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Abstract

A graph is 1-planar if it can be drawn in the plane such that each edge
is crossed at most once. A graph, together with a 1-planar drawing is called
1-plane. A graph is said to be k(≥ 1)-extendable if every matching of size
k can be extended to a perfect matching. It is known that the vertex con-
nectivity of a 1-plane graph is at most 7. In this paper, we characterize the
k-extendability of 7-connected maximal 1-plane graphs. We show that ev-
ery 7-connected maximal 1-plane graph with even order is k-extendable for
1 ≤ k ≤ 3. And any 7-connected maximal 1-plane graph is not k-extendable
for 4 ≤ k ≤ 11. As for k ≥ 12, any 7-connected maximal 1-plane graph with
n vertices is not k-extendable unless n = 2k.
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1. Introduction

A drawing of a graph G = (V,E) is a mapping D that assigns to each vertex
in V a distinct point in the plane and to each edge uv in E a continuous arc
connecting D(u) and D(v). When there is no ambiguity, we do not distinguish
between a graph-theoretical object (such as a vertex or an edge) and its drawing.
All drawings considered here are such that no edge crosses itself, no two edges
cross more than once, and no two incident edges cross.

A drawing of a graph is a 1-planar drawing if each edge is crossed at most
once. A graph is 1-planar if it has a 1-planar drawing. A graph together with a 1-
planar drawing is a 1-plane graph. 1-planar (1-plane) graphs have been introduced
in 1965 by Ringel [25]. One reason for interest in the class of 1-planar (1-plane)
graphs is that they are closely related to the class of planar (plane) graphs.
However, they have a number of qualitative differences. For instance, 1-planarity
cannot be characterized in terms of forbidden minors [14]. For a graph with n
vertices, it is possible to determine in linear time whether the graph is planar
or not [15], while it is NP-complete to test whether a given graph is 1-planar
[14], even for the graphs formed from planar graphs by adding a single edge [19].
In contrast to Fáry’s theorem [17] for planar graphs, not every 1-planar graph
has a 1-plane straight-line drawing [9]. More properties of 1-planar graphs are
described in [2, 13, 28, 29]; see also [18] for a survey.

A graph is maximal 1-planar if we cannot add any edge from the complement
so that the resulting graph is still 1-planar and simple. A graph is maximal 1-
plane if we cannot add any edge to it so that the resulting drawing is still 1-
plane and simple. It is obvious that a maximal 1-plane graph is not necessarily
a maximal 1-planar graph. Maximal 1-planar (1-plane) graphs have also been
studied extensively due to their interesting properties, including the recognition
algorithm of maximal 1-plane graphs with a rotation system [10], edge density
[3] and crossing number [20]. It is well-known that every 1-planar graph with
n (≥ 3) vertices has at most 4n− 8 edges (see [8, 21]). A 1-planar graph is said
to be an optimal 1-planar graph if it has exactly 4n− 8 edges.

In this paper, we are concerned with matching extendability for 1-planar
graphs. Let G be a graph. A set M ⊆ E(G) is a matching if no two edges from
M share a vertex. A matching M is perfect if it covers V (G) and M is extendable
if G has a perfect matching containing M . Moreover, the graph G is said to
be k-extendable if every matching of size k in G can be extended to a perfect
matching. The study of matching extendability has more than 40 years’ history.
Among such research, Plummer [22] extensively studied matching extendability of
the graphs on surfaces, and proved that no planar graph with minimum degree 3
is 3-extendable. In particular, 5-connected planar graphs have been investigated.
Every 5-connected planar graph of even order is 2-extendable [24]. A graph G is
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said to be E(m,n) if for every pair of disjoint matchings M,N ⊆ E(G) of size
m and n, respectively, there is a perfect matching F in G such that M ⊆ F and
F ∩N = ∅. Moreover, every 5-connected maximal planar graph of even order is
E(1, 3) [1].

