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Abstract

A detection system, modeled in a graph, is composed of “detectors”
positioned at a subset of vertices in order to uniquely locate an “intruder”
at any vertex. Identifying codes use detectors that can sense the presence
or absence of an intruder within distance one. We introduce a fault-tolerant
identifying code called a redundant identifying code, which allows at most
one detector to go offline or be removed without disrupting the detection
system. In real-world applications, this would be a necessary feature, as
it would allow for maintenance on individual components without disabling
the entire system. Specifically, we prove that the problem of determining the
lowest cardinality of a redundant identifying code for an arbitrary graph is
NP-hard, and we determine the bounds on the lowest cardinality for special
classes of graphs, including trees, ladders, cylinders, and cubic graphs.
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1. Introduction

Let G = (V (G), E(G)) be a (simple) graph, with vertices V (G) and edges E(G),
modelling a system or facility with detectors to recognize a possible problem,
traditionally referred to as an “intruder”. For example, the vertices of the graph
can represent sections of a shopping mall, the intruder could be a shoplifter,
and the detectors can be video surveillance equipment or motion, magnetic, or
RFID sensors. The goal is to identify the exact location/vertex of the intruder
by placing the minimum number of detectors in the facility/graph. To represent
the capabilities of the sensor(s) placed at a point v ∈ V (G), we associate each
sensor, ρ, at location v with a detection region Rρ(v) ⊆ V (G), where ρ can detect
the presence or absence of an intruder anywhere in Rρ(v). The vertex v itself
is associated with a set of detection regions, R(v), which is simply the set of
Rρ(v) for each sensor ρ at position v. Note that when |R(v)| = 1, Rρ(v) has also
been referred to as the “watching zone” of v in other papers, but with different
notation [1].

Definition 1. Let G be a graph and v ∈ V (G). The open neighborhood of v,
denoted N(v), is the set of all vertices adjacent to v, {w ∈ V (G) : vw ∈ E(G)}.

Definition 2. Let G be a graph and v ∈ V (G). The closed neighborhood of v,
denoted N [v], is the set of all vertices adjacent to v as well as v itself, N(v)∪{v}.

Many types of detection systems with various properties have been explored
throughout the years. One such system is the Locating-Dominating (LD) set,
where each detector can sense the presence of an intruder in its closed neighbor-
hood but also has the ability to distinguish the vertex itself from its neighbors;
that is, R(v) = {{v}, N(v)} [14]. Another type of distinguishing set that has
been explored is the open-locating-dominating (OLD)set, which is based on LD
but removed the self-distinguishing property; that is, R(v) = {N(v)} [12]. Of
particular interest in this paper are identifying codes (ICs), where R(v) = {N [v]}
[10]. Over 470 papers have been published on these detection systems and other
related concepts [11].

Detection systems are useful in modeling security systems and automated
fault detection in networked systems; thus, it is often the case that we want
some level of fault tolerance guaranteed in the system. Many different forms
of fault tolerant detection systems have been explored, including the ability to
correct false negative or false positive signals from the sensors. Identifying codes
were introduced by Karpovsky et al. in 1998 [10]; in this paper, we will intro-
duce redundant identifying codes (RED:ICs), which allow at most one detector
to go offline or be removed without disrupting the system. To the best of our
knowledge, this is the first paper to consider fault-tolerant identifying codes.
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Definition 3. An identifying code S ⊆ V (G) is a dominating set such that any
two distinct vertices u, v ∈ V (G) have N [u] ∩ S 6= N [v] ∩ S.

Definition 4. An identifying code S ⊆ V (G) is a redundant identifying code
(RED:IC) if, for each v ∈ S, the set S \ {v} is an identifying code.

Detector-based systems commonly use terminology such as “dominated” or
“distinguished”, whose definitions vary depending on the sensors’ capabilities.
The following definitions are specifically for identifying codes and their fault-
tolerant variants; assume that S ⊆ V (G) is the set of detectors.

Definition 5. A vertex, v ∈ V (G), is k-dominated if |N [v] ∩ S| = k.

Definition 6. Two distinct vertices u, v ∈ V (G) are said to be k-distinguished
if |(N [u] ∩ S)4(N [v] ∩ S)| ≥ k.

We will also use terms such as “at least k-dominated” to denote l-dominated
for some l ≥ k.

Definition 7. A detector set, S ⊆ V (G), is an IC if and only if each vertex is at
least 1-dominated and all pairs are 1-distinguished.

Theorem 1. A detector set, S ⊆ V (G), is a RED:IC if and only if each vertex
is at least 2-dominated and all pairs are 2-distinguished.

In the remainder of this paper, two vertices are said to be “distinguished”
if they meet the specific k-distinguished requirement for the type of set being
discussed.

Theorem 1 was given by Slater [16] and proven more generally by Seo and
Slater [13]; in this paper, it is specialized for RED:IC. Note that the requirements
for Definition 7 and Theorem 1 are not satisfied by every graph. For instance,
Kn for n ≥ 2 does not support either of these requirements.

