DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

Y.Q. Huang

YuanQiu Huang

Hunan Normal University

email: hyqq@hunnu.edu.cn

0000-0002-6081-6293

L.C. Zhang

Licheng Zhang

Hunan Normal University

email: lczhangmath@163.com

0000-0002-6081-6293

Y.X. Wang

Yuxi Wang

Hunan University of Finance and Economics,

email: wangyuximath@163.com

0000-0001-6456-6984

Title:

The matching extendability of 7-connected maximal 1-plane graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(2) (2024) 777-790

Received: 2022-04-26 , Revised: 2022-08-25 , Accepted: 2022-08-26 , Available online: 2022-09-15 , https://doi.org/10.7151/dmgt.2470

Abstract:

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. A graph, together with a 1-planar drawing is called 1-plane. A graph is said to be $k (\ge 1)$-extendable if every matching of size $k$ can be extended to a perfect matching. It is known that the vertex connectivity of a 1-plane graph is at most 7. In this paper, we characterize the $k$-extendability of $7$-connected maximal $1$-plane graphs. We show that every $7$-connected maximal $1$-plane graph with even order is $k$-extendable for $1\le k\le 3$. And any $7$-connected maximal $1$-plane graph is not $k$-extendable for $4\le k\le 11$. As for $k\ge 12$, any $7$-connected maximal $1$-plane graph with $n$ vertices is not $k$-extendable unless $n=2k$.

Keywords:

perfect matching, 7-connected maximal $1$-plane graph, matching extendability

References:

  1. R.E.L. Aldred and M.D. Plummer, Edge proximity and matching extension in planar triangulations, Australas. J. Combin. 29 (2004) 215–224.
  2. C. Bachmaier, F.J. Brandenburg, K. Hanauer, D. Neuwirth and J. Reislhuber, NIC-planar graphs, Discrete Appl. Math. 232 (2017) 23–40.
    https://doi.org/10.1016/j.dam.2017.08.015
  3. J. Barát and G. Tóth, Improvements on the density of maximal $1$-planar graphs, J. Graph Theory 88 (2018) 101–109.
    https://doi.org/10.1002/jgt.22187
  4. I. Baybars, On $k$-path hamiltonian maximal planar graphs, Discrete Math. 40 (1982) 119–121.
    https://doi.org/10.1016/0012-365X(82)90193-5
  5. T. Biedl, Are highly connected $1$-planar graphs Hamiltonian$?$ (2019).
    arXiv: 1911.02153
  6. T. Biedl, A note on $1$-planar graphs with minimum degree $7$, Discrete Appl. Math. 289 (2021) 230–232.
    https://doi.org/10.1016/j.dam.2020.10.004
  7. T. Biedl and J. Wittnebel, Matchings in $1$-planar graphs with large minimum degree, J. Graph Theory 99 (2022) 217–230.
    https://doi.org/10.1002/jgt.22736
  8. R. Bodendiek, H. Schumacher and K. Wagner, Über $1$-optimale {Graphen}, Math. Nachr. 117(1) (1984) 323–339.
    https://doi.org/10.1002/mana.3211170125
  9. W. Didimo, Density of straight-line $1$-planar graph drawings, Inform. Process. Lett. 113(7) (2013) 236–240.
    https://doi.org/10.1016/j.ipl.2013.01.013
  10. P. Eades, S.-H. Hong, N. Katoh, G. Liotta, P. Schweitzer and Y. Suzuki, A linear time algorithm for testing maximal $1$-planarity of graphs with a rotation system, Theoret. Comput. Sci. 513 (2013) 65–76.
    https://doi.org/10.1016/j.tcs.2013.09.029
  11. I. Fabrici, J. Harant, T. Madaras, S. Mohr, R. Soták and C.T. Zamfirescu, Long cycles and spanning subgraphs of locally maximal $1$-planar graphs, J. Graph Theory 95 (2020) 125–137.
    https://doi.org/10.1002/jgt.22542
  12. J. Fujisawa, K. Segawa and Y. Suzuki, The matching extendability of optimal $1$-planar graphs, Graphs Combin. 34 (2018) 1089–1099.
    https://doi.org/10.1007/s00373-018-1932-6
  13. J.P. Gollin, K. Hendrey, A. Methuku, C. Tompkins and X. Zhang, Counting cliques in $1$-planar graphs (2021).
    arXiv: 2109.02906
  14. A. Grigoriev and H.L. Bodlaender, Algorithms for graphs embeddable with few crossings per edge, Algorithmica 49 (2007) 1–11.
    https://doi.org/10.1007/s00453-007-0010-x
  15. J. Hopcroft and R. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549–568.
    https://doi.org/10.1145/321850.321852
  16. D. Hudák, T. Madaras and Y. Suzuki, On properties of maximal $1$-planar graphs, Discuss. Math. Graph Theory 32 (2012) 737–747.
    https://doi.org/10.7151/dmgt.1639
  17. F. István, On straight-line representation of planar graphs, Acta Univ. Szeged. Sect. Sci. Math. 11 (1948) 229–233.
  18. S.G. Kobourov, G. Liotta and F. Montecchiani, An annotated bibliography on $1$-planarity, Comput. Sci. Rev. 25 (2017) 49–67.
    https://doi.org/10.1016/j.cosrev.2017.06.002
  19. V.P. Korzhik and B. Mohar, Minimal obstructions for $1$-immersions and hardness of $1$-planarity testing, J. Graph Theory 72 (2013) 30–71.
    https://doi.org/10.1002/jgt.21630
  20. Z. Ouyang, Y. Huang and F. Dong, The maximal $1$-planarity and crossing numbers of graphs, Graphs Combin. 37 (2021) 1333–1344.
    https://doi.org/10.1007/s00373-021-02320-x
  21. J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997) 427–439.
    https://doi.org/10.1007/BF01215922
  22. M.D. Plummer, A theorem on matchings in the plane, Ann. Discrete Math. 41 (1988) 347–354.
    https://doi.org/10.1016/S0167-5060(08)70473-4
  23. M.D. Plummer, On $n$-extendable graphs, Discrete Math. 31 (1980) 201–210.
    https://doi.org/10.1016/0012-365X(80)90037-0
  24. M.D. Plummer, Extending matchings in planar graphs IV, Discrete Math. 109 (1992) 207–219.
    https://doi.org/10.1016/0012-365X(92)90292-N
  25. G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Semin. Univ. Hambg. 29 (1965) 107–117.
    https://doi.org/10.1007/BF02996313
  26. Y. Suzuki, 1-Planar Graphs, in: Beyond Planar Graphs, S.-H. Hong and T. Tokuyama (Ed(s)), (Springer 2020) 47–68.
    https://doi.org/10.1007/978-981-15-6533-5_4
  27. R. Thomas and X.X. Yu, $4$-connected projective-planar graphs are Hamiltonian, J. Combin. Theory Ser. B 62 (1994) 114–132.
    https://doi.org/10.1006/jctb.1994.1058
  28. W. Yang, Y. Wang, W. Wang and K.-W. Lih, IC-planar graphs are $6$-choosable, SIAM J. Discrete Math. 35 (2021) 1729–1745.
    https://doi.org/10.1137/20M133261X
  29. X. Zhang, H.-J. Wang and L. Xu, Equitable coloring of three classes of $1$-planar graphs, Acta Math. Appl. Sin. Engl. Ser. 34 (2018) 362–372.
    https://doi.org/10.1007/s10255-018-0752-z

Close