Somewhat similarly, the maximal 1-plane graphs with the highest vertex
connectivity, namely 7, are also what we care about in this paper. It should be
noted that the study of matchings or matching extendability for 1-planar graphs
is just getting started. In 2018, Fujisawa, Segawa, and Suzuki [12] investigated
the matching extendability of optimal 1-planar graphs. The authors showed that
every optimal 1-planar graph G of even order is 1-extendable. An edge in a 1-
plane graph G is called a crossing edge if it crosses with another edge, and a non-
crossing edge otherwise. If each edge of a cycle C is non-crossing, then the closed
curve induced by the edges of C separates the plane into two regions, the bounded
one (i.e., the interior of C) and the unbounded one (i.e., the exterior of C). A
connected component (or component for short) of a graph is odd or even if it has
an odd or even number of vertices, respectively. A cycle C is called a barrier cycle
if each edge of C is a non-crossing edge, G−V (C) consists of two odd components
and each of the two regions separated by C contains an odd component of G −
V (C). The authors also showed that every optimal 1-planar graph G of even
order is 2-extendable unless G contains a barrier 4-cycle, and every optimal 1-
planar graph G of even order is 3-extendable unless G contains a barrier 6-cycle.
However, except for optimal 1-planar graphs, there are still many open questions
in the field. This is because a necessary condition for a graph G to be k(≥ 1)-
extendable is that G be a graph that has a perfect matching. Unfortunately, we
still know relatively little about which 1-planar (1-plane) graphs have a perfect
matching. Hudák et al. [16] proved that every optimal 1-planar graph with even
order and every 7-connected maximal 1-planar graph with even order have a
perfect matching, respectively. Recently, Fabrici et al. [11] proved that every 4-
connected maximal 1-planar graph is Hamiltonian. Therefore, every 4-connected
maximal 1-planar graph with even order has a perfect matching. However if the
“maximal” condition above is removed, 1-plane graphs of given connectivity may
not have a perfect matching. Fujisawa et al. [12] found a 1-plane graph with
connectivity 4 of even order that does not have a perfect matching. Biedl [5]
subsequently proved that for any N , there exists a 5-connected 1-planar graph
with n ≥ N vertices for which any matching has size at most n−2

2 . It is still
an open problem whether any 6-connected or 7-connected 1-planar graph has a
perfect matching [7, 12].

In [12], it was shown that the connectivity of any optimal 1-planar graph G is
either 4 or 6. Hence, there does not exist a 1-planar graph that is optimal and 7-
connected. In this paper, we prove some combinatorial properties of 7-connected
maximal 1-plane graphs. Furthermore, we characterize the k-extendability of
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7-connected maximal 1-plane graphs.
The remainder of this paper is organized as follows. In Section 2, we give

some necessary terminology, notations and lemmas. In Section 3, we provide
some combinatorial properties of 7-connected maximal 1-plane graphs. Section 4
proves the main results of this paper (Theorems 16, 18 and 21).

2. Preliminaries

We consider here only finite simple graphs G with vertex set V (G) and edge set
E(G), unless otherwise stated. The degree of a vertex v of G is denoted by dG(v),
and the minimum vertex-degree of G is denoted by δ(G). We denote by d̄(G) the
average degree of G, 1

n

∑
v∈G dG(v), where n is the order of G. If S is a set of

vertices, the vertex-induced subgraph G[S] is the subgraph of G that has S as its
set of vertices and contains all the edges of G that have both end-vertices in S. A
walk is a finite sequence of edges that joins a sequence of vertices. A trail is a walk
in which all edges are distinct. A cycle in a graph is a non-empty trail in that
the only repeated vertices are the first and last vertices. A cycle that contains
every vertex of a graph is called a Hamiltonian cycle. A graph is Hamiltonian
if it contains a Hamiltonian cycle. Two paths connecting vertices u and v of a
graph are internally vertex-disjoint if u and v are the only common vertices of
the paths.

A separating set of a graph G is a set S ⊆ V (G) such that G − S has more
than one connected component. The connectivity of G, written as κ(G), is the
minimum size of a vertex set S of G such that S is a separating set or G−S has
only one vertex. A graph G is k-connected if its connectivity is at least k.

For any 1-plane drawing D of G, the associated plane graph D× is the plane
graph that is obtained from D by turning all crossings of D into new vertices of
degree four. A vertex in D× is called false if it corresponds to some crossing of
D, and is true otherwise. A face or an edge of D× is called false if it is incident
with some false vertex, and is true otherwise.

Let C be a cycle in a 1-plane graph G so that no two edges of C cross each
other. Thus, the closed curve induced by the edges of C separates the plane into
two regions Cint and Cout. We call C a conflict cycle if both regions Cint and
Cout contain one or more vertices of G− V (C).