For finite graphs, we use the notations IC(G), and RED:IC(G) to denote the
cardinality of the smallest possible such sets on graph G, respectively. For infinite
graphs, we measure via the density of the subset, which is defined as the ratio of
the size of the subset to the size of the whole set [9, 13]. Formally, for locally-

finite (i.e., Br(v) finite for finite r) G, this is defined as lim supr→∞
|Br(v)∩S|
|Br(v)| for

any v ∈ V (G), where Br(v) = {u ∈ V (G) : d(u, v) ≤ r} denotes the ball with
radius r around v. We use the notations IC%(G), and RED:IC%(G) to denote
the lowest density of any possible such set on G [9, 13]. Note that density is also
defined for finite graphs.

Figure 1 shows an example IC and RED:IC on G8. In the IC set (a), we
see that N [v1] ∩ S = {v1, v2}, N [v2] ∩ S = {v1, v2, v3}, N [v6] ∩ S = {v2}, and
so on; each set has at least one item, so every vertex is at least 1-dominated.
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Figure 1. Optimal IC (a) and RED:IC (b) sets on G8. Shaded vertices represent detectors.

For brevity, let 4a,b = (N [a] ∩ S)4(N [b] ∩ S). We see that 4v1,v2 = {v3},
4v1,v3 = {v1, v3}, 4v5,v7 = {v1, v3}, and so on; each has at least one item, so all
vertex pairs are 1-distinguished. Therefore, Definition 7 yields that (a) is an IC.
We can perform a similar analysis on the vertices of (b) to see that all vertices
are at least 2-dominated and all pairs are 2-distinguished, so by Theorem 1 it is
a RED:IC. It can be shown that no smaller sets with these requirements exist on
this graph (Corollary 1 from Section 3 can be used to demonstrate this). Thus,
IC(G8) = 4 and RED:IC(G8) = 5. If we would prefer to use densities, we also
have that IC%(G8) = 1

2 and RED:IC%(G8) = 5
8 .

In the following section, we prove that the problem of determining the mini-
mum cardinality of RED:IC(G) for an arbitrary graph G is NP-hard. In Section 3
we show existence criteria of the redundant identifying code for general graphs,
and determine the lower bound on the minimum density of RED:IC, which is a
tight bound when n is even. In Section 4 we explore several special classes of
graph—including ladders, cylinders, trees, and cubic graphs—and find lower and
upper bounds of RED:IC(G), some tight bounds, and several extremal families
of graphs with minimum and maximum value.

2. NP-Hardness of RED:IC

It has been shown that many graphical parameters related to detection systems,
such as finding the cardinality of the smallest IC, LD, or OLD sets, are NP-
hard problems [2, 3, 5, 12]. We will now prove that the problem of determining
the smallest RED:IC set is also NP-hard. For additional information about NP-
hardness, see Garey and Johnson [8].

3-SAT
INSTANCE: Let X be a set of N variables. Let ψ be a conjunction of M
clauses, where each clause is a disjunction of three literals from distinct variables
of X.
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QUESTION: Is there an assignment of values to X such that ψ is true?

Redundant Identifying Code (RED-IC)
INSTANCE: A graph G and integer K with 2 ≤ K ≤ |V (G)|.
QUESTION: Is there a RED:IC set S with |S| ≤ K? Or equivalently, is
RED:IC(G) ≤ K?

Theorem 2. The RED-IC problem is NP-complete.

Proof. Clearly, RED-IC is NP, as every possible candidate solution can be
generated nondeterministically in polynomial time (specifically, O(n) time), and
each candidate can be verified in polynomial time using Theorem 1. To complete
the proof, we will now show a reduction from 3-SAT to RED-IC.

Fi Hj

cj

aj bjxi xi

yi zi

pi qi ri si

Figure 2. Variable and clause graphs.

Let ψ be an instance of the 3-
SAT problem with M clauses on
N variables. We will construct
a graph, G, as follows. For each
variable xi, create an instance of
the Fi graph (Figure 2); this in-
cludes a vertex for xi and its nega-
tion xi. For each clause cj of ψ,
create a new instance of the Hj

graph (Figure 2). For each clause
cj = α∨β ∨ γ, create an edge from the cj vertex to α, β, and γ from the variable
graphs, each of which is either some xi or xi; for an example, see Figure 3. The
resulting graph has precisely 8N + 3M vertices and 8N + 5M edges, and can
be constructed in polynomial time. To complete the problem instance, we define
K = 7N + 3M .

Suppose S ⊆ V (G) is a RED:IC on G with |S| ≤ K. By Theorem 1, every
vertex must be at least 2-dominated; thus, we require at least 6N+3M detectors,
as shown by the shaded vertices in Figure 2. Additionally, in each Fi we see that
yi, pi and zi, ri are not distinguished unless {xi, xi} ∩ S 6= ∅. Thus, we find that
|S| ≥ 7N + 3M = K, implying that |S| = K, so |{xi, xi} ∩ S| = 1 for each
i ∈ {1, . . . , N}. For each Hj , we see that aj and cj are not distinguished unless cj
is adjacent to at least one additional detector vertex. As no more detectors may
be added, it must be that each cj is now dominated by one of its three neighbors
in the Fi graphs; therefore, ψ is satisfiable.

