6. For every k ∈ {2, 3} the following statements hold.

1. lk/IP ⊆ Chordal.

2. IP/lk ⊆ Chordal.

Proof. 1. Let G ∈ lk/IP, and suppose, in order to derive a contradiction, that
G /∈ Chordal. Thus G contains as induced subgraph a cycle Cn with n ≥ 4. Let
Cn : x1, x2, . . . , xn, x1. The x1x3-lk-path: x1, x2, x3 does not dominate the x1x3-
induced path: x1, xk, xn−1, . . . , x3, a contradiction. Hence lk/IP ⊆ Chordal.

2. The proof is similar to the proof of 1, taking x1x3-induced path: x1, xn,
xn−1, . . . , x3, which does not dominate the x1x3-lk-path: x1, x2, x3. Thus IP/lk ⊆
Chordal.

The following theorem allows us to find a new characterization of chordal
graphs in terms of domination between lk-path, tolled walk, weakly toll walk,
induced path and walk.

Theorem 7. For k = 2, 3, the followings statements hold.

1. lk/IP = Chordal.

2. IP/lk = Chordal.

Proof. 1. By Table 1, Chordal = IP/IP and by Lemma 2, IP/IP ⊆ lk/IP.
Thus Chordal = IP/IP ⊆ lk/IP. By Lemma 6, lk/IP ⊆ Chordal. Hence
lk/IP = Chordal.

2. By Lemma 2, IP/IP ⊆ IP/lk. Thus Chordal ⊆ IP/lk. By Lemma 6,
IP/lk ⊆ Chordal. Hence IP/lk = Chordal.

Lemma 2, and Theorem 7, imply the following.

Corollary 8. For k = 2, 3, the followings statement holds. IP/lk = W/lk =
WTW/lk = TW/lk = Chordal.
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Corollary 9. For k = 2, 3, the followings statements hold.

1. Interval ⊆ lk/TW ⊆ Chordal.

2. Interval ∩ {chair,dart}-free ⊆ lk/WTW ⊆ Chordal.

Proof. 1. By Lemma 2, IP/TW ⊆ lk/TW and lk/TW ⊆ lk/IP.

By [1], Interval = IP/TW, then Interval ⊆ lk/TW. By Theorem 7,
lk/TW ⊆ lk/IP = Chordal.

2. By Lemma 2, Theorem 3, and Theorem 7, it follows that IP/WTW =
Interval ∩ {chair,dart}-free ⊆ lk/WTW ⊆ lk/IP = Chordal.

Superfragile and Ptolematic− can be also characterized in terms of dom-
ination between lk-paths, paths, and walks, which are given in the following
theorem.

Theorem 10. For k = 2, 3, the followings statements hold.

1. lk/W = Superfragile.

2. lk/P = Ptolematic−.

Proof. 1. By Table 1, and Lemma 2, Superfragile = IP/W ⊆ lk/W.

It is easy to check that C4 and dart have a pair of non-adjacent vertices u
and v and a uv-walk which is not dominated by a uv-lk-path, then C4 and dart
are not in lk/W. In the case of P4 : x0, x1, x2, x3, we consider u = x0, v = x2,
the uv-walk: u, x1, x2, x3, v which is not dominated by the uv-lk-walk: u, x1, v.
So, P4 is not in lk/W.

Suppose thatG ∈ lk/W andG is not superfragile. SinceG is not superfragile,
G contains P4 or C4 or dart as induced subgraph, a contradiction.

2. By Table 1, and Lemma 2, Ptolematic− = IP/P ⊆ lk/P.

It is easy to show that D, gem and co-chair are not in lk/P, see Figure 5.
Thus lk/P = Ptolematic−.

u
co-chair

vw

v

u
gem

w
D

vu

w

Figure 5. In each graph above, the vertex labelled w belongs to a uv-path and it is
adjacent to no internal vertex of the bold uv-lk-path.

We now study domination between lk-path and tolled walk.
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ww

F
′

1(n)n≥7 F
′

3(n)n≥6 F
′′

3 (n)n≥6

u v u v wu

v

Figure 6. Graphs F
′

1(n)n≥7, and F
′

3(n)n≥6 are obtained by increasing one and only one
path of F1 and F3(n)n≥6, respectively.

w

F5(n)n≥8 F6(n)n≥7

u v

w

F7(n)n≥7

wu

v

Figure 7. F5(n)n≥8 is obtained from F ′
1(n) by adding a universal vertex to F ′

1(n) − w,
F6(n)n≥7 is obtained from F ′

3(n) by adding a universal vertex to F ′
3(n)−w, and F7(n)n≥7

is obtained from F
′′

3 (n) by adding a universal vertex to F
′′

3 (n)− w.

Observation 11. Let G be a graph, and W ′ : u = x′0, x
′
1, . . . , x

′
m = v a uv-tolled

walk. It follows from the definition of tolled walk that if there exists a vertex in W ′

such that x′k /∈ N [u] ∪N [v], then u and x′k are in the same connected component

of G[W ′] − N [v], and also v and x′k are in the same connected component of

G[W ′]−N [u].

Theorem 12. l3/TW = Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-
free.

Proof. By Corollary 9, l3/TW ⊆ Chordal.
It is easy to verify that F2, F3(n)n≥6, F4(n)n≥6, and F5(n)n≥8 are not in

l3/TW. Thus l3/TW ⊆ Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-
free.

Now, we will prove that Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5}-free ⊆
l3/TW.