The following is a well-known fact giving the upper bound of the number of
edges of 1-planar (1-plane) graphs.

Lemma 1 [8, 21]. Let G be a 1-planar (1-plane) graph with at least 3 vertices.
Then |E(G)| ≤ 4|V (G)| − 8.

Lemma 2 [6]. Any simple 1-plane graph with minimum degree 7 has at least 24
vertices and the lower bound is tight (see Figure 1).
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Figure 1. A 1-plane graph G with minimum degree 7 on 24 vertices.

Lemma 3 [27]. Let G be a 4-connected planar graph. Then for any u, v ∈ V (G),
G− {u, v} is Hamiltonian.

The degree of a face in a plane graph is the number of edges in its boundary.
A simple connected plane graph in which all faces have degree three is called a
triangulation. A separating cycle C in a plane graph is a cycle so that both the
interior of C as well as the exterior of C contain one or more vertices.

Lemma 4 [4]. A triangulation is k-connected if and only if it has no separating
cycle of length at most k − 1.

The following two basic properties of k-extendable graphs were given by
Plummer. They will be used in Theorems 18 and 21, respectively.

Lemma 5 [23]. Let G be a graph of order n ≥ 2k + 2 and k ≥ 1. If G is
k-extendable, then

(i) G is (k − 1)-extendable;

(ii) G is (k + 1)-connected.

In [12], Fujisawa et al. generalized Lemma 2.3 in [24] which only discusses
the case of k = 1. We will see that Lemma 6 is also a tool when we discuss the
2-extendability and 3-extendability for 7-connected maximal 1-plane graphs.

Lemma 6 [12]. Let G be a k-extendable graph and M = {e1, . . . , ek+1} be a
matching of G that is not extendable. Then there exists S ⊂ V (G) such that

(i) S ⊃
⋃k+1

i=1 V (ei) and

(ii) |S| = o(G− S) + 2k,

where o(G− S) stands for the number of odd components of G− S.



782 Y.Q. Huang, L.C. Zhang and Y.X. Wang

3. Some Pproperties of 7-Connected Maximal 1-Plane Graphs

To prove our main theorems, we provide some combinatorial properties of 7-
connected maximal 1-plane graphs in this section.

Lemma 7. Let G be a 7-connected 1-plane graph. Then the minimum degree
δ(G) is 7.

Proof. By Lemma 1, we have |E(G)| ≤ 4|V (G)| − 8. Then δ(G) ≤ bd̄(G)c ≤
2(4|V (G)|−8)
|V (G)| . Thus δ(G) ≤ 7. In converse, G has minimum degree at least 7,

otherwise the neighbourhood of a vertex of degree less 7 yields a j-vertex-cut
with j < 7, a contradiction. Thus δ(G) = 7, as desired.

Lemma 8. Any 7-connected maximal 1-plane simple graph G has at least 24
vertices, and the lower bound is tight (see Figure 1).

Proof. By Lemma 7, the minimum degree of G is 7. Furthermore, we get
|V (G)| ≥ 24 by Lemma 2. It is not difficult to verify that G in Figure 1 is
7-connected and maximal. Thus, 24 is a sharp lower bound.

Proposition 9. Let G be a 7-connected 1-plane graph. Then G does not contain
any conflict 3-cycle.

Proof. Suppose that there exists a conflict 3-cycle C in G. Let u, v be two
vertices which lie the inside and outside of G − C, respectively. We see that u
is connected to v by at most 6 internally vertex-disjoint paths (see Figure 2),
and thus G is at most 6-connected by Menger’s Theorem. This contradicts the
7-connectivity of G.

u v

C

Figure 2. Connecting two vertices u and v by at most 6 internally vertex-disjoint paths.

We define the plane skeleton S(G) of a 1-plane graph G to be the subgraph
of G containing all non-crossing edges of G. A 1-plane graph G is near optimal, if
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(i) any face of a plane skeleton S(G) is either triangular or quadrangular, (ii) any
quadrangular face bounded by v0v1v2v3v0 of S(G) contains the unique crossing
point created by a pair of crossing edges v0v2 and v1v3 and (iii) no two triangular
faces of S(G) share any edge. A 1-plane graph is said to be locally optimal if
there are four non-crossing edges v1v2, v2v3, v3v4, v4v1 for any pair of edges v1v3
and v2v4 that cross each other. Clearly, any near optimal 1-plane graph is locally
optimal.