For the converse, suppose we have a solution to the 3-SAT problem ψ; we
will show that there is a RED:IC, S, on G with |S| ≤ K. We construct S by
first including all of the 6N + 3M vertices needed for 2-domination. Then, for
each variable, xi, if xi is true, then we let the vertex xi ∈ S; otherwise, we let
xi ∈ S. Thus, the fully-constructed S has |S| = 7N + 3M = K. Because we



596 D.C. Jean and S.J. Seo

selected each xi ∈ S or xi ∈ S based on a satisfying truth assignment for ψ, each
cj must be adjacent to at least one additional detector vertex from the Fi graphs.
Also, by the hypothesis that the literals of a clause come from distinct variables
(otherwise that clause is either not a valid 3-SAT clause or is a tautology and
can be omitted from ψ), for every i, either xi or xi is adjacent to at least one
additional detector vertex cj in Hj , so xi and xi are distinguished. Similarly, it
can be shown that all other vertex pairs are distinguished, so S is a RED:IC for
G with |S| ≤ K, completing the proof.

G
a1 b1

c1

a3 b3

c3

a2 b2

c2

a4 b4

c4

x2 x2

y2 z2

x3 x3

y3 z3 x4 x4

y4 z4

x1 x1

y1 z1
x5 x5

y5 z5

p1 q1 r1 s1

p2 q2 r2 s2

p3 q3 r3 s3

p4 q4 r4 s4

p5 q5 r5 s5

Figure 3. Construction of G with N = 5, M = 4, and K = 47 from ψ = (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ x5) ∧ (x2 ∨ x4 ∨ x5).

3. Existence of RED:IC and Bounds on RED:IC(G)

Definition 8. If u ∈ V (G) has N(u) = {v}, then u is called a leaf vertex and v
is called a support vertex.

Definition 9. If a vertex, v, is neither a leaf nor support vertex, it is called a
pure interior vertex.

Definition 10 [7]. Two distinct vertices u, v ∈ V (G) are said to be twins if
N [u] = N [v] (closed twins) or N(u) = N(v) (open twins).

From Theorem 1, we know that each pair of vertices must be 2-distinguished;
if u and v are closed twins, then they cannot be distinguished, so no RED:IC
exists. Further, if u and v are open twins, then they must both be detectors in
order to be distinguished. We also see that all support and leaf vertices must be
detectors in order to 2-dominate the leaves; if a support vertex is not at least
4-dominated, then it will not be distinguished from its leaves. Thus, we arrive at
the following.
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Observation 1. RED:IC exists only if there are no closed twins and every sup-
port vertex, v, has deg(v) ≥ 3.

Observation 2. If S is a RED:IC and u and v are open twins, then {u, v} ⊆ S.

Observation 3. There is no graph with RED:IC(G) ≤ 3.

Observation 4. The smallest graphs with RED:IC(G) are K1,3 and C4, each
with RED:IC(G) = 4.

Theorem 3. Let G be connected with n ≥ 4. RED:IC exists if and only if there
are no closed twins, every support vertex has at least degree three, and every
triangle abc ∈ G has |N [a]4N [b]| ≥ 2.

Proof. Let S = V (G) be a set of detectors; because G is connected and |V (G)| ≥
2, every vertex is at least 2-dominated. We will show that each v ∈ V (G) is
distinguished from every other vertex u ∈ V (G). If uv /∈ E(G), then u and v are
distinguished by themselves; otherwise, we assume uv ∈ E(G). By hypothesis,
u and v are not closed twins; without loss of generality, let w1 ∈ N(u) \N [v].
If v is a leaf, then deg(u) ≥ 3 by hypothesis, so u and v are distinguished by
the neighbors of u different from v; otherwise there exists w2 ∈ N(v) \ {u}. If
w2 /∈ N(u), then u and v are distinguished by w1 and w2; otherwise uvw2 is a
triangle, so by hypothesis u and v are 2-distinguished, meaning S is a RED:IC.
For the converse, suppose one of the properties is not met. If there are closed
twins or there is a support vertex with degree at most 2, then by Observation 1, no
RED:IC exists. Finally, if there is a triangle abc ∈ G with |N [a]4N [b]| ≤ 1, then
a and b cannot be distinguished, so no RED:IC exists, completing theproof.

Based on Theorem 1, we can easily construct an algorithm to test if a con-
nected graph G with n ≥ 4 has a RED:IC set: simply check that for any
u, v ∈ V (G), |N [u]4N [v]| ≥ 2, which can be done in O(m∆(G)) time in the
worst case if the graph input is an adjacency list. From Theorem 3, if G is
triangle-free, we need only ensure that support vertices have at least degree three
and that there are no closed twins; if the input is a sorted adjacency list, this can
be done in O(n∆(G)) time by iterating over each vertex and storing the closed
neighborhoods in a set. Finally, if G is a tree, we need only check that every
support vertex has at least degree three, which can be done in O(n) time if the
input is an adjacency list.

Next, we consider a lower bound on the value of RED:IC(G). We start by
analyzing the maximum size of a graph with IC(G) = k. We know that every
vertex must be at least 1-dominated and all pairs must be 1-distinguished; this
means that the “codeword” of each v ∈ V (G), N [v]∩S, must be distinct and non-
empty. Thus, the set of all non-empty subsets of the total k detectors represent
valid codewords, giving us the following result.
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Observation 5. If IC (G) ≤ k, then |V (G)| ≤ 2k − 1.

