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Abstract

Graph coloring is a fundamental topic in graph theory that requires an
assignment of labels (or colors) to vertices or edges subject to various con-
straints. We focus on the harmonious coloring of a graph, which is a proper
vertex coloring such that for every two distinct colors i, j at most one pair
of adjacent vertices are colored with i and j. This type of coloring is edge-
distinguishing and has potential applications in transportation networks,
computer networks, airway network systems.

The results presented in this paper fall into two categories: in the first
part of the paper we are concerned with the computational aspects of finding
a minimum harmonious coloring and in the second part we determine the
exact value of the harmonious chromatic number for some particular graphs
and classes of graphs. More precisely, in the first part we show that finding
a minimum harmonious coloring for arbitrary graphs is APX-hard and that
the natural greedy algorithm is a Ω(

√
n)-approximation. In the second part,

we determine the exact value of the harmonious chromatic number for all
3-regular planar graphs of diameter 3 and some cycle-related graphs.
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1. Introduction

A key topic in the area of graph theory is represented by graph coloring. The
proper vertex k-coloring is perhaps the most famous type of coloring and has
many applications such as scheduling, pattern matching, exam timetabling, seat-
ing plans design (see [27]). There are numerous types of colorings, e.g., harmo-
nious, graceful, metric, sigma, set, multiset (see [27] and the references therein).

In this paper we focus on harmonious colorings. We consider only finite
undirected graphs G(V,E), with |V | vertices (or nodes) and |E| edges. Given a
graph G, we denote by V (G) the set of vertices of G and by E(G) the set of edges
of G, respectively. Given a positive integer k, let [k] = {1, 2, . . . , k}.

1.1. Preliminaries and previous work

The concept of harmonious coloring was proposed independently by Frank et al.
[8] and by Hopcroft and Krishnamoorthy [10] and is defined below.

Definition 1 (Harmonious coloring). Let G be a graph and c : V (G) → [k] be
a proper vertex coloring of G. The coloring c is called harmonious if for every
pair of distinct colors i, j ∈ [k] there is at most one pair of adjacent vertices in G
colored with i and j.

We are interested in finding the minimum number of colors required to have
a valid harmonious coloring, that is to find the harmonious chromatic number of
a graph, as defined next.

Definition 2 (The harmonious chromatic number). The minimum positive inte-
ger k for which a graph G has a harmonious k-coloring, is called the harmonious
chromatic number of G and is denoted by h(G).

We can associate to a harmonious k-coloring c of G an edge coloring c′ of
G as follows: each edge uv is assigned the color c′(uv) = {c(u), c(v)}. A color
c′(uv) is a 2-element subset of the set of colors assigned to the vertices of G. In
the resulting edge coloring c′ all the edges are colored with distinct colors. Thus,
it follows that

(
k
2

)
≥ |E|.

Note that the harmonious coloring is different than the harmonious labeling
of a graph, introduced by Graham and Sloane [9]. In a harmonious labeling c of an
undirected graphG the colors of vertices are elements of Zk (set of integers modulo
k) and the induced edge-coloring c′ is defined as c′(uv) = (c(u) + c(v))(mod k).

1.1.1. Known results related to the computational complexity of the
harmonious coloring problem

Hopcroft and Krishnamoorthy [10] show that the harmonious coloring problem
for arbitrary graphs is NP-complete. Moreover, determining whether a graph has
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a harmonious coloring using at most k colors is known to be NP-complete even
for trees [7], split graphs [2], interval graphs [2, 3] and several other classes of
graphs [1, 2, 3, 6, 7, 12]. Polynomial time algorithms are known for some special
classes of graphs [18], the most important being for trees of bounded degree [5].

A recent paper that deals with the computational aspects of harmonious
coloring is [14]. In this paper, the authors list the classes of graphs for which the
harmonious coloring is known to be NP-hard.