Let G ∈ Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-free, and sup-
pose, in order to derive a contradiction, that G /∈ l3/TW.

As G /∈ l3/TW there exist two non-adjacent vertices u and v, a uv-l3-walk
W : u = x0, . . . , xn = v (observe that n = 2 or n = 3) and a uv-tolled-walk
W ′ : u = x′0, x

′
1, . . . , x

′
m = v satisfying that W does not dominate W ′. Thus,
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there is some internal vertex of W ′ that is neither a vertex of W nor adjacent to
any internal vertex ofW . Let x′k be a vertex ofW ′−W such that it is not adjacent
to any vertex of W . We can assume that k 6= 1,m − 1, otherwise G[W ∪ W ′]
contains as induced subgraph a cycle of size at least four.

Let P be a shortest path in G[W ′] from u to v. Since W ′ is a uv-tolled walk,
x′1 and x′m−1 are vertices of P . Note that x′1 6= x′m−1, and then |V (P )| ≥ 4.

Claim 13. x′k /∈ P .

Proof. Suppose that x′k ∈ P . Let us consider two cases, depending of the length
n of W .

Case a. n = 2. Clearly P ∩ {x1} = ∅ since |V (P )| ≥ 4. On the other hand
G[{x1} ∪ P ] is a chordal graph, it follows that x1 is adjacent to every vertex of
P . Thus x1 is adjacent to x′k, a contradiction.

Case b. n = 3. Let us consider two cases.

Case b.1. P ∩ {x1} 6= ∅. Since W ′ is a uv-tolled walk, x′1 = x1. On the
other hand, x2 /∈ P since by our assumption x′k ∈ P . As G[{x2}∪P ] is a chordal
graph, it follows that x2 is adjacent to x′k, a contradiction.

Case b.2. P ∩ {x1} = ∅. We can also assume that P ∩ {x2} = ∅. Since
G[{x1, x2}∪P ] is a chordal graph, there exist chords between vertices of {x1, x2}
and P . Then x1 is adjacent to x′k or x2 is adjacent to x′k, a contradiction.
Therefore x′k /∈ P .

In what follows we will analyze two cases, depending of x′k is or is not adjacent
to vertices of P .

Case 1. x′k is adjacent to some vertex of P . Note that if x′k is adjacent to
two non-consecutive vertices of P , let x′a and x′b, since G

[

P [x′a, x
′
b] ∪ {x′k}

]

6= Cr

(for some r > 3), it follows that x′k is adjacent to every vertex of P [x′a, x
′
b].

Let us consider two cases, depending of the length n of W .

Case 1.1. n = 2. Clearly x1 /∈ P . Since G[{x1} ∪ P ] is a chordal graph, x1
is adjacent to every vertex of P .

Case 1.1.2. Suppose that x′k is adjacent to two consecutive vertices x′i, x
′
i+1

of P . By the choice of k, and since G
[

x′i−1, x
′
i, x

′
i+1, x

′
i+2, x

′
k, x1

]

6= F4(6), results
x′i−1 or x′i+2 is adjacent to x′k. Thus G

[

x′i−1, x
′
i+1, x

′
k, x1

]

= C4 or G
[

x′i, x
′
i+2,

x′k, x1
]

= C4, a contradiction.

Case 1.1.3. Suppose that x′k is adjacent to one and only one vertex of P . Let
us consider two cases: x′k is or is not adjacent to x′1 (by symmetry x′k is or is not
adjacent to x′m−1).
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First, suppose that x′k is adjacent to x′1 (by symmetry x′k is adjacent to
x′m−1). Since W ′ is a uv-tolled walk by Observation 11, there exists a shortest
path P1 between v and x′k in G[W ′] such that V (P1) ∩ N [u] = ∅. And as W ′ is
a uv-tolled walk, results v, x′m−1 ∈ V (P ) ∩ V (P1). Let x

′
h be a vertex of P1 such

that it is adjacent to x1, and minimizes the distance in P1 between x′k and x′h.
Note that x′h 6= x′k since x′h is adjacent to x1.

As G is chordal, every vertex of P1[x
′
h, v] must be adjacent to x1. By choice

of x′k and x′h, and as G
[

{x′1, x1} ∪ P1

[

x′k, x
′
h

]]

6= Cr (for some r > 3), it follows
that every vertex of P1

[

x′k, x
′
h

]

must be adjacent to x′1.
Let x′i ∈ V

(

P1

[

x′h, x
′
k

])

such that x′ix
′
h is an edge of P1. Since x′i is adjacent

to x′1 but it is not adjacent to x1, results G
[{

u, x′1, x1
}

∪P1[x
′
i, v]

]

contains F4(n)
(for some n ≥ 6) as induced subgraph, a contradiction.

Suppose that x′k is not adjacent to x′1 neither x′m−1. Then G
[

P ∪
{

x′k, x1
}]

contains F2 as induced subgraph, a contradiction.

Case 1.2. n = 3. Let us consider two cases, depending of x1 is or is not a
vertex of P .

Case 1.2.1. Suppose that x1 ∈ P . By the choice of P , which is a shortest
path in G[W ′], and since x′k is adjacent to some vertex of P , results x2 /∈ P .
Observe that since W ′ is a uv-tolled walk, then x′1 = x1.

Since G[P [x1, v] ∪ {x2}] is a chordal graph, x2 must be adjacent to every
vertex of P [x1, v]. And then, if x′k is not adjacent to x′2 following the proof of
Case 1.1.3, G

[

P [x′1, v] ∪ {x2, x
′
k}
]

contains F2, or F4(n) (for some n ≥ 6), so we
derive to a contradiction.