Theorem 4. If RED:IC(G) ≤ k, then |V (G)| ≤ 2k−1 − 1.

Proof. Suppose we have a RED:IC, S ⊆ V (G), with |S| ≤ k. Thus, by definition,
there exists an IC S′ with |S′| ≤ k − 1. Observation 5 gives us that |V (G)| ≤
2k−1 − 1.

{1,2} {1,3} {1,4}

{2,3} {2,4} {3,4}

{1,2,3,4}

3 4

1

2

{3,6}

{1,2,3,4,5,6}

{1,2} {1,3} {1,4} {1,5} {1,6}
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{1,2,3,4} {3,4,5,6}{1,3,4,6} {1,3,4,5}

432

1

65

(a) (b)

Figure 4. Two members of an extremal family of graphs with largest n, where n = 7 for
k = 4 (a) and n = 31 for k = 6 (b).
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Figure 5. Two constructions of graphs with large n (here, n = 11) for k = 5.

Now, we will show how to construct a family of extremal graphs with largest
n for a given number of detectors, k = RED:IC(G). For k = 2j, start with a
star graph, K1,k−1, where every vertex is a detector. We then add an additional
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(
k
2

)
− (k − 1) non-detectors which are adjacent to a distinct pair of detectors

(keeping in mind there are already k − 1 detector vertices dominated by exactly
two detectors including themselves), an additional

(
k
4

)
non-detectors which are

adjacent to distinct sets of 4 detectors, an additional
(
k
6

)
non-detectors which

are adjacent to distinct sets of 6 detectors, and so on through
(
k
k−2
)

(as
(
k
k

)
was

already created at the beginning). Because only even numbers of detector neigh-
bors were chosen, every vertex will be at least 2-dominated and 2-distinguished.
Then, the total number of vertices is thus

(
k
2

)
+
(
k
4

)
+ · · · +

(
k
k

)
= 2k−1 − 1 (see

Equation 1 below). We see that this value matches the theoretical upper bound
established by Theorem 4. This construction yields an infinite family of extremal
graphs with largest n for any even value of RED:IC, k; example graphs for k = 4
and k = 6 are shown in Figure 4.

2n = (1 + 1)n =

n∑
k=0

(
n

k

)

0 = (1− 1)n =

n∑
k=0

(
n

k

)
(−1)k.

(1)

For k = 2j + 1, we again start with a star graph, K1,k−1, where every vertex
is a detector. We add non-detectors in a similar fashion to the case when k =
2j, starting with

(
k
2

)
− (k − 1) non-detectors, but ending with

(
k
k−3
)

(as non-

detectors representing
(
k
k−1
)

will not be distinguished from the
(
k
k

)
detector).

This construction is shown for k = 5 in Figure 5(a). Then, the total number of
vertices is

(
k
2

)
+
(
k
4

)
+ · · ·+

(
k
k−3
)

+
(
k
k

)
= 2k−1 − k (see Equation 1).

Alternatively, for k = 2j + 1, we can start with a cycle on k vertices, Ck,
where every vertex is a detector. Add an additional

(
k
3

)
− k non-detectors that

are adjacent to distinct set of three detectors. Add
(
k
5

)
non-detectors so that they

are adjacent to distinct set of 5 detectors. Add
(
k
7

)
non-detectors so that they

are adjacent to distinct set of 7 detectors, and so on through
(
k
k

)
. An example of

this construction for k = 5 is given by Figure 5(b). Because only odd numbers of
detector neighbors were chosen, every vertex will be at least 2-dominated and 2-
distinguished. Then, the total number of vertices is

(
k
3

)
+
(
k
5

)
+ · · ·+

(
k
k−2
)

+
(
k
k

)
=

2k−1 − k.

There is no RED:IC for a complete graph, as every vertex is a closed twin
with any other vertex. There are p =

⌊
n
2

⌋
disjoint pairs of closed twins in Kn. For

any of the p pairs of twins, u and v, we can remove the uv edge; this makes them
no longer closed twins with one another, and does not affect other vertices. If n is
even, removing the p edges corresponding to the p disjoint pairs of twins results
in a complete multipartite graph with p parts, each of size 2. By Observation 2,
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this graph must necessarily have RED:IC(G) = n because every vertex is an
open twin with some other vertex, and G has the maximum number of edges
that RED:IC allows, as only the necessary p edges were removed.

From Theorem 4, we see that if S is a RED:IC of size k, then n ≤ 2k−1 − 1,
from which we see that log2(n+ 1) + 1 ≤ k. This gives us the following corollary.

Corollary 1. If G has a RED:IC, then dlog2(n+ 1)e+ 1 ≤ RED : IC(G) ≤ n.

4. Special Classes of Graphs

Observation 6. If S is a RED:IC set, then every degree 3 support vertex u has
N [u] ⊆ S.

Observation 7. If S is a RED:IC set and vuw is a path in G where u and w
have degree 2, then v ∈ S.

From Observation 1, finite paths do not have RED:IC. From Observation 7,
we see that the infinite path and cycles with n ≥ 4 require all vertices to be
detector vertices, hence RED:IC%(G) = 1.