Kolay et al. [14] study the parameterized complexity of the harmonious co-
loring problem under various parameters such as solution size, above or below
known guaranteed bounds, and vertex cover number of the graph.

1.1.2. Previous results for harmonious chromatic number on partic-
ular classes of graphs

Concerning the exact value of the harmonious chromatic number of a graph, there
are only a few graphs for which the precise value of the harmonious chromatic
number is known. The harmonious chromatic number of the path with n vertices
Pn has been determined by Lu [15], and of cycles Cn by Mitchem [19]. The
harmonious chromatic number of a class of caterpillars with at most one vertex
of degree more than 2 (paths, stars, shooting stars, and comets), and an upper
bound of the harmonious chromatic number of 3-regular caterpillars were found
by Mansuri et al. [25]. Harmonious coloring has been studied for distance degree
regular graphs of diameter 3 and several particular classes of graphs such as
Parachute, Jellyfish, Gear, and Helm graph by Huilgol and Sriram [11].

The harmonious chromatic number for the central graph, middle graph, and
total graph of some families of graphs was studied in various papers: prism
graph by Mansuri et al. [16]; flower graph, belt graph, rose graph and steering
graph by Muthumari and Umamamheswari [20]; snake derived architecture by
Selvi [24]; Jahangir graph by Selvi and Azhaguvel [23]; star graph by Rajam and
Pauline [22], and double star graph by Vernold et al. [26].

Next, we present a couple of known results related to graphs of diameter 2.
Recall that the distance d(u, v) between two vertices is the length of a shortest
u− v path in a graph G(V,E), and the diameter diam(G) is the largest distance
between any two vertices of G.

Theorem 3 (folklore). Any graph G with n vertices and diameter 2 has the
harmonious chromatic number n.

Among the most known graphs of diameter two are individual graphs like
complete bipartite graph K3,3, Wagner graph, Moser spindle graph, Golden-
Harary graph, Fritsch graph, Petersen graph, house graph, prism graph Y3, oc-
tahedron graph, and some classes of graphs like cographs, the friendship graphs,
the fan graphs, the wheel graphs.
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1.2. Our results

In this paper, we show the following results. In Section 2 we tackle the harmonious
coloring problem from the computational point of view. More precisely, we show
that the harmonious coloring problem cannot be approximated within a factor
of 1.17− ε, assuming P 6= NP and within a factor 4/3− ε, assuming the Unique
Games Conjecture, ∀ε > 0. We prove our hardness results by generalizing the
NP-hardness reduction of Hopcroft and Krishnamoorthy [10]. We also show why
the natural greedy algorithm (that colors vertices one by one and assigns the
smallest color possible) is not a good approximation.

Then, in Section 3 we determine exact values of the harmonious chromatic
number for particular classes of graphs, like (3, 3)-regular planar and some families
of cycle-related graphs. Some of these results are obtained using a backtracking
based computer program.

2. Computational Results on Harmonious Coloring

In this section, we aim to tackle the computational complexity of harmonious
coloring.

2.1. Hardness of approximation of harmonious coloring on general
graphs

In this subsection, we show that the harmonious coloring APX-hard or that it
does not admit a polynomial time approximation scheme. In other words, there
exists a constant c such that the harmonious coloring number on general graphs
cannot be approximated within a factor of c.

Theorem 4. There exists a constant c < 1.17 such that the harmonious coloring
problem cannot be approximated within a factor of c, unless P = NP . Moreover,
if we assume the Unique Games Conjecture, the harmonious coloring problem
cannot be approximated within a factor of 4/3− ε for any ε > 0.

Proof. We show our result via a reduction from the Independent Set problem.
Our reduction is a simple modification of the reduction of Hopcroft and Krish-
namoorthy [10]. Given a graph G = (V,E) for which we aim to find an indepen-
dent set with k ≤ |V | elements, we can construct in polynomial time an instance
of the harmonious coloring problem for a graph with two connected components
G′ and G′′. The first component G′ has vertex set V ∪ {v1, v2, v3}. The set of
edges of E(G′) is obtained by adding at E(G) edges between every vertex of G
and v1, v2, and v3, respectively, and edges {v1, v2}, {v2, v3}, {v1, v3}. The second
component G′′ is a clique with |V | vertices.
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Observe that G′ cannot be harmoniously colored with less than |V |+3 colors,
since it has diameter at most 2 (Theorem 3).