Suppose that x′k is adjacent to x′2. Since G
[

W ∪
{

x′2, x
′
k

}]

6= F3(n) (for some
n ≥ 6), it follows that x2 must be adjacent to x′k, a contradiction.

Case 1.2.2. Suppose that x1 /∈ P . We can assume that x2 /∈ P . If x′k is
adjacent to two consecutive vertices of P or it is only adjacent to x′1, respectively
x′m−1, then by the same arguments developing in Case 1.1, we can conclude that
G[W ∪ P ] contains Cr (for some r > 3), or F2, or F4(n) (for some n ≥ 6), or
F3(n) (for some n ≥ 6) as induced subgraph, a contradiction.

If x′k is adjacent to one and only one vertex x′i of P −
{

x′1, x
′
m−1

}

, then G
contains F2 or F3(n) (for some n ≥ 6) as induced subgraph according to x1 is
adjacent or is not to x′i+2 (x2 is adjacent or is not to x′i−2), a contradiction.

Case 2. x′k is adjacent to no vertex of P . Note that P ∩ N [x′k] = ∅ by
Claim 13.

Since W ′ is a uv-tolled walk, by Observation 11, there exists an induced
path between u and x′k in G[W ′] avoiding the neighborhood of v, and also there
exists an induced path between v and x′k in G[W ′] avoiding the neighborhood of
u. Those paths, together with P allow us to state that u, v, x′k is an asteroidal
triple.
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Hence, we assume that there exist three induced paths of G[W ′]: P between
u and v; P1 between u and x′k; P2 between v and x′k; and three vertices x′ai ∈
V (P )∩V (P1); x

′
aj

∈ V (P )∩V (P2); and x′ah ∈ V (P1)∩V (P2); such that: V (P )∩
N [x′k] = ∅, V (P1) ∩ N [v] = ∅, V (P2) ∩ N [u] = ∅, and the distance between x′ai
and u, between x′aj and v, and between x′ah and x′k in the respective paths is
maximum.

Note that u, x′1 ∈ P1 and v, x′m−1 ∈ P2, since W ′ is an uv-tolled walk. With-
out loss of generality, we can assume that (P ∩ P1)[u, x

′
ai
], (P ∩ P2)[x

′
aj
, v] and

(P1 ∩ P2)[x
′
ah
, x′k] are induced paths.

In that follows, we will show that G[P ∪ P1 ∪ P2] must be a tree. Note that
we will apply arguments similar to those developed in [8].

In order to derive to a contradiction suppose that x′ap 6= x′aq for every p 6= q
with p, q ∈ {i, j, h}. First, we will show that by our choice of x′ai , x

′
aj
, x′ah , P, P1

and P2, we can assume that x′k 6= x′ah .

Suppose by contradiction, that x′k = x′ah . Since x′k is not adjacent to no
vertex of P ,

∣

∣V
(

P1[x
′
ai
, x′ah ]

)∣

∣ > 2 and
∣

∣V
(

P2

[

x′aj , x
′
ah

])∣

∣ > 2. As G
[

P1[x
′
ai
, x′ah

]

∪

P2

[

x′ah , x
′
aj

]

∪ P
[

x′ai , x
′
aj

]]

is a chordal graph, then the neighborhood of x′ah in

P1

[

x′ai , x
′
ah

]

∪P2

[

x′ah , x
′
aj

]

∪P
[

x′ai , x
′
aj

]

must be a complete set of three vertices.

If x′ai is adjacent to x′aj , then G[P ∪ P1 ∪ P2] contains F3(n) (for some
n ≥ 6) as induced subgraph, a contradiction. Thus x′ai is not adjacent to
x′aj , and by our choice of them, the neighborhood of x′ap (for p ∈ {i, j, h}) in

P1

[

x′ai , x
′
ah

]

∪P2

[

x′ah , x
′
aj

]

∪P
[

x′ai , x
′
aj

]

must be a complete set of three vertices.

Moreover, there exits p ∈ {i, j, h} such that N
[

x′ap
]

∩N
[

x′aq
]

∩V
[

G[P1

[

x′ai , x
′
ah

]

∪

P2

[

x′ah , x
′
aj

]

∪ P
[

x′ai , x
′
aj

]]

6= ∅ for q ∈ {i, j, h} − p. Hence G
[

P1[x
′
ai
, x′ah

]

∪

P2

[

x′ah , x
′
aj

]

∪P
[

x′ai , x
′
aj

]]

contains F4(n) (for some n ≥ 6) as induced subgraph, a

contradiction. By before exposed, x′k 6= x′ah and then
∣

∣V
(

(P1∩P2)
[

x′ah , x
′
k

])
∣

∣ > 1.