4.1. Trees

Because a tree on n ≥ 4 vertices is closed-twin free and triangle free, we arrive
at the following corollary via Theorem 3.

Corollary 2. Let T be a tree with n ≥ 4. RED:IC exists if and only if every
support vertex, v, has deg(v) ≥ 3.

Characterization of the extremal trees with RED:IC(Tn) = n

By the requirement of 2-domination, any T = K1,n−1, has RED:IC(T ) = n. In
fact, from Figure 6, we see that any tree T of order 4 ≤ n ≤ 8 which admits
RED:IC has RED:IC(T ) = n. We will now characterize these extremal trees.

Theorem 5. If T is a tree of order n ≥ 4 with a RED:IC, then RED:IC(T ) = n
if and only if each vertex, v ∈ V (G), is a leaf vertex, is a support vertex, is
adjacent to a degree 3 support vertex, or belongs to a path vuw where u and w
have degree 2.

Proof. Clearly, if T satisfies the four properties in the theorem statement, then
RED:IC(T ) = n, in particular thanks to Observations 6 and 7. For the converse,
suppose that some v ∈ V (T ) does not satisfy any of the four properties; we will
show that V (T ) \ {v} is a RED:IC. By hypothesis, we know a RED:IC exists,
which by Observation 1 implies that all support vertices have at least degree 3.
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Because v is not a leaf vertex, deg(v) ≥ 2; let w ∈ N(v), let T ′ be the subtree
of T − v containing w, and let n′ = |V (T ′)|. We will show that S′ = V (T ′)
is a RED:IC for T ′, meaning V (T ) \ {v} is a RED:IC for the original graph,
T . Because v is not a support vertex, deg(w) ≥ 2; let z ∈ N(w) \ {v}. If
deg(w) = deg(z) = 2, we contradict that v does not satisfy Observation 7; thus,
we assume that deg(w) ≥ 3 or deg(z) 6= 2. Suppose deg(w) = 2; then require
deg(z) 6= 2. If deg(z) = 1, then w is a support vertex which does not have at
least degree 3, a contradiction; otherwise, we assume that deg(z) ≥ 3. We see
that n′ ≥ 4 and every support vertex in the restricted graph T ′ has at least
degree 3, so Corollary 2 yields that V (T ′) is a RED:IC on T ′, and we are done.
Otherwise, deg(w) ≥ 3. If deg(w) ≥ 4, we again see that n′ ≥ 4 and all support
vertices in T ′ have at least degree 3, so we are done; thus, we can assume that
deg(w) = 3. If w is a support vertex, then we contradict that v does not satisfy
Observation 6; thus, we assume that w is not a support vertex, meaning for every
zi ∈ N(w), deg(zi) ≥ 2. Thus, we again see that n′ ≥ 4 and all support vertices
in T ′ maintain degree at least 3, so we are done. Therefore, in any case, we find
that S′ = V (T ′) is a RED:IC for T ′, so V (T ) \ {v} is a RED:IC for T , completing
the proof.

Lower bound on RED:IC(Tn) for finite trees

As we will see later in Theorem 11 in the cubic graphs subsection, the infinite
3-regular tree has RED:IC%(T∞) = 4

7 ≈ 0.5714. However, for finite trees the
lower bound on RED:IC(T) is much higher as shown in the next theorem.

Theorem 6. If T is a tree of order n ≥ 4 with RED:IC, then
⌈
4
5(n + 1)

⌉
≤

RED : IC(T ) ≤ n.

Proof. Suppose S is a RED:IC for T and let j = |V (G) − S| be the number of
non-detectors; then, n = |S|+j. Because T is acyclic and each non-detector must
be at least 2-dominated, we know that there must be at least j + 1 connected
components of detectors. Because S must be a RED:IC on the graph induced
by S, each connected component of detectors must have a RED:IC, meaning
the minimum size of each detector component is four. Thus, |S| ≥ 4j + 4; by
rearranging terms, we see that |S| ≥ 4(n − |S|) + 4, from which we find that
|S| ≥ 4

5(n + 1). We know that RED:IC(T ) ∈ N, so we can strengthen this to
|S| ≥

⌈
4
5(n+ 1)

⌉
, completing the proof.

Figure 6 shows optimal RED:ICs on all trees of order n ≤ 10 for which
RED:IC exists. Table 1 provides a summarized view of the number of trees with
a given RED:IC value for each n ∈ [11, 17]. Figure 7 gives examples of extremal
trees on n ≥ 4 vertices with RED:IC(Tn) =

⌈
4
5(n + 1)

⌉
. In general, we see that

when there are j non-detectors, there must be p = j + 1 detector components
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n = 4, 5, 6, 7

n = 8

n = 9
n = 10

Figure 6. All trees of order n ≤ 10 with RED:IC.