Lemma 10 [26]. Every 5-connected maximal 1-plane graph G is near optimal.

Lemma 11. Let G be a 7-connected maximal 1-plane graph. By arbitrarily re-
moving one edge from each pair of crossing edges in G, we obtain a spanning
4-connected subgraph of G that is a triangulation.

Proof. Let G′ be a graph obtained by removing one edge from each pair of
crossing edges in G. Since G is near optimal by Lemma 10, G′ is a triangulation.
Moreover, G′ is 3-connected by Lemma 4. Suppose that there exits a separating
3-cycle C = abca in G′. Denote by F1 and F2 two components of G′−C. We have
that Fi (i ∈ {1, 2}) and F3−i cannot lie inside and outside of G′−C, respectively,
for otherwise C is a conflict 3-cycle of G, which would contradict Proposition 9.
Combining this with Lemma 4 for k = 4, G′ is 4-connected, as desired.

In [12], the authors introduced three operations on locally optimal 1-plane
graph that still preserve the local optimality.

Lemma 12 [12]. Let G be a locally optimal 1-plane graph. Then each of the
following operations on G preserve the local optimal 1-planarity: (a) deleting a
vertex; (b) contracting a non-crossing edge (and deleting any multiple edges that
may arise); (c) deleting a crossing edge.

Let G be a graph and S be a subset of V (G). As in [12], we also consider a
bipartite graph B(G,S) as follows: (i) remove all even components of G−S, (ii)
shrink each odd component of G−S to a separate vertex and delete any multiple
edges thus formed, and (iii) delete the edges joining vertices in S. For example,
let G be the graph on the left of Figure 3 and let S = {u, v, w}. F1, F2 are the
even components of G− S and F3, F4 and F5 are the odd components of G− S.
First we remove the even components F1 and F2 (delete all vertices in F1 and
F2 together with their incident edges). We shrink odd components F3, F4 and
F5 into separate vertices x, y and z, respectively. We then delete all multiple
edges formed in the process of shrinking F3, F4 and F5. Finally, deleting all the
edges uw and vw in E(G[S]) gives the bipartite graph B(G,S), see the right of
Figure 3.

Combining this with the above three operations, the authors got the following
result in [12].
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F1

F2

F3

F4

F5

u v w

x y z

u v w

Figure 3. A graph G on the left and B(G,S) on the right.

Proposition 13 [12]. Let G be an optimal 1-planar graph and S be a subset of
vertices of G. Then B(G,S) is planar.

We noticed that the proof of Proposition 13 in [12] only uses the property
that the optimal 1-planar graph is locally optimal. That is to say, if the“optimal”
condition is reduced to “locally optimal”, B(G,S) is also planar.

Lemma 14. Let G be a locally optimal 1-plane graph and S be a subset of vertices
of G. Then B(G,S) is planar.

Proof. As analyzed above, the proof of Proposition 13 in Reference [12] can still
be applied to locally optimal 1-plane graphs. For the sake of completeness and
comprehension for the reader, we sketch the idea here. First, we remove all even
components of G − S. Next, we contract each non-crossing edge and remove
all multiple edges appearing in any odd component of G − S. By (a) and (b)
of Lemma 12, the resulting graph is locally optimal 1-plane as well. We then
claim that any odd component Xi can be shrunk into one vertex by shrinking
non-crossing edges and deleting some edges in S. Without loss of generality, we
assume that |V (X1)| ≥ 2. Then X1 contains a crossing edge uv. Let xy be the
edge which crosses uv. Then we can find four non-crossing edges ux, xv, vy, yu
since the graph we have is locally optimal. Since each edge is a crossing edge in
X1, we have {x, y} ∈ S. Then the edge xy ∈ E(G[S]), and here we delete xy.
Thus uv can continue to be contracted. By (c) of Lemma 12, the resulting graph
is a locally optimal 1-plane graph as well.

By repeating the above contractions and deletions of edges, we obtain a
locally optimal 1-plane graph G′ whose vertex set is S ∪X, where each vertex of
X corresponds to an odd component of G− S. Notice that the edge between Xi

and S and the edge between Xj (j 6= i) and S do not cross, because G is locally
optimal. At the end of the procedure, we delete the edges joining vertices in S to
obtain B(G,S). Then we see that any crossing is eliminated, and thus B(G,S)
is planar.
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Corollary 15. Let G be a 5-connected maximal 1-plane graph and S be a subset
of vertices of G. Then B(G,S) is planar.