If at least two pair of vertices of
{

x′ai , x
′
aj
, x′ah

}

are adjacent, then since

G
[

P1

[

x′ai , x
′
ah

]

∪P2

[

x′ah , x
′
aj

]

∪P
[

x′ai , x
′
aj

]]

is a chordal graph, it follows thatG[P∪
P1 ∪ P2] contains F3(n) (for some n ≥ 6) as induced subgraph, a contradiction.
Thus these vertices are not adjacent, and by our choice of them, it follows that
neighboring of x′ap (for p ∈ {i, j, h}) in P1

[

x′ai , x
′
ah

]

∪ P2

[

x′ah , x
′
aj

]

∪ P
[

x′ai , x
′
aj

]

must be a complete set of three vertices. Moreover there exits p ∈ {i, j, h} such
that N

[

x′ap
]

∩ N
[

x′aq
]

∩ V
[

G
[

P1

[

x′ai , x
′
ah

]

∪ P2

[

x′ah , x
′
aj

]

∪ P
[

x′ai , x
′
aj

]]

6= ∅ for

q ∈ {i, j, h} − p. Hence G
[

P1

[

x′ai , x
′
ah

]

∪ P2

[

x′ah , x
′
aj

]

∪ P
[

x′ai , x
′
aj

]]

contains
F4(n) (for some n ≥ 6) as induced subgraph, a contradiction. By before exposed,
G[P ∪P1 ∪P2] is a tree, and since u, v, x′k is an asteroidal triple of G[P ∪P1 ∪P2]
results |V (P )| ≥ 5 and |V (Pi)| ≥ 5 for i = 1, 2.

Without loss of generality, we can assume that G[P ∪P1] = T1(= G[P ∪P1 ∪
P2] = G[P ∪P2] = G[P1 ∪P2]) is an induced tree with one and only one vertex of
degree exactly 3 different from x′1 and x′m−1, and then T1 contains F1 as induced



On Walk Domination: Weakly Toll Domination, l2 and ... 853

subgraph.

Note that if x1 ∈ V (T1), then x′1 = x1, n = 3 and x2 /∈ V (T1). And we repeat
the procedure done when study the Case 1.2.

Thus, without loss of generality, we can suppose that x1 and x2 are not
vertices of T1.

In the following cases, let x′ai be the vertex of degree three of T1, and x′h be
the vertex of P1 − P adjacent to x′ai .

Case 2.1. n = 2. Since x1 /∈ T1, x1 is adjacent to u and v, and G is chordal,
we have that x1 is adjacent to each vertex of P . As G[P ∪ {x1} ∪ P1] does not
contain F5(n) (for n ≥ 8) as induced subgraph, it follows that x1 must be adjacent
to every vertex of P1. Thus x1 is adjacent to x′k, a contradiction.

Case 2.2. n = 3. Let us considerer as P : u, x′1, x
′
a2
, . . . , xa′i−1

, x′ai , x
′
ai+1

, . . . ,

x′ap , x
′
m−1, v, and P1[x

′
ai

, x′k] : x
′
ai
, x′h, x

′
bh+1

, . . . , x′bq , x
′
k. Since x1 is adjacent to

u, x2 is adjacent to v, and G is chordal, we have that there exist chords between
vertices of W and P .

Let j ∈ {1, a2, . . . , ai−1, ai, ai+1, . . . , ap,m − 1} be the first index such that
x1x

′
j and x2x

′
j are chords.

Case 2.2.1. Suppose that j ≤ ai−2. Since G is chordal, there exist chords
x2y for y ∈

{

x′ai−2
, x′ai−1

, x′ai , x
′
ai+1

, . . . , x′ap , x
′
m−1

}

. Also, as G
[

P1

[

x′ai , x
′
k

]

∪

P
[

x′ai−2
, v
]

∪ {x2}
]

does not contain F2 as induced subgraph, then there exist

chords x2z for some z ∈ V
(

P1

[

x′ai , x
′
k

])

\ {x′ai}.
If z 6= x′h, then x2 is adjacent to each vertex of P1[x

′
h, z], otherwiseG

[

P1

[

x′ai , z
]

∪{x2}
]

= Cr (for some r > 3) contradicting that G is chordal.

Since G
[

P1

[

x′ai , x
′
k

]

∪ P
[

x′ai−2
, v
]

∪ {x2}
]

does not contain F5(n) (for some

n ≥ 8) as induced subgraph, results x2 is adjacent to each vertex of P1

[

x′ai , x
′
k

]

,
in particular it is adjacent to x′k, a contradiction.

Case 2.2.2. Suppose that j ≥ ai+2. This case can be treated similarly to
Case 2.2.1 by symmetry.

Case 2.2.3. Suppose that j ∈ {ai−1, ai, ai+1}. Note that ai−2 and ai+2 may
not exist, in this case |V (P )| = 5, and then x′ai−1

= x′1 and x′ai+1
= x′m−1.

Case 2.2.3.1. j = ai−1.

a. Assume that x1 is not adjacent to x′ai . Then it is not adjacent to x′ai+1

neither x′ai+2
, otherwise G

[

x1, x
′
ai−1

, x′ai , x
′
ai+1

]

= C4 or G
[

x1, x
′
ai−1

, x′ai , x
′
ai+1

,

x′ai+2

]

= C5. Since G
[

x′ai−1
, x′ai , x

′
ai+1

, x′ai+2
, x2

]

6= C5, x2 is adjacent to each

vertex of P [x′ai , v]. Since G
[

P
[

x′j , v
]

∪ P1

[

x′ai , x
′
k

]

∪ {x1, x2}
]

does not contains

F2 as induced subgraph, x1 must be adjacent to some vertex of P1

[

x′ai , x
′
k

]

− x′ai
or x2 must be adjacent to some vertex of P1

[

x′ai , x
′
k

]

− x′ai .
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a.1. Suppose that x1 is adjacent to some vertex of P1

[

x′ai , x
′
k

]

− x′ai . Let w
be a vertex of P1

[

x′ai , x
′
k

]