Figure 7. Extremal trees with RED:IC(T ) =
⌈
4
5 (n+ 1)

⌉
. Red vertices denote “excess”

detectors.
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(or up to p = j + 2 if n = 5k + 3)—each detector component can be selected
from Figure 6 on at most 8 vertices—and the total number of detectors must be
4p + [(n + 1) mod 5]; edges between non-detectors and detectors can be added
arbitrarily so long as the result is a tree. Note that this is essentially the same
as starting with an extremal tree on 5k − 1 vertices, as in Figure 7, and adding
an additional (n+ 1) mod 5 “excess” detectors, so long as the placements do not
cause RED:IC to no longer exist.

n 11 12 13 14 15 16 17

trees 235 551 1301 3159 7741 19320 48629
with RED:IC 39 82 167 360 766 1692 3726

RED:IC(Tn) = n− 2 0 0 0 13 29 96 287
RED:IC(Tn) = n− 1 10 24 64 130 323 744 1731
RED:IC(Tn) = n 29 58 103 217 414 852 1708

Table 1. Numeric results for RED:ICs on trees.

4.2. Ladders and cylinders

The infinite ladder

Theorem 7. The infinite ladder graph has RED:IC%(P2�P∞) = 2
3 .

y-4 y-3 y-2 y-1 y0         y1         y2 y3 y4

x-4 x-3 x-2 x-1 x0         x1         x2 x3 x4

Figure 8. Ladder graph labeling.

Proof. Figures 9(c) and (d)
give a family of cylinders with
RED:IC%(G) = 2

3 ; each of these solu-
tions can be tiled infinitely to produce
a RED:IC on P2�P∞ with density 2

3 .
To prove this is optimal, we need only
show that 2

3 is a lower bound for the
minimum density. To proceed, we will
look at an arbitrary non-detector vertex x /∈ S and show that we can associate
at least two detectors with x. For v ∈ V (G), let R6(v) = N [v] ∪ {u ∈ V (G) :
|N(u) ∩ N(v)| = 2}. For this association argument, we enforce that x can only
be associated with detector vertices within R6(x); specifically, we employ par-
tial ownership of detectors, so a detector vertex v ∈ S contributes 1

k , where
k = |R6(v) ∩ S|, toward the required total of two detectors.

To begin, we will say that x = x0, using the labeling convention shown
in Figure 8. Suppose that y0 /∈ S; then y−1, y1 ∈ S to 2-dominate y0 and
x−1, x1 ∈ S to 2-dominate x0. We see that x1 and y1 are not distinguished, so
we need x2, y2 ∈ S; by symmetry, x−2, y−2 ∈ S. Then x receives a 1

2 contribution
from each of {x−1, y−1, x1, y1}, and we are done. Otherwise, we can assume
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y0 ∈ S; suppose that y1 /∈ S. We require x1, x2 ∈ S to 2-dominate x1, and
y−1 ∈ S to 2-dominate y0. Vertices x1 and x2 are not distinguished, so we need
x3, y2 ∈ S, and by symmetry x−1, y−2 ∈ S. Then x receives at least 1

2 from
each of {x1, y0, x−1, y−1}, and we are done. Otherwise, we can assume y1 ∈ S
and by symmetry y−1 ∈ S, in addition to y0 ∈ S that we showed previously.
Vertex x0 must be 2-dominated; without loss of generality let x1 ∈ S. We see
that {x2, y2} ⊆ S would cause x1 and y1 to not be distinguished, so x1 and y1
each contribute at least 1

2 to x. If x−1 ∈ S, then y0 contributes the final 1
1 and

we are done, so we assume that x−1 /∈ S; then y0 contributes 1
2 and we need only

another 1
2 to have a total of two. We require x−2 ∈ S to 2-dominate x−1, and

y−2 ∈ S to distinguish y−1 and y0. Then y−1 contributes the final 1
2 , completing

the proof.

Theorem 8. Let F and H be disjoint graphs with RED:ICs SF and SH , respec-
tively. Let G = F + H + EFH where EFH is a set of disjoint edges between F
and H. Then S = SF ∪ SH is a RED:IC for G.

Proof. We will show that S satisfies Theorem 1. First, the existence of RED:ICs
SF and SH ensures that every vertex in V (G) is at least 2-dominated. Next, let
u, v ∈ V (G) be two distinct vertices. Suppose u, v ∈ V (F ). Then u, v are 2-
distinguished in F by SF . Because EFH cannot add any edges within F (only
between F and H), it must be that u and v are still 2-distinguished by S in G.

Otherwise, without loss of generality assume u ∈ V (F ) and v ∈ V (H). By
hypothesis, vertex u must be 2-dominated in F by SF , and similarly v must
be 2-dominated in H by SH . Thus, there exist x ∈ N(u) ∩ V (F ) ∩ S and y ∈
N(v)∩V (H)∩S. Suppose uv ∈ EFH ⊆ E(G). Because the edges in EFH must be
disjoint and uv ∈ EFH , it must be that uy /∈ E(G) and vx /∈ E(G); thus, u and
v are 2-distinguished by {x, y} ⊆ S in G. Now, we assume that uv /∈ E(G). If
{u, v} ⊆ S, then u and v will be 2-distinguished by u and v themselves; otherwise,
without loss of generality assume u /∈ S. Because u must be at least 2-dominated
in F by SF , we now know that there exists z ∈ (N(u) ∩ V (F ) ∩ S) \ {x}. If
vx /∈ EFH and vz /∈ EFH , then u and v will be 2-distinguished by x and z;
otherwise without loss of generality let vx ∈ EFH . Because vx ∈ EFH , it must
be that vz /∈ EFH . If uy /∈ EFH , then u and v will be 2-distinguished by y and
z; otherwise, we also assume uy ∈ EFH . Finally, because v must be at least 2-
dominated in H by SH , it must be that there exists w ∈ (N [v]∩V (H)∩S) \ {y};
note that it is possible that w = v. Because uy ∈ EFH , it must be that uw /∈ EFH .
Thus, u and v are 2-distinguished by z and w, completing the proof.