Proof. By Lemma 10, G is near optimal, and furthermore, G is locally optimal.
Thus B(G,S) is planar by Lemma 14.

4. The Matching Extendability of 7-Connected Maximal 1-Plane
Graphs

This section proves the main results of this paper.

Theorem 16. For every integer k where 1 ≤ k ≤ 3, every 7-connected maximal
1-plane graph G of even order is k-extendable.

Proof. Let uv be an arbitrary edge of G. By Lemma 11, G has a spanning 4-
connected plane subgraph T . Then it follows from Lemma 3 that T − {u, v} has
a Hamiltonian cycle. Since T − {u, v} has an even number of vertices, we obtain
a perfect matching M of T − {u, v}, and thus M ∪ {uv} is a perfect matching of
G. Thus G is 1-extendable.

Suppose that G is not 2-extendable. Since G is 1-extendable, as we proved
above, there exists a set S ⊂ V (G) that satisfies (i), (ii) of Lemma 6 for k = 1. By
(i) of Lemma 6, we have |S| ≥ 4. We now consider the bipartite graph B(G,S).
From the process of construction of B(G,S), |V (B(G,S))| − |S| = o(G − S).
Furthermore, by (ii) of Lemma 6, o(G−S) = |S| − 2. Thus |V (B(G,S))| − |S| =
|S|−2. Since G is 7-connected, any odd component of G−S is adjacent to at least
7 vertices in S. From the process of construction of B(G,S), for edges between
an odd component of G−S and S, only multiple edges (if arise) are deleted when
the odd component is shrunk to a vertex. Thus any vertex of B(G,S) − S is
adjacent to at least 7 vertices in S. Therefore,

(1) |E(B(G,S))| ≥ 7(|V (B(G,S))− |S|) = 7(|S| − 2) = 7|S| − 14.

Moreover, it follows from Corollary 15 that B(G,S) is planar. Using Euler’s
formula on bipartite planar graphs, one has

|E(B(G,S))| ≤ 2|V (B(G,S))| − 4

= 2(|S|+ |V (B(G,S))| − |S|)− 4

= 2(|S|+ |S| − 2)− 4

= 4|S| − 8.

(2)

Combining (1) with (2), we have |S| ≤ 2, which contradicts the fact that
|S| ≥ 4. Thus G is 2-extendable.
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For the case k = 3, we use arguments similar to those for k = 2. For brevity,
some details of the proof have been omitted. Suppose that G is not 3-extendable.
As G is 2-extendable, we can take S ⊂ V (G) which satisfies (i), (ii) of Lemma
6 for k = 2. We consider similarly the bipartite graph B(G,S). By (i) and (ii)
of Lemma 6, we have |S| ≥ 6 and |V (B(G,S))| − |S| = |S| − 4. Since G is
7-connected, each vertex of B(G,S) − S is adjacent to at least seven vertices in
S. Therefore,

(3) |E(B(G,S))| ≥ 7(|S| − 4) = 7|S| − 28.

Moreover, by Corollary 15, B(G,S) is planar. Thus one has

|E(B(G,S))| ≤ 2|V (B(G,S))| − 4

= 2(|S|+ |V (B(G,S))− |S|)− 4

= 2(|S|+ |S| − 4)− 4

= 4|S| − 12.

(4)

Combining (3) with (4), we have |S| ≤ 5, which contradicts the fact that |S| ≥ 6.
This concludes the proof.

The following corollary is obtained immediately from Theorem 16.

Corollary 17. Every 7-connected maximal 1-plane graph G of even order has a
perfect matching.

Theorem 18. For every integer k where 4 ≤ k ≤ 11, any 7-connected maximal
1-plane graph G of even order is not k-extendable.

Proof. We first consider the case of k = 4. By Lemma 7, we let v be a vertex of
degree 7 and assume that the neighbors of v in clockwise order are v0,v1,v2,. . . ,
v6. Let D be a 1-plane drawing chosen arbitrarily and D× be the associated
plane graph of D.

We first give the following two claims.

Claim 19. The vertex v is incident with exactly one true triangular face and six
false triangular faces in D×.