− {x′ai} minimizing the distance to x′ai . Then, since
G
[

{x1, x
′
ai−1

} ∪ P1

[

x′ai , w
]]

6= Cr (for some r > 3), x1 is adjacent to every vertex

of P1

[

x′ai , w
]

, in particular it is adjacent to x′ai , a contradiction.

a.2. If x1 is not adjacent to any vertex of P1

[

x′ai , x
′
k

]

− x′ai , then as G
[

W ∪
P1

[

x′ai , x
′
k

]

∪ P
[

x′ai , v
]]

does not contains F2 neither F5(n) as induced subgraph
(for some n ≥ 8), then x2 must be adjacent to each vertex of P1, in particular it
is adjacent to x′k, a contradiction.

b. Now, suppose that x1 is adjacent to x
′
ai
. Since G

[

W∪P1

[

x′ai , x
′
k

]]

does not
contain F3(n) (for some n ≥ 6) as induced subgraph, it follows that x1 or x2 must
be adjacent to every vertex of P1

[

x′ai , x
′
k

]

, in particular to x′k, a contradiction.

Case 2.2.3.2. j = i. Thus x2 is not adjacent to x′ai−1
. Since G

[

W ∪

P1

[

x′ai , x
′
k

]]

does not contain F3(n) (for some n ≥ 6) as induced subgraph, it
follows that x1 or x2 must be adjacent to every vertex of P1

[

x′ai , x
′
k

]

, in particu-
lar to x′k, a contradiction.

Case 2.2.3.3. j = ai+1. This case can be treated similarly to Case 2.2.3.1 by
symmetry.

By the before exposed, Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-
free = l3/TW.

Theorem 14. l2/TW = Chordal ∩ {F2,F4(n)n≥6,F5(n)n≥8,F6(n)n≥7,
F7(n)n≥7}-free.

Proof. By Corollary 9, l2/TW ⊆ Chordal.

It is easy to see that F2, F4(n)n≥6, F5(n)n≥8, and F6(n)n≥7, F7(n)n≥7 are
not in l2/TW. Thus l2/TW ⊆ Chordal∩{F2,F4(n)n≥6,F5(n)n≥8,F6(n)n≥7,
F7(n)n≥7}-free.

On the other hand, by Lemma 2 it follows that l3/TW ⊆ l2/TW, and
then by Theorem 12, Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-free ⊆
l2/TW.

In what follows, we will prove that Chordal ∩ {F2,F4(n)n≥6, F5(n)n≥8,
F6(n)n≥7,F7(n)n≥7}-free ⊆ l2/TW.

In order to derive a contradiction, we suppose that G ∈ Chordal ∩ {F2,
F4(n)n≥6, F5(n)n≥8, F6(n)n≥7,F7(n)n≥7}-free and G /∈ l2/TW. Since G /∈
l2/TW, there exist two non-adjacent vertices u and v, a uv-l2-walk W : u =
x0, . . . , xn = v (observe that n = 2) and a uv-tolled-walk W ′ : u = x′0, x

′
1, . . . , x

′
m

= v satisfying that W does not dominate W ′. Thus, there is some internal vertex
of W ′ that is neither a vertex of W nor adjacent to any internal vertex of W . Let
x′k be a vertex of W ′−W such that it is not adjacent to any vertex of W . We can
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assume that k 6= 1,m− 1, otherwise G[W ∪W ′] contains as induced subgraph a
cycle of size at least four.

Let P be a shortest path in G[W ′] from u to v. Since W ′ is a uv-tolled walk,
x′1 and x′m−1 are vertices of P . By Claim 13 Case a, results x′k /∈ P .

In what follows we will analyze two cases, depending of x′k is or is not adjacent
to vertices of P . Note that x1 /∈ P .

Case 1. x′k is adjacent to some vertex of P . This case can be treated similarly
to Case 1 of Theorem 12.

Case 2. x′k is adjacent to no vertex of P . Thus P ∩ N [x′k] = ∅. Since W ′

is a uv-tolled walk, by Observation 11, there exists an induced path between u
and x′k in G[W ′] avoiding the neighborhood of v, and also there exists an induced
path between v and x′k in G[W ′] avoiding the neighborhood of u. Those paths,
together with P allow us to state that u, v, x′k is an asteroidal triple.

Hence, let us consider P, P1, P2, x
′
ai
, x′aj , x

′
ah

as in Case 2 of Theorem 12.

Case 2.1. G[P ∪P1∪P2] is an induced tree. This case can be treated similarly
to Case 2.1 of Theorem 12.

Case 2.2. G[P ∪ P1 ∪ P2] is not an induced tree. We can assume that it
does not contains F ′

1(n) with leaves x′k, u, and v (for some n ≥ 7) as induced
subgraph. Then x′ap 6= x′aq for p 6= q with p, q ∈ {i, j, h}.

Note that at least two pairs of
{

x′ai , x
′
aj
, x′ah

}

must be adjacent, otherwise
by the exposed in Case 2 of Theorem 12, it follows that G[P ∪ P1 ∪ P2] contains
F4(n) (for some n ≥ 6), a contradiction.

Since G[P ∪ {x1}] is not an induced cycle of length at least four, results x1
is adjacent to every vertex of P . Note that x′k 6= x′ah , since x′ah is adjacent to
x′ai or x′aj and x′k is adjacent to no vertex of P . Thus x′k and x′ah are vertices
of P1 ∩ P2. Hence, the intersection between every pair of {P, P1, P2} has at least
two vertices.