The claim is that this two-component graph can be harmoniously colored
with 2|V |+ 3− k colors if and only if G has an independent set of size k.

Assume first that G has an independent set X of size k. We define a harmo-
nious coloring for the two-component graph as follows: color vertices of G′ with
distinct colors; then color |X| vertices of G′′ with the colors used for the vertices
of X in G′ and the rest of the vertices of G′′ with |V | − |X| new colors. The
obtained coloring is harmonious and uses |V | + 3 + |V | − |X| = 2|V | + 3 − |X|
colors.

Conversely, assume that the two-component graph has a harmonious coloring
with 2|V | + 3 − k colors. For k = 1 there is an independent set of size k in G.
Assume k ≥ 2. For the vertices in component G′ exactly |V | + 3 distinct colors
are used (Theorem 3). We have |V | − k unused colors left only for vertices in
G′′. Since G′′ is a clique, vertices from G′′ have distinct colors. It follows that
there are k colors used both for vertices in G′ and G′′. By the definition of a
harmonious coloring, it follows that in G′ these vertices form an independent set.
This independent set is also an independent set in G, since vertices v1, v2, v3 are
pairwise adjacent and adjacent to all the vertices in G.

Let 0 < s < c ≤ 1
2 be constants and let GapIS(c, s) be a “promise gap

problem” where an n-vertex graph is given with the promise that either it contains
an independent set of size cn or contains no independent set of size sn and
the algorithmic task is to distinguish between the two cases. According to our
reduction, we have that if GapIS(c, s) is NP-hard, then the harmonious coloring
is NP-hard to approximate within

2|V |+ 3− s|V |
2|V |+ 3− c|V |

.

Thus, harmonious coloring is NP-hard to approximate within 2−s
2−c + ε, for some

ε > 0.

The best gap known is of Dinur and Safra [4] and has GapIS(1−2−1/d− ε, ε)
for d ≥ 2. Thus, for d = 2, we have that the harmonious coloring is hard to
approximate within 2

1+ 1√
2

≈ 1.17, unless P = NP . Then, according to Khot and

Regev [13], assuming the Unique Games Conjecture we have GapIS(1/2 − ε, ε).
Thus, assuming the Unique Games Conjecture, the harmonious coloring problem
is hard to approximate within a factor of 4/3− ε.

2.2. The natural greedy algorithm is an Ω(
√
n)-approximation

A natural greedy algorithm to harmoniously color a graph is as follows. Process
the vertices arbitrarily and color each vertex with the smallest available color,
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i.e., the smallest color that keeps the coloring up to this step harmonious. In this
section, we show that this greedy algorithm is a Ω(

√
n)-approximation even in

the case of trees, where n is the number of nodes in the tree. The result is stated
in the next theorem.

Theorem 5. There exists a tree T with n = N(N − 1) vertices that has a
harmonious coloring with 2N − 2 colors and is colored by the greedy algorithm
with (N − 1)2 + 1 colors for a certain ordering of its vertices.

Proof. The tree T , illustrated in Figure 1 is defined as follows. The root a0 has
N − 1 children a1, . . . , aN−1. Each of the N − 2 nodes a2, . . . , aN−1 has only one
children. We term the children of the node ai with bi. Then, each of the nodes
b2, . . . bN−1 has N − 1 children. We denote the N − 1 children of the node bi as
c1i , c

2
i , . . . , c

N−1
i . Tree T has n = N+N−2+(N−1)(N−2) = N(N−1) vertices.