Theorem 9. For j ≥ 4, we have RED:IC(P2�Pj) =RED:IC (P2�Cj) =
⌈
2
3n
⌉
.

Proof. Suppose for a contradiction that S is a RED:IC on P2�Pj with |S| <⌈
2
3n
⌉
. Then Theorem 8 would allow us to repeatedly create duplicates of P2�Pj
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(with duplicated detectors) and connect them end-to-end to produce a RED:IC
on P2�P∞ with density strictly less than 2

3 . This contradicts Theorem 7; thus,
RED:IC(P2�Pj) ≥

⌈
2
3n
⌉
. For the cylinder, P2�Cj , we see that any maximal

ladder subgraph is spanning and can be used as a tile to construct the infinite
path, so we similarly find that RED:IC(P2�Cj) ≥

⌈
2
3n
⌉
. Figure 9 gives an infinite

family of RED:ICs on finite ladders and cylinders which achieve the lower bound
of
⌈
2
3n
⌉
, with k ≥ 1 for the general construction, completing the proof.

Although Theorem 9 holds for all j ≥ 4, there are two graphs where j = 3,
P2�P3 and P2�C3, which do not fall under the general trend. We find that
RED:IC(P2�P3) = 2

3n as expected, but RED:IC(P2�C3) = n, breaking the
general pattern.

(a) (b)

(c) (d)

Figure 9. A set of optimal RED:ICs on finite ladders and cylinders. S0, S1, and S2 refer
to P2�P3 tiles (disjoint subgraphs) which can be repeated. Base cases on n = 8 and
n = 10 are given by (a).
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Theorem 10. For a finite torus Ci�Cj, RED:IC(Ci�Cj) ≥
⌈
2
5n
⌉
.

Proof. Let G = Ci�Cj . G is 4-regular, meaning for any x ∈ V (G), |N [x]| = 5;
thus, the 2-domination requirement of RED:IC implies that RED:IC%(G) ≥ 2

5 .
Therefore, RED:IC(G) ≥

⌈
2
5n
⌉
.

4.3. Hypercubes

Figure 10. RED:ICs for Qn with n ≤ 5.

Let Qn = Pn2 , where Gn denotes re-
peated application of the � operator,
be the hypercube in n dimensions. If
S is a RED:IC on Qn for n ≥ 2, then
Theorem 8 would allow us to duplicate
the vertices to produce a new RED:IC
of size 2|S| on Qn+1 = Qn�P2; thus,
RED:IC%(Qn) is a non-increasing se-
quence in terms of n. We have found
that RED:IC%(Q5) = 3

8 , which serves
as an upper bound for the minimum density of RED:IC sets in larger hypercubes.
Figure 10 shows a RED:IC set for each of the hypercubes on n ≤ 5 dimensions.
From programmatic analysis, we believe these to be optimal RED:ICs.

4.4. Cubic Graphs

Observation 8. RED:IC exists for all closed-twin-free cubic graphs.

Observation 9. On a cubic graph, RED:IC exists if and only if IC exists.

Lower bound on RED:IC(G) for cubic

As introduced by Slater [15], for a dominating set S ⊆ V (G) of G and a vertex v ∈
S, let sh(v) =

∑
u∈N [v] 1/|N [u] ∩ S| denote the share of v; i.e., v’s contribution

to the domination of its neighbors. Because S is a dominating set, each k-
dominated vertex contributes 1

k precisely k times to its neighbors’ share values;
thus,

∑
v∈S sh(v) = n, implying that the inverse of the average share is equal to

the density of S in V (G). Therefore, an upper bound on the average share (over
all detectors) can be reciprocated to give a lower bound for the density. This
technique has been proven to work even in the case of infinite graphs.

As a shorthand, we will let σA denote
∑

k∈A
1
k for some sequence of single-

character symbols, A. Thus, σa = 1
a , σab = 1

a + 1
b , and so on. We also let

dom(v) = |N [v] ∩ S| denote the domination number of some vertex v ∈ V (G).