Proof. Since G is near optimal by Lemma 10, D× is a triangulation. Thus v is
incident with exactly 7 triangular faces in D×. Note that any two false vertices
are not adjacent. Then since dG(v) is odd, v is incident with at least one true
triangular face, say vv0v1v in D×. Furthermore we claim that vv0v1v is a unique
true triangular face incident with v. By (iii) of the definition of near optimal 1-
plane graphs, we assume that vv0 and vv1 are incident with false triangular faces
vz1v0v and vz2v1v, respectively. By (ii) of the definition of near optimal 1-plane
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graphs, vz1v0v lies in a quadrangular face of the plane skeleton S(G), and z1 is
the unique crossing point in vv0v6v5v. And similarly vz2v1 lies in a quadrangular
face of S(G), say vv1v2v3v. So vv3v4v cannot be a true triangular face. Otherwise
vv4v5v is also a true triangular face. Here we see that faces vv3v4v and vv4v5v
share vv4. This contradicts (iii) of the definition of near optimal 1-plane graphs.
Similarly, vv4v5v is not a true triangular face. Thus vv4 can only be a crossing
edge, as shown in Figure 4. Thus we proved Claim 19.

v
z1

z2

v0v6

v5

v4 v3 v2

v1

Figure 4. G[v ∪NG(v)].

Since vv0v1v is a true triangular face, by (iii) of the definition of near optimal
1-plane graphs, v0v1 is incident with a triangular false face. So v0v1 is incident
with a quadrangular face bounded by v0v1uwv0 of the plane skeleton S(G) that
contains the unique crossing point created by a pair of crossing edges v0u and
v1w.

Claim 20. Neither u nor w is vi for 2 ≤ i ≤ 6.

Proof. Recall that a cycle C of a 1-plane graph G is called a conflict cycle if
no two edges of C cross each other and each of the two regions separated by C
contains at least one vertex of G− V (C). According to the symmetry of v0 and
v1, it is sufficient for us to consider the following three cases.

Case 1. u = vk for 2 ≤ k ≤ 3. For 2 ≤ k ≤ 3, we can find that vv0u(= vv0vk)v
is a conflict 3-cycle of G, which contradicts Proposition 9.

Case 2. u = v5. We see that v0u(= v0v5) and v1w cross each other, and v0u
is crossed by vv6. This contradicts the 1-planarity of G.

Case 3. u = v6. If u = v6, then v0u(= v0v6) is crossed by v1w. This
contradicts the fact that v0v6 is a non-crossing edge by Claim 19.

Therefore, Claim 20 holds.
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Here we notice that the set of vertices {v0, w, v1, v2, v3, v4, v5, v6} forms an
8-cycle
v0wv1v2v3v4v5v6v0. We choose a matching M = {v0w, v1v2, v3v4, v5v6}. M can-
not be extended since v cannot be saturated by any perfect matching of G that
contains M . Thus G is not 4-extendable.

Suppose that G is k-extendable for 5 ≤ k ≤ 11. By Lemma 8, |V (G)| ≥ 24.
Thus |V (G)| ≥ 2k + 2 and we see that G is (k − 1)-extendable by Lemma 5(i).
Hence, G is 4-extendable, a contradiction.

Theorem 21. For every integer k ≥ 12, any 7-connected maximal 1-plane graph
G with even order n is not k-extendable unless n = 2k.

Proof. If n < 2k, then we cannot find k matching edges of G. Thus G is not
k-extendable. If n = 2k, then any k independent edges themselves form a perfect
matching of G by Corollary 17. As for n ≥ 2k+2, if G is k-extendable for k ≥ 12,
then the vertex connectivity of G is at least 13 by Lemma 5, a contradiction.

5. Remarks

In this paper, we have characterized the k-extendability of 7-connected maxi-
mal 1-plane graphs. The matching extendability that we consider here is clas-
sical. What about some general versions of matching extension, like E(m,n)-
extendability or [k, n]-extendability, for 7-connected maximal 1-plane graphs or
optimal 1-planar graphs? We also noticed that a bottleneck in the study of
matchings or matching extendability for 1-plane graphs is how to remove the
maximality condition in our theorems. That is to say, the following problem still
remains open: Does every 7-connected 1-plane graph of even order have a perfect
matching ([7, 12])?
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