The greedy algorithm colors the root a0 with 1, a1 with 2, and the nodes
a2, . . . , aN−1 with colors 3, 4, . . . , N . Then, each of the nodes b2, . . . , bN−1 have
color 2. Finally, each of the nodes cji have a distinct color, which results in a total
of N + (N − 1)(N − 2) = (N − 1)2 + 1 colors.

A coloring with 2N − 2 is as follows. The root a0 is colored with 1 and the
vertices a2, . . . , aN−1 with colors 2, 3, . . . , N . In turn, the nodes b2, . . . , bN−1 are
colored with colors N + 1, N + 2, . . . , 2N −2. Finally, for every 2 ≤ i ≤ N −1 the
nodes cji with 1 ≤ j ≤ N−1 are colored with the colors from the set {1, 2, . . . , N}
different than the color of ai.

Therefore, the greedy algorithm has an approximation factor of Ω(N) =
Ω(
√
n).

Figure 1. Counterexample for the greedy algorithm.
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3. Exact Value of the Harmonious Chromatic Number for Some
Particular Graphs, and Classes of Graphs

In this section, we determine the harmonious chromatic number for some families
of graphs like regular graphs and cycle-related graphs. We remind that the results
for the graphs of diameter 2 are presented in Section 1.1.2.

3.1. 3-regular graphs of diameter 3

First, recall the definition of a regular graph.

Definition 6. A connected graph G is a regular graph if every vertex of G has
the same number of neighbors, so every vertex has the same degree. A regular
graph with vertices of degree r is called an r-regular graph or regular graph of
degree r.

Theorem 3 refers to any graphs of diameter two, including r-regular graphs.
For example, octahedron is a 4-regular graph of diameter 2 (Figure 2), Wagner
graph (Figure 3) and Petersen graph (Figure 4) are 3-regular graphs of diameter
2, hence they have the harmonious chromatic number n.

Figure 2. A harmonious
6-coloring of octahedron
graph.

Figure 3. A harmonious
8-coloring of Wagner
graph.

Figure 4. A harmonious
10-coloring of Petersen
graph.

A graph with maximum degree ∆ and diameter diam is called a (∆, diam)-
graph. We determine the harmonious chromatic number for all (3, 3)-regular
planar graphs, and for well known (3, 3)-regular non-planar graphs. McKay and
Royle [17] give a list of 3-regular graphs of diameter 3.

Proposition 7. For a (3, 3)-regular graph G the minimum number of colors for
a harmonious coloring is 7.
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Proof. Let G(V,E) be a (3, 3)-regular graph. Then, obviously, |V (G)| ≥ 8. Let
c be a harmonious coloring of G. If all colors are distinct, then at least 8 colors
are used. Otherwise, there are two distinct vertices v, and u with c(u) = c(v).
Then, vertices from N(u) ∪ N(v) must have distinct colors, different from c(u).
Since c(u) = c(v), we have d(u, v) ≥ 3 and N(u) ∩ N(v) = ∅. It follows that
there are 6 vertices in N(u)∪N(v), all having distinct colors, different from c(u),
hence at least 7 colors are used.

Pratt [21] establishes that the smallest 3-regular planar graph of diameter 3
has 8 vertices and the largest 3-regular planar graph of diameter 3 has 12 vertices.
The number of non-isomorphic planar (3, 3)-regular graphs with 8 vertices is 3,
with 10 vertices is 6, and with 12 vertices is 2. Note that an r-regular graph with
r odd must have an even number of vertices (Handshaking lemma).

Figure 5 displays all the (3, 3)-regular planar graphs with 8 vertices. Figure 6
displays all (3, 3)-regular planar graphs with 10 vertices. Figure 7 displays the
two (3, 3)-regular planar graphs with 12 vertices.

Figure 5. Harmonious 7-colorings of all (3,3)-regular planar graphs with 8 vertices (the
color 1 is repeating).

Proposition 8. For (3, 3)-regular graphs with 8 or 10 vertices the harmonious
chromatic number is 7.