Let us consider as P : u, x′1, x
′
a2
, . . . , x′ai , . . . , x

′
aj
, . . . , x′m−1, v, P1 : u, x′1, x

′
a2
,

. . . , x′ai , . . . , x
′
ah
, . . . , x′k and P2 : x

′
k, . . . , x

′
ah
, . . . , x′aj , . . . , x

′
m−1, v.

Case 2.2.1. x′ai and x′aj are adjacent to x′ah . Since G is chordal graph, x′ah
must be adjacent to each vertex of P

[

x′ai , x
′
aj

]

, otherwise G
[{

x′ah
}

∪P
[

x′ai , x
′
aj

]]

contains Cr as induced subgraph (for some r > 3).

Case 2.2.1.1. Suppose that x′ai is adjacent to x′aj . Since G
[{

x′ai−1
, x′ai , x

′
aj
,

x′aj+1
, x1, x

′
ah

}]

6= F4(6), we have that x1 must be adjacent to x′ah . Moreover,

as G
[

P
[

x′ai−1
, x′aj+1

]

∪ P1

[

x′ah , x
′
k

]]

does not contain F6(n) (for some n ≥ 7) as

induced subgraph, then there exist chords x1z for every vertex z of P1

[

x′ai , x
′
k

]

,
in particular, x1 must be adjacent to x′k, which contradicts our assumption.
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Case 2.2.1.2. Suppose that x′ai is not adjacent to x′aj . Since G
[

x′ai , x
′
aj
, x1,

x′ah
]

6= C4, we have that x1 must be adjacent to x′ah . Moreover, as G
[

P
[

x′ai−1
,

x′aj+1

]

∪P1

[

x′ah , x
′
k

]]

does not contain F6(n) (for some n ≥ 7) as induced subgraph,
then there exist chords x1z for every z vertex of P1[x

′
ai
, x′k], in particular x1 must

be adjacent to x′k, which contradicts our assumption.

Case 2.2.2. x′aj and x′ah are adjacent to x′ai (by symmetry x′ai and x′ah are
adjacent to x′aj ).

Suppose that x′aj is not adjacent to x′ah , otherwise following Case 2.2.1.1 we
arrive to a contradiction.

Since G
[{

x′ai
}

∪ P2

[

x′aj , x
′
ah

]]

6= Cr (for some r > 3), we have that x′ai is

adjacent to every vertex of P2[x
′
aj
, x′ah ]. Let x′aq be the vertex of P2

[

x′aj , x
′
k

]

adjacent to x′aj . As G
[{

x′ai−1
, x′ai , x

′
aj
, x′aq , x

′
aj+1

, x1
}]

6= F4(6), then there exists

the chord x1x
′
aq
. Also G

[{

x′ai−1
, x′ai , x

′
aj+1

, x1
}

∪P2

[

x′aj , x
′
ah

]]

does not contain
F4(n) (for some n ≥ 6), then x1 must be adjacent to every vertex of P2[x

′
aj
, x′ah ].

On the other hand, G
[{

x′ai−1
, x′ai , x

′
aj
, x′aj+1

, x1
}

∪P2

[

x′aj , x
′
k

]]

does not con-
tain F7(n) (for some n ≥ 7), it follows that x1 must be adjacent to every vertex
of P2[x

′
aj
, x′k], in particular, it is adjacent to x′k contradicting our assumption.

Therefore
l2/TW = Chordal ∩ {F2,F4(n)n≥6, F5(n)n≥8, F6(n)n≥7,F7(n)n≥7}-free.

From Lemma 2, and Theorem 12, we obtain the following characterization.

Theorem 15. l3/WTW = Interval ∩ {chair,dart}-free.

Proof. From Lemma 2, l3/WTW ⊆ l3/TW, and by Theorem 12, l3/WTW ⊆
Chordal ∩ {F2,F3(n)n≥6,F4(n)n≥6,F5(n)n≥8}-free.

One can readily verify that F1 is not in l3/WTW. Then l3/WTW ⊆
Interval. Also dart and chair are not in l3/WTW. Thus l3/WTW ⊆ Interval
∩{chair,dart}-free.

Also by Lemma 2, IP/WTW ⊆ l3/WTW. Thus Interval∩{chair,dart}-
free ⊆ l3/WTW

Hence l3/WTW = Interval ∩ {chair,dart}-free.

From the Lemma 2, and Theorem 15, we get the following.

Corollary 16. SP/WTW = IP/WTW = P/WTW = W/WTW = TW/
WTW = WTW/WTW = l3/WTW = Interval ∩ {dart, chair}-free.

The following theorem provides a characterization ofChordal∩{chair,dart,
F4(6)}-free.

Theorem 17. l2/WTW = Chordal ∩ {chair,dart,F4(6)}-free.
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Proof. By Lemma 2, l3/WTW ⊆ l2/WTW, and by Theorem 15, we obtain
Interval ∩ {dart, chair}-free ⊆ l2/WTW. Also by Lemma 2, l2/WTW ⊆
l2/TW, and by Theorem 14, results l2/WTW ⊆ Chordal ∩ {F2,F4(n)n≥6,
F5(n)n≥8, F6(n)n≥7, F7(n)n≥7}-free.

Note that F1 and F3(n)n>6 are not in l2/WTW but F3(6) ∈ l2/WTW.
Thus l2/WTW⊆Chordal ∩ {F1,F2,F3(n)n>6,F4(n)n≥6, F5(n)n≥8,
F6(n)n≥7, F7(n)n≥7}-free.

