DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

D.C. Jean

Devin C. Cruz Jean

Vanderbilt University

email: emailcruzjean@yahoo.com

0000-0001-9549-2324

S.J. Seo

Suk J. Seo

Middle Tennessee State University

email: suk.seo@mtsu.edu

0000-0003-3859-3449

Title:

Fault-tolerant identifying codes in special classes of graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(2) (2024) 591-611

Received: 2021-11-05 , Revised: 2022-06-01 , Accepted: 2022-06-11 , Available online: 2022-07-25 , https://doi.org/10.7151/dmgt.2465

Abstract:

A detection system, modeled in a graph, is composed of ``detectors" positioned at a subset of vertices in order to uniquely locate an ``intruder" at any vertex. Identifying codes use detectors that can sense the presence or absence of an intruder within distance one. We introduce a fault-tolerant identifying code called a redundant identifying code, which allows at most one detector to go offline or be removed without disrupting the detection system. In real-world applications, this would be a necessary feature, as it would allow for maintenance on individual components without disabling the entire system. Specifically, we prove that the problem of determining the lowest cardinality of a redundant identifying code for an arbitrary graph is NP-hard, and we determine the bounds on the lowest cardinality for special classes of graphs, including trees, ladders, cylinders, and cubic graphs.

Keywords:

domination, detection system, identifying-code, fault-tolerant, redundant-identifying-code, density

References:

  1. D. Auger, I. Charon and O. Hudry and A. Lobstein, Watching systems in graphs: an extension of identifying codes, Discrete Appl. Math. 161 (2013) 1674–1685.
    https://doi.org/10.1016/j.dam.2011.04.025
  2. I. Charon, O. Hudry and A. Lobstein, Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard, Theoret. Comput. Sci. 290 (2003) 2109–2120.
    https://doi.org/10.1016/S0304-3975(02)00536-4
  3. G.D. Cohen, I. Honkala, A. Lobstein and G. Zémor, On identifying codes, in: Proc. DIMACS Workshop on Codes and Association Schemes, {DIMACS Ser. Discrete Math. Theoret. Comput. Sci.} 56, (Amer. Math. Soc., Providence 2001) 97–109.
    https://doi.org/10.1090/dimacs/056
  4. G.D. Cohen, I. Honkala, A. Lobstein and G. Zémor, Bounds for codes identifying vertices in the hexagonal grid, SIAM J. Discrete Math. 13 (2000) 492–504.
    https://doi.org/10.1137/S0895480199360990
  5. C.J. Colbourn, P.J. Slater and L.K. Stewart, Locating-dominating sets in series-parallel networks, Congr. Numer. 56 (1987) 135–162.
  6. A. Cukierman and G. Yu, New bounds on the minimum density of an identifying code for the infinite hexagonal grid, Discrete Appl. Math. 161 (2013) 2910–2924.
    https://doi.org/10.1016/j.dam.2013.06.002
  7. F. Foucaud, M.A. Henning, C. Löwenstein and T. Sasse, Locating-dominating sets in twin-free graphs, Discrete Appl. Math. 200 (2016) 52–58.
    https://doi.org/10.1016/j.dam.2015.06.038
  8. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, San Francisco, 1979).
  9. D.C. Jean and S.J. Seo, Optimal error-detecting open-locating-dominating set on the infinite triangular grid, Discuss. Math. Graph Theory(2021), in press.
    https://doi.org/10.7151/dmgt.2374
  10. M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599–611.
    https://doi.org/10.1109/18.661507
  11. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs (2022).
    https://www.lri.fr/\%7elobstein/debutBIBidetlocdom.pdf
  12. S.J. Seo and P.J. Slater, Open neighborhood locating-dominating sets, Australas. J. Combin. 46 (2010) 109–119.
  13. S.J. Seo and P.J. Slater, Fault tolerant detectors for distinguishing sets in graphs, Discuss. Math. Graph Theory 35 (2015) 797–818.
    https://doi.org/10.7151/dmgt.1838
  14. P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987) 55–64.
    https://doi.org/10.1002/net.3230170105
  15. P.J. Slater, Fault-tolerant locating-dominating sets, Discrete Math. 249 (2002) 179–189.
    https://doi.org/10.1016/S0012-365X(01)00244-8
  16. P.J. Slater, A framework for faults in detectors within network monitoring systems, WSEAS Trans. Math. 12 (2013) 911–916.

Close