Proof. From Proposition 7, the number of colors for a harmonious coloring of a
(3, 3)-regular graph with 8 or 10 vertices is at least 7. Then, to prove the result,
it suffices to provide 7-harmonious colorings for these graphs. In Figure 5 we
present all planar (3, 3)-regular graphs with 8 vertices along with a 7-harmonious
coloring of each of them and in Figure 6 we present harmonious colorings with 7
colors for each planar (3, 3)-regular graphs with 10 vertices.

Theorem 9. The harmonious chromatic number for the only 2 planar (3, 3)-
graphs with 12 vertices is 8.
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Figure 6. Harmonious 7-colorings of all (3, 3)-regular planar graphs with 10 vertices (the
colors 1, 2, and 3 are repeating).

Figure 7. Harmonious 8-coloring for the two (3,3)-regular planar graphs with 12 vertices
(the colors 1, 2, 3, and 4 are repeating).

Proof. Figure 7 shows a harmonious 8-coloring of the truncated tetrahedron
graph and a harmonious 8-coloring of the second (3, 3)-regular planar graph with
12 vertices.
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Using a computer program, we proved that these graphs cannot be colored
harmoniously with fewer colors, by exhaustively trying all the possible harmo-
nious colorings with 7 colors. Our program is based on the classical backtracking
schema: we color vertices one by one in increasing order of their index, and at one
step we verify that there are no conflicts for the color c assigned to the current
vertex by considering the colors of the neighbors of all vertices previous colored
with c.

The source code of the program used in the proof of Theorem 9 is available
at https://github.com/veruxy/Harmonious-coloring.

The (3, 3)-regular non-planar graphs can have more than 12 vertices. Al-
though we could not classify all (3, 3)-regular graphs according to their harmo-
nious chromatic number, we fully explore the planar graphs from this category
and provide a tool — a computer program — to explore the harmonious coloring
of these graphs when the number of vertices is small enough.

3.2. Some families of cycle-related graphs

In previous work by Huilgol and Sriram [11], the value of the harmonious chro-
matic number for some graphs generated from a cycle, like wheel graph Wn an
n-cycle with each vertex connected with an extra vertex), gear graph Gn (an
n-wheel graph with an extra vertex between each pair of adjacent vertices on the
perimeter of Wn), and Helm graph Hn (an n-wheel graph with a pendant edge
attached to each vertex on the perimeter of Wn) are determined. These graphs
have n vertices on a cycle connected to a central vertex, and then ∆ = n. The
harmonious chromatic number is h(Wn) = h(Gn) = h(Hn) = n+ 1.

There are several interesting cycle-related graphs of diameter 2, like double
wheel graph and flower graph (obtained from helm graph by joining every pendant
with the central vertex). Each of these graphs has the harmonious chromatic
number equal to their order (Theorem 3).

Next, we determine the exact values of the harmonious chromatic number of
other families of cycle-related graphs of diameter greater than 2, namely sunflower
graph, sun graph, closed sun graph, and lollipop graph.

The sunflower graph Sfn is obtained from an n-wheel graph Wn with set of
vertices {v0, v1, v2, . . . , vn} by adding n vertices ui, 1 ≤ i ≤ n, and joining each
new vertex ui with two adjacent vertices vi, vi+1, 1 ≤ i ≤ n− 1, and un with vn
and v1. Thus, Sfn has 2n+ 1 vertices, and 4n edges. The degree for each vertex
of Sfn: d(v0) = n, d(vi) = 5, and d(ui) = 2, where 1 ≤ i ≤ n.

Theorem 10. The sunflower graph Sfn has h(Sfn) = 7, for 3 ≤ n ≤ 4,
h(Sfn) = 8 for 5 ≤ n ≤ 6, and h(Sfn) = n+ 1, for n ≥ 7.
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Figure 8. A harmonious
8-coloring of sunflower
graph Sf5.