On the other hand, F1, F2, F3(n)n>6, F4(n)n>6, F5(n)n≥8, F6(n)n≥7, F7(n)n≥7

contain as induced subgraph a chair or a dart. Note that chair, dart and F4(6)
are not in l2/WTW. Thus l2/WTW ⊆ Chordal ∩ {chair,dart,F4(6)}-free.

Now, we will prove that Chordal∩ {chair,dart,F4(6)}-free ⊆ l2/WTW.
In that follows, we suppose that G ∈ Chordal ∩ {chair,dart,F4(6)}-free and
G /∈ l2/WTW. Then there exist two non-adjacent vertices u and v, a uv-l2-walk
W : u = x0, x1, x2 = v and a uv-weakly toll W ′ : u = x′0, x

′
1, . . . , x

′
m = v satisfying

that W does not dominate W ′. Thus, there is some internal vertex of W ′ that
is neither a vertex of W nor adjacent to any internal vertex of W . Let x′k be a
vertex of W ′ −W such that it is not adjacent to any vertex of W .

Let us consider the following exhaustive cases.

Case 1. W ′ ∩ {x1} 6= ∅. Then, by definition of uv-weakly toll walk, one has
that x1 = x′1 = x′m−1 and that u and v are not adjacent to those vertices in W ′

which are different from x1. Then let P be a shortest path in G[W ′] from x1 to
x′k. Thus, G[P ∪ {u, v}] contains as induced subgraph a chair, a contradiction.

Case 2. W ′ ∩ {x1} = ∅.

Case 2.1. x′1 = x′m−1. Then, by definition of a uv-weakly toll walk, one has
that u and v are non-adjacent vertices to those vertices in W ′ which are different
to x′1 = x′m−1, Since G is chordal, x1 is adjacent to x′1 = x′m−1. Then let P be a
shortest path in G[W ′] from x′1 = x′m−1 to x′k, then G[P ∪ {u, v, x1}] contains an
induced dart (if x′1 = x′m−1 is adjacent to x′k) or an induced chair (otherwise), a
contradiction.

Case 2.2. x′1 6= x′m−1. Then, by definition of a uv-weakly toll walk, one has
that u is non-adjacent to those vertices in W ′ which are different from x′1, and
that v is non-adjacent to those vertices in W ′ which are different from x′m−1. Let
P be a shortest path in G[W ′] from x′1 to x′m−1. Since G is chordal, x1 is adjacent
to every vertex of P . Then let P1 be a shortest path in G[W ′] from P to x′k, in
particular, let x′h be the vertex of P1 − P which is adjacent to some vertex of P .
Observe that x′h may be x′k.

If x′1 is adjacent to x′m−1 (that is P is formed just by such two vertices),
then if x′h is adjacent to both x′1 and x′m−1, then G[u, v, x′1, x

′
m−1, x

′
h] is a chair, a

contradiction. If x′h is adjacent only to x′m−1, then G[u, v, x′1, x
′
m−1, x

′
k] is a chair,

a contradiction.
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If x′1 is non-adjacent to x′m−1 (that is P is not formed just by such two
vertices), then let z be the vertex of P adjacent to x′1. Then G[u, v, x1, x

′
1, z] is a

dart, a contradiction.
Hence l2/WTW = Chordal ∩ {chair,dart,F4(6)}-free.

For last, we study the domination between lk-paths for k ∈ {2, 3} versus
lh-paths for h ∈ {2, 3} and walks.

Theorem 18. l3/l3 = {C4,C5,C6}-free.

Proof. Clearly, C4, C5 and C6 are not in l3/l3. Thus l3/l3 ⊆ {C4,C5,C6}-free.
In that follows, we will prove that {C4,C5,C6}-free ⊆ l3/l3. Suppose that

G ∈ {C4,C5,C6}-free andG /∈ l3/l3. Then there exist two non-adjacent vertices
u and v, a uv-l3-walk W : u = x0, . . . , xn = v (observe that n = 2 or n = 3) and
a uv-l3-walk W ′ : u = x′0, x

′
2, . . . , x

′
m = v (m = 2 or m = 3) satisfying that W

does not dominate W ′. Thus, there is some internal vertex of W ′ that is neither
a vertex of W nor adjacent to any internal vertex of W .

We analyze two situations depending on the length of W and W ′.

1. n = 2. Clearly, m = 2 or m = 3, in both cases W ∩ W ′ = {u, v} and
W ∪W ′ = C4 or W ∪W ′ = C5, a contradiction.

2. n = 3. Observe that m may be 2 or 3, and W ∩W ′ = {u, v}. Thus W ∪W ′ =
C5 or W ∪W ′ = C6, in both cases a contradiction.

Theorem 19. l2/l2 = {C4}-free.

Proof. Clearly C4 is not in l2/l2. Thus l2/l2 ⊆ {C4}-free.
Now, we will prove the other contention. Suppose that G ∈ {C4}-free and

G /∈ l2/l2. Then there exist two non-adjacent vertices u and v, a uv-l2-walk
W : u = x0, x1, x2 = v and a uv-l2-walk W ′ : u = x′0, x

′
1, x

′
2 = v satisfying that

W does not dominate W ′. Thus, there is x′1 internal vertex of W ′ that is neither
a vertex of W nor adjacent to any internal vertex of W . Thus W ∩W ′ = {u, v}
and W ∪W ′ = C4, a contradiction.