Theorem 11. If G is a cubic graph, then RED:IC%(G) ≥ 4
7 ≈ 0.5714.
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Proof. Let S be a RED:IC for G, let x ∈ S be an arbitrary detector, and let
N(x) = {a, b, c}. Among the three vertices a, b, and c, we have at most one edge,
as otherwise we create closed-twins and a RED:IC would not exist. Suppose
ab ∈ E(G). We know that there exists z1 ∈ N(a) \N [b] and z2 ∈ N(b) \N [a],
as otherwise we create closed-twins. In order to distinguish x and a we require
c, z1 ∈ S; and by symmetry to distinguish x and b we require c, z2 ∈ S. If a ∈ S
or b ∈ S then sh(x) ≤ σ3332 = 1

3 + 1
3 + 1

3 + 1
2 = 3

2 <
7
4 , and we are done; otherwise

a, b /∈ S. To distinguish x and c, we require dom(c) = 4, so sh(x) ≤ σ4222 = 7
4

and we are done. Otherwise, by symmetry, we can assume that there are no
edges among a, b, and c. Suppose dom(x) = 2; let a ∈ S and b, c /∈ S. As
seen in the previous case, to distinguish x and a we require dom(a) = 4, so
sh(x) ≤ σ4222 and we are done. Similarly, if dom(x) = 4, then we are done,
which leaves the last remaining case: dom(x) = 3. Let a, b ∈ S and c /∈ S.
If dom(a) ≥ 3 or dom(b) ≥ 3, then sh(x) ≤ σ3322 and we are done; otherwise
dom(a) = dom(b) = 2. We see that x and a are not distinguished, a contradiction.
Thus, in any case sh(x) ≤ 7

4 , giving a lower bound of RED:IC%(G) ≥ 4
7 and

completing the proof.

RED:IC on the infinite 3-regular tree

Theorem 12. The infinite cubic tree, T , has RED:IC%(T ) = 4
7 .

Proof. Theorem 11 gives us a lower bound of RED:IC%(T ) ≥ 4
7 . The figure

given in Figure 11 gives a RED:IC, S, on T . We see that every detector vertex,
x ∈ S, has sh(x) = σ4222 = 7

4 , meaning the density of S in T is 4
7 , completing

the proof.

Figure 11. RED:IC%(T ) ≤ 4
7 .

RED:IC on the infinite hexagonal grid

For the hexagonal grid, HEX, the tiling of the solution given in Figure 12 contains
2
3 of the vertices as detectors; thus, we have RED:IC%(HEX) ≤ 2

3 . The lower
bound is from Theorem 11.

Theorem 13. For the infinite hexagonal grid,HEX, 4
7 ≤RED:IC%(HEX) ≤ 2

3 .
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For comparison to IC, note that the bounds of 5
12 ≤ IC%(HEX) ≤ 3

7 were
proven by Cukierman and Yu [6] (lower bound) and Cohen et al. [4] (upper
bound).

Figure 12. RED:IC%(HEX) ≤ 2
3 .

Extremal cubic graphs with lower bound

b

a
d

e

c

f

g

Figure 13. Cubic subgraph on 14
vertices requiring 8 detectors.

Let G14 be the subgraph shown in Figure 13;
G14 contains four “loose” edges which may
go to arbitrary vertices inside or outside of
the subgraph (so long as the result is cubic).
We see that each vertex in G14 is at least 2-
dominated, and it can be shown that each pair
of vertices is 2-distinguished regardless of the
specific incidence of the loose edges. For exam-
ple, vertex pair a, e is distinguished by {b, f},
vertex pair b, e is distinguished by {b, c}, ver-
tex pair e, g is distinguished by {a, c}, and so
on. Thus, we see that G14 has a RED:IC of
size 8. From Theorem 11, we know that a cu-
bic graph must have RED:IC%(G) ≥ 4

7 ; thus, any cubic graph constructed using
(only) copies of G14 will have the minimum density of 4

7 . Copies of the G14

subgraph can be connected in a ring to create an infinite family of cubic graphs
which have the extremal value of RED:IC%(G) = 4

7 . This construction is shown
in Figure 14.
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n = 14 n = 28 n = 42 n = 56

Figure 14. Infinite family of cubic graphs with RED:IC(G) = 4
7 .

Extremal cubic graphs with upper bound

b       c

a d

f       e

Figure 15. Cubic subgraph
on 6 vertices requiring 6
detectors.

Let G6 be the subgraph on 6 vertices from Figure 15;
G6 has two “loose” edges which extend out from a and
d to any external vertex, so long as the entire graph
is cubic. We see that vertices b and f can only be
distinguished by having {c, e} ⊆ S, and by symmetry
{b, f} ⊆ S. If G is composed exclusively of disjoint
copies of G6 (allowing loose edges to overlap), then
each vertex like a or d must be connected to another
vertex like a or d, as all other vertices already have
degree three. We see that to distinguish a and b, we
require the vertex adjacent to a by its loose edge to be a detector, so by symmetry
all vertices like a and d must be detectors. Thus, all vertices in G6 must be
detectors. Copies of the G6 subgraph can be connected in a ring to form an
infinite family of cubic graphs with the extremal value RED:IC%(G) = 1, as
shown in Figure 16.

n = 6 n = 12 n = 18 n = 24

Figure 16. Infinite family of cubic graphs with RED:IC(G) = n.
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Table 2 gives a summary of results for the number of cubic graphs on up to
20 vertices which has a given value for RED:IC(G).

n 6 8 10 12 14 16 18 20

cubic graphs 2 5 19 85 509 4060 41301 510489
with RED:IC 2 4 14 63 386 3189 33586 427277

lowest RED:IC(G) 6 6 6 8 8 10 11 12
highest RED:IC(G) 6 6 8 12 12 14 18 18

Table 2. Results on RED:ICs for finite (connected) cubic graphs.
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