Figure 9. A harmonious
8-coloring of sunflower
graph Sf6.

Figure 10. A harmonious
8-coloring of sunflower
graph Sf7.

Proof. The sunflower graph Sf3 has diameter 2, and thus, for Theorem 3,
h(Sf3) = 7. For 4 ≤ n ≤ 6 we used our computer program described in proof of
Theorem 9 to obtain the harmonious chromatic number (see Figure 8 and Figure
9).

The sunflower graph Sfn, with n ≥ 7, has the harmonious chromatic number
h(Sfn) ≥ h(Wn) = n + 1. In order to prove that equality holds, we describe a
harmonious coloring for Sfn with n+ 1 colors. Color the central vertex v0 with
color 1; then color the vertices vi, 1 ≤ i ≤ n, on the cycle with colors in order in
set C = {2, 3, . . . , n+ 1}, clockwise, and assign to the vertices ui colors in set C,
clockwise, starting from the vertex u2, situated at distance 3 from the vertex v1
previously colored with 2 (Figure 10).

The sun graph Sn is obtained from the complete graph Kn, with vertices
denoted v1, v2, . . . , vn and n new vertices u1, u2, . . . , un, each connected with two
adjacent vertices on an outer cycle of Kn, more precisely vertex ui is adjacent to
vi and vi+1, for every 1 ≤ i ≤ n− 1, and un is adjacent to vn and v1. Thus, the
sun graph Sn has 2n vertices, and n(n− 1)/2 + 2n edges.

Theorem 11. The sun graph Sn, n ≥ 3, has h(Sn) = n + 2 if n is even, and
h(Sn) = n+ 3 if n is odd.

Proof. In a harmonious coloring of Sn vertices v1, . . . , vn of the clique must
have distinct colors. Denote these colors 1, . . . , n. Since d(ui, vj) ≤ 2 for every
1 ≤ i, j ≤ n, it follows that colors 1, . . . , n cannot be used for vertices u1, . . . , un.
Moreover, since d(ui, ui+1) = 2 for every 1 ≤ i ≤ n − 1 and d(un, u1) = 2, it
follows that, if n is even at least 2 new colors are needed for vertices u1, . . . , un
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and if n is odd at least 3 new colors are needed. Hence

h(Sn) ≥
{
n+ 2, if n even,
n+ 3, if n odd.

Figure 11. A harmonious 8-coloring of
sun graph S5.

Figure 12. A harmonious 8-coloring of
sun graph S6.

The lower bound can be achieved for the following coloring, hence equality holds.

• For n even, let c(vi) = i for every 1 ≤ i ≤ n, c(uj) = n + 1 if j is odd and
c(uj) = n+ 2 if j is even for 1 ≤ j ≤ n (Figure 12);

• For n odd, let c(vi) = i for every 1 ≤ i ≤ n, c(uj) = n + 1 if j is odd and
c(uj) = n+ 2 if j is even for 1 ≤ j ≤ n− 1 and c(un) = n+ 3 (Figure 11).

The closed sun graph Sn is the graph Sn with edges between vertices ui, ui+1,
where 1 ≤ i < n, and between un and u1. Thus, Sn has 2n vertices and n(n −
1)/2 + 3n edges. Then, d(vi) = n+ 1, and d(ui) = 4.

Theorem 12. The closed sun graph Sn has h(Sn) = 2n, for n ≤ 5 and h(Sn) =
n+ h(Cn), for n > 5.

Proof. For n ≤ 5 we have h(Sn) = 2n, since in this case Sn has diameter 2. For
n > 5, vertices of the clique must be colored with n distinct colors and these
colors cannot be used for any vertex from the outer cycle Cn, since a vertex from
the outer cycle is at distance at most 2 from any vertex of the clique; hence
we have h(Sn) ≥ n + h(Cn). To prove that equality holds, we consider the
following coloring for Sn (Figure 13, Figure 14), which can be easily verified that
is harmonious.

