DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

R. Marinescu-Ghemeci

Ruxandra Marinescu-Ghemeci

email: verman@fmi.unibuc.ro

C. Obreja

Camelia Obreja

University of Bucharest

email: camelia.obreja@gmail.com

A. Popa

Alexandru Popa

University of Bucharest

email: alexandru.popa@fmi.unibuc.ro

Title:

Approximate and exact results for the harmonious chromatic number

PDF

Source:

Discussiones Mathematicae Graph Theory 44(2) (2024) 737-754

Received: 2021-12-09 , Revised: 2022-07-22 , Accepted: 2022-07-22 , Available online: 2022-09-15 , https://doi.org/10.7151/dmgt.2469

Abstract:

Graph coloring is a fundamental topic in graph theory that requires an assignment of labels (or colors) to vertices or edges subject to various constraints. We focus on the harmonious coloring of a graph, which is a proper vertex coloring such that for every two distinct colors $i$, $j$ at most one pair of adjacent vertices are colored with $i$ and $j$. This type of coloring is edge-distinguishing and has potential applications in transportation networks, computer networks, airway network systems. The results presented in this paper fall into two categories: in the first part of the paper we are concerned with the computational aspects of finding a minimum harmonious coloring and in the second part we determine the exact value of the harmonious chromatic number for some particular graphs and classes of graphs. More precisely, in the first part we show that finding a minimum harmonious coloring for arbitrary graphs is APX-hard and that the natural greedy algorithm is a $\Omega(\sqrt{n})$-approximation. In the second part, we determine the exact value of the harmonious chromatic number for all $3$-regular planar graphs of diameter $3$ and some cycle-related graphs.

Keywords:

undirected graph, vertex coloring, harmonious coloring, harmonious chromatic number, regular graph, APX-hard

References:

  1. K. Asdre and S.D. Nikolopoulos, NP-completeness results for some problems on subclasses of bipartite and chordal graphs, Theoret. Comput. Sci. 381 (2007) 248–259.
    https://doi.org/10.1016/j.tcs.2007.05.012
  2. K. Asdre, K. Ioannidou and S.D. Nikolopoulos, The harmonious coloring problem is NP-complete for interval and permutation graphs, Discrete Appl. Math. 155 (2007) 2377–2382.
    https://doi.org/10.1016/j.dam.2007.07.005
  3. H.L. Bodlaender, Achromatic number is NP-complete for cographs and interval graphs, Inform. Process. Lett. 31 (1989) 135–138.
    https://doi.org/10.1016/0020-0190(89)90221-4
  4. I. Dinur and S. Safra, On the hardness of approximating minimum vertex cover, Ann. of Math. (2) 162 (2005) 439–485.
    https://doi.org/10.4007/annals.2005.162.439
  5. K. Edwards, The harmonious chromatic number of bounded degree trees, Combin. Probab. Comput. 5 (1996) 15–28.
    https://doi.org/10.1017/S0963548300001802
  6. K. Edwards, The harmonious chromatic number and the achromatic number, in: Surveys in Combinatorics, R.A. Bailey (Ed(s)), (London Math. Soc. Lecture Note Ser. 241, Cambridge University Press 1997) 13–48.
    https://doi.org/10.1017/CBO9780511662119.003
  7. K. Edwards and C. McDiarmid, The complexity of harmonious colouring for trees, Discrete Appl. Math. 57 (1995) 133–144.
    https://doi.org/10.1016/0166-218X(94)00100-R
  8. O. Frank, F. Harary and M. Plantholt, The line-distinguishing chromatic number of a graph, Ars Combin. 14 (1982) 241–252.
  9. R.L. Graham and N.J.A. Sloane, On additive bases and harmonious graphs, SIAM J. Alg. Disc. Meth. 1 (1980) 382–404.
    https://doi.org/10.1137/0601045
  10. J.E. Hopcroft and M.S. Krishnamoorthy, On the harmonious coloring of graphs, SIAM J. Alg. Disc. Meth. 4 (1983) 306–311.
    https://doi.org/10.1137/0604032
  11. M. I. Huilgol and V. Sriram, On the harmonious coloring of certain class of graphs, J. Comb. Inf. Syst. Sci. 41 (2016) 17–29.
  12. K. Ioannidou and S. Nikolopoulos, Harmonious coloring on subclasses of colinear graphs, in: WALCOM: Algorithms and Computation. WALCOM 2010, Lecture Notes in Comput. Sci. 5942, (Springer-Verlag, Berlin, Heidelberg 2010) 136–148.
    https://doi.org/10.1007/978-3-642-11440-3_13
  13. S. Khot and O. Regev, Vertex cover might be hard to approximate to within $2$-$\varepsilon$, J. Comput. System Sci. 74 (2008) 335–349.
    https://doi.org/10.1016/j.jcss.2007.06.019
  14. S. Kolay, R. Pandurangan, F. Panolan, V. Raman and P. Tale, Harmonious coloring: Parameterized algorithms and upper bounds, Theoret. Comput. Sci. 772 (2019) 132–142.
    https://doi.org/10.1016/j.tcs.2018.12.011
  15. Z. Lu, On an upper bound for the harmonious chromatic number of a graph, J. Graph Theory 15 (1991) 345–347.
    https://doi.org/10.1002/jgt.3190150402
  16. A. Mansuri, R. Chandel and V. Gupta, On harmonious coloring of $M(Y_n)$ and $C(Y_n)$, World Appl. Program. 2 (2012) 150–152.
  17. B. McKay and G. Royle, Constructing the cubic graphs on up to $20$ vertices, Ars Combin. 21-A (1986) 129–140.
  18. Z. Miller and D. Pritikin, The harmonious coloring number of a graph, Discrete Math. 93 (1991) 211–228.
    https://doi.org/10.1016/0012-365X(91)90257-3
  19. J. Mitchem, On the harmonious chromatic number of a graph, Discrete Math. 74 (1989) 151–157.
    https://doi.org/10.1016/0012-365X(89)90207-0
  20. U. Muthumari and M. Umamamheswari, Harmonious coloring of central graph of some types of graphs, Int. J. Math. Archive 7(8) (2016) 95–103.
  21. R.W. Pratt, The complete catalog of $3$-regular, diameter-$3$ planar graphs, (1996).
  22. K. Rajam and M.H.M. Pauline, On harmonious colouring of line graph of star graph families, Int. J. Stat. Math. 7 (2013) 33–36.
  23. M.S. Franklin Thamil Selvi and A. Azhaguvel, A study on harmonious coloring of central graph of Jahangir graph, Int. J. Pure Appl. Math. 118 (2018) 413–420.
  24. M.S. Franklin Thamil Selvi, Harmonious coloring of central graphs of certain snake graphs, Appl. Math. Sci. 9 (2015) 569–578.
    https://doi.org/10.12988/ams.2015.4121012
  25. A. Takaoka, S. Okuma, S. Tayu and S. Ueno, A note on harmonious coloring of caterpillars, IEICE Trans. Inf. Syst. E98.D (2015) 2199–2206.
    https://doi.org/10.1587/transinf.2015EDP7113
  26. V. Vernold, M. Venkatachalam and K. Kaliraj, Harmonious coloring on double star graph families, Tamkang J. Math. 43 (2012) 153–158.
    https://doi.org/10.5556/j.tkjm.43.2012.153-158
  27. P. Zhang, A Kaleidoscopic View of Graph Colorings, in: SpringerBriefs Math. (Springer Cham, 2016).
    https://doi.org/10.1007/978-3-319-30518-9

Close