Lemma 20. For k = 2, 3, the followings statements hold.

1. Chordal ⊆ lk/SP.

2. Chordal ⊆ SP/lk.

Proof. By Lemma 2 lk/IP ⊆ lk/SP, and by Theorem 12, Chordal ⊆ lk/SP.
On the other hand, SP/P ⊆ SP/lk, and by Table 1, Chordal ⊆ SP/lk.

Theorem 21. The followings statements hold.

1. l2/SP = {C4}-free and SP/l2 = {C4}-free.

2. SP/l3 = {C4,C5,C6}-free.
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Proof. 1. Clearly C4 is not in l2/SP. Thus l2/SP ⊆ {C4}-free.
In order to prove the other contention, suppose that G ∈ {C4}-free and

G /∈ l2/SP. Thus there exist two non-adjacent vertices u and v, a uv-l2-walk
W : u = x0, x1, x2 = v and a uv-shortest walk W ′ : u = x′0, x

′
1, . . . , x

′
m = v

satisfying that W does not dominate W ′. Thus, there is some internal vertex of
W ′ that is neither a vertex of W nor adjacent to any internal vertex of W .

Since W ′ ∈ SP, |W ′| = 3. But then u, x1, v, x
′
1, u is C4, a contradiction.

Hence l2/SP = {C4}-free.
We leave to the reader the proof of SP/l2 = {C4}-free.
2. Clearly Ci does not belong to SP/l3 for i ∈ {4, 5, 6}. Thus SP/l3 ⊆

{C4,C5,C6}-free.
In that follows, we will prove that {C4,C5,C6}-free ⊆ SP/l3. Suppose

that G ∈ {C4,C5,C6}-free and G /∈ SP/l3. Thus there exist two non-adjacent
vertices u and v, a uv-shortest path W : u = x0, . . . , xn = v and a uv-l3-walk
W ′ : u = x′0, x

′
1, . . . , x

′
m = v satisfying that W does not dominate W ′. Thus,

there is some internal vertex of W ′ that is neither a vertex of W nor adjacent to
any internal vertex of W . Note that m = 2 or m = 3.

In case that m = 2 then n = 2. Thus W ∪W ′ = C4, a contradiction.

In case that m = 3 then n = 2 or n = 3. If m = 3 and n = 2, W ∪W ′ = C5,
a contradiction. If m = n = 3, then W ∪ W ′ = C6, a contradiction. Hence
SP/l3 = {C4,C5,C6}-free.

Theorem 18, Theorem 19, and Theorem 21, give the following characteriza-
tion of {C4}-free and {C4,C5,C6}-free in terms of dominations between walks.

Corollary 22. l2/SP = SP/l2 = l2/l2 = {C4}-free and SP/l3 = l3/l3 =
{C4,C5,C6}-free

Corollary 23. l3/SP ⊆ {C4,C5}-free.

Proof. By Lemma 2, l3/SP ⊆ l2/SP and by Theorem 21, results l3/SP ⊆
{C4}-free. Clearly C5 is not in l3/SP. Thus l3/SP ⊆ {C4,C5}-free.

Note that C6 /∈ l3/SP. However, C6 plus a universal vertex belongs to
l3/SP. One consequence of the above is that l3/SP is not hereditary class.

Let us observe one final thing l3/SP 6= SP/SP because C5 ∈ SP/SP −
l3/SP, and C8 ∈ l3/SP− SP/SP.

4. Conclusions

Alcón proved that the notion of domination between different types of walks
plays an central role in characterizations of graph classes. We continue the study
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of domination between different types of walks focus on weakly toll walks and
induced paths with bounded length. We have obtained characterization of the
graphs in which, for every pair of non-adjacent vertices u and v, every uv-walk,
weakly toll walk, tolled walk, path, lk-path k ∈ {2, 3}, induced path, or short-
est path dominates every uv-weakly toll walk, and every uv-weakly tool walk
dominates every uv-walk, weakly toll walk, tolled walk, path, lk-path k ∈ {2, 3},
induced path, or shortest path. Some of them, give rise to characterization of
standard graph classes.

As the anonymous referee observe, it is impossible to characterize proper
interval graph in this sense, since every walk in the claw graph K1,3 between
non-adjacent vertices contains the universal vertex. Thus, all the special walks
dominate all the other special walks.

In the context of convexity theory, chordal and ptolemaic graphs have been
characterized as convex geometries with respect to the monophonic convexity
and the geodesic convexity, respectively [5]. Similarly, weak polarizable graphs [9]
({hole,house,domino}-free) have been characterized as convex geometries with
respect to the m3-convexity [3] (convexity defined with m3-paths, which are in-
duced paths of length at least 3); interval graphs have been characterized as
convex geometries with respect to the toll convexity [2]; and proper interval
graphs have been characterized as convex geometries with respect to the weakly
toll convexity [4].

In [1] it was proved that the class of interval graphs is IP/TW. Surprisingly,
proper interval graph is not A/WTW for A ∈ {SP, IP,P,TW,W}. Further-
more, this does not define any subclass of proper interval graphs.

Natural question arise.

1. Is there any special uv-walks that dominates any special uv-walks, which
allow to characterize weak polarizable graphs?

2. Do A/m3 and m3/A, for A ∈ {lk,m3,SP, IP,P,TW,TWT,W} give rise
to characterize class of graphs?
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