• First color with 1, . . . , n the vertices of the clique Kn;
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Figure 13. A harmonious 10-coloring of
closed sun graphs S5.

Figure 14. A harmonious 11-coloring of
closed sun graphs S6.

• Then consider a harmonious coloring for the outer cycle Cn with h(Cn) colors,
using colors from n+ 1 to n+ h(Cn).

Let G, H be two connected graphs and consider one vertex from each of these
two graphs: a ∈ V (G), b ∈ V (H). Denote by (G, a)� (H, b) the graph obtained
from the union of graphs G and H by identifying vertices a and b. We will call
this operation vertex-union.

For two positive numbers n ≥ 3, m ≥ 2 Lollipop graph Ln,m is the vertex-
union (Kn, u)� (Pm, v) where u is any vertex of a clique Kn and v is a degree 1
vertex of a path Pm.

Figure 15. A harmonious 8-coloring of lollipop graph L6,4.

Theorem 13. Let n ≥ 3 and m ≥ 2 and t be the minimum natural number such
that m ≤ 1 +nt+ t(t−1)

2 . The Lollipop graph Ln,m has the harmonious chromatic
number h(Ln,m) = n+ t in the following cases.

• t Is even and n is odd;
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• t and n are even and m ≤ 1 + nt+ t(t−1)
2 − t

2 ;

• t is odd, n is even and and m ≤ 1 + nt+ t(t−1)
2 − (n− 2);

• t and n are odd and m ≤ 1 + nt+ t(t−1)
2 −

(
n− 2 + max

(
t−(n−2)

2 , 0
))

,

otherwise h(Ln,m) = n+ t+ 1.

Proof. In this proof for a complete graph Kr we denote the vertices by 1, . . . , r.
Also, for n ≤ r we denote by 〈[n]〉 the clique induced in Kr by vertices 1, . . . , n.

Let k = nt+ t(t−1)
2 .

Let r = h(Ln,m) and let c be an r-harmonious coloring of Ln,m. The n vertices
of the clique of Ln,m must have distinct colors. Assume without loss of generality,
that these colors are 1, . . . , n. Then, in the complete graph Kr, according to the
coloring c, the colors of the vertices of the clique in Ln,m correspond to a clique
with n vertices 1, . . . , n in Kr and the colors of the vertices from the path Pm

of Ln,m correspond to a trail (possible closed) with m vertices in Kr − E(〈[n]〉)
(obtained from Kr by removing all the edges between vertices 1, . . . , n) starting
with a vertex from 1, . . . , n.

Conversely, if in a clique Kr with r ≥ n there exists a trail with m vertices
in Kr − E(〈[n]〉) starting with a vertex from 1, . . . , n (assume without loss of
generality it starts from vertex 1), then Ln,m has an r-harmonious coloring. It
follows that the harmonious chromatic number of Ln,m is the minimum r with
such property.

Let t be the smallest number such that |E(Ln,m)| = |E(Kn)| + |E(Pm)| ≤
E(Kn+t), that is such m − 1 ≤ nt + t(t−1)

2 = k. Then h(L(Kn,m)) ≥ n + t and
equality holds only if the following property is satisfied: there exists a trail with
m vertices in Kn+t − E(〈[n]〉) starting with a vertex 1.

In Kn+t−E(〈[n]〉) vertices 1, . . . , n have degree t and vertices n+1, . . . , n+ t
have degree n+ t−1. In order to have a trail with m vertices starting with vertex
1 in Kn+t − E(〈[n]〉), the largest subgraph of this graph that has an Eulerian
trail must have at least m− 1 edges and all vertices of this subgraph must have
even degree with at most 2 exceptions; if there are vertices of odd degree in this
subgraph, then vertex 1 must be one of them, thus at least t − 1 of vertices
n+ 1, . . . , n+ t have even degree in this subgraph.

We consider four cases, according to the parity of n and m.

Case 1. If t is even and n is odd, then Kn+t − E(〈[n]〉) is Eulerian, hence it
has an Eulerian cycle. This cycle includes a trail with m vertices starting from
vertex 1, hence in this case h(L(Kn,m)) = n+ t.

Case 2. If t is even and n is even, in order to have a subgraph in Kn+t −
E(〈[n]〉) with all vertices from n + 1 to n + t of even degree with at most one
exception, then we must remove at least t

2 edges, hence m − 1 must be at most
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k − t
2 . We can obtain such a subgraph by removing edges (n + 1, n + 2), (n +

3, n+4), . . . , (n+ t−1, n+ t). This subgraph is Eulerian, hence is has a trail with
m vertices starting from vertex 1. It follows that if m− 1 ≤ k − t

2 , then we have
h(L(Kn,m) = n+ t. Otherwise, h(L(Kn,m)) ≥ n+ t+ 1 and equality holds, since
by adding a new vertex to Kn+t and joining it with n+ 1, . . . , n+ t we obtain an
Eulerian subgraph of Kn+t+1 − E(〈[n]〉) with at least m edges.

Case 3. If t is odd and n is even, then, to have a subgraph with an Eulerian
trail, we must remove edges such that at least n − 2 vertices from 1, . . . , n have
even degree. Since these vertices are pairwise nonadjacent, we must remove at
least n − 2 edges. For example if we remove (3, n + 1), (4, n + 1), . . . , (n, n + 1)
we obtain a subgraph with an Eulerian trail with one extremity in 1.

Hence, in this case, if m− 1 ≤ k− (n− 2), then we have h(L(Kn,m)) = n+ t,
otherwise, as in Case 2, h(L(Kn,m)) = n+ t+ 1.

Case 4. If t is odd and n is odd, consider two subcases.

Subcase 4.1. If t ≥ n − 2, as in Case 2, we must remove at least n+t
2 − 1

edges in order to have a subgraph with an Eulerian trail. We can remove the
edges: (i, n + i − 2) for 3 ≤ i ≤ n, and (n + n − 1, n + n), (n + n + 1, n + n +
2), . . . , (n + t − 1, n + t) and obtain the desired subgraph, hence in this case if
m − 1 ≤ k −

(
n+t
2 − 1

)
= k −

(
n − 2 + t−n+2

2

)
we have h(L(Kn,m)) = n + t,

otherwise, as in Case 2, we have h(L(Kn,m)) = n+ t+ 1 .

Subcase 4.2. If t < n− 2, as in Case 3, we must remove at least n− 2 edges
such that at least n−2 vertices from 1, . . . , n became of even degree. For example,
we remove the edges (i, n + i − 2) for 3 ≤ i ≤ t + 1 and the edges (i, n + t) for
t+ 2 ≤ i ≤ n and obtain a subgraph with an Eulerian trail from vertex 1. Hence,
in this case, if m− 1 ≤ k − (n− 2), then we have h(L(Kn,m)) = n+ t, otherwise
h(L(Kn,m) = n+ t+ 1.

4. Conclusions and Future Work

In this paper, we studied the harmonious chromatic number, which is a proper
vertex coloring such that for every two distinct colors i, j at most one pair of
adjacent vertices are colored with i and j.

We showed that finding a minimum harmonious coloring for arbitrary graphs
is APX-hard, the natural greedy algorithm is a Ω(

√
n)-approximation. In the

second part of our paper, we determined the exact value of the harmonious chro-
matic number for all 3-regular planar graphs of diameter 3 and some cycle-related
graphs.

We state an open problem related to the approximability of the harmonious
chromatic number.
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Open Question 1. Does there exist a constant factor approximation algorithm
for the harmonious chromatic number on arbitrary graphs?

Finally, we list a couple of classes of cycle-related graphs for which it is
interesting to find the exact value of the harmonious chromatic number: square
graph, tadpole or dragon graph, barbell graph, diamond snake, total graph of
path, total graph of cycle.
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