DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

H. Galeana-Sánchez

Hortensia Galeana-Sánchez

Instituto de Matemáticas, UNAMUniversidad Nacional Autónoma de MéxicoCiudad Universitaria04510, México, D.F.MEXICO

email: hgaleana@matem.unam.mx

0000-0002-5744-8880

M. Tecpa-Galván

Miguel Tecpa-Galván

Universidad Nacional Autónoma de México

email: miguel.tecpa05@gmail.com

0000-0001-7808-5698

Title:

$(k,H)$-kernels in nearly tournaments

PDF

Source:

Discussiones Mathematicae Graph Theory 44(2) (2024) 639-662

Received: 2021-09-08 , Revised: 2022-06-16 , Accepted: 2022-06-17 , Available online: 2022-07-13 , https://doi.org/10.7151/dmgt.2463

Abstract:

Let $H$ be a digraph, possibly with loops, $D$ a digraph without loops, and $\rho : A(D) \rightarrow V(H)$ a coloring of $A(D)$ ($D$ is said to be an $H$-colored digraph). If $W=(x_{0}, \ldots , x_{n})$ is a walk in $D$, and $i \in \{ 0, \ldots , n-1 \}$, then we say that there is an obstruction on $x_{i}$ whenever $(\rho(x_{i-1}, x_{i}), \rho (x_{i}, x_{i+1})) \notin A(H)$ (when $x_{0} = x_{n}$ the indices are taken modulo $n$). We denote by $O_{H}(W)$ the set $\{ i \in \{0, \ldots , n-1 \} :$ there is an obstruction on $x_{i} \}$. The $H$-length of $W$, denoted by $l_{H}(W)$, is defined by $|O_{H}(W)|$ if $W$ is closed or $|O_{H}(W)|+1$ in the other case. A $(k, H)$-kernel of an $H$-colored digraph $D$ ($k \geq 2$) is a subset of vertices of $D$, say $S$, such that, for every pair of different vertices in $S$, every path between them has $H$-length at least $k$, and for every vertex $x \in V(D) \setminus S$ there exists an $xS$-path with $H$-length at most $k-1$. This concept widely generalize previous nice concepts such as kernel, $k$-kernel, kernel by monochromatic paths, kernel by properly colored paths, and $H$-kernel. In this paper, we introduce the concept of $(k,H)$-kernel and we will study the existence of $(k,H)$-kernels in interesting classes of digraphs, called nearly tournaments, which have been large and widely studied due to its applications and theoretical results. We will show several conditions that guarantee the existence of a $(k,H)$-kernel in tournaments, $r$-transitive digraphs, $r$-quasi-transitive digraphs, multipartite tournaments, and local tournaments. As a consequence, previous results for $k$-kernels and kernels by alternating paths will be generalized, and some conditions for the existence of kernels by monochromatic paths and $H$-kernels in nearly tournaments will be shown.

Keywords:

kernel, $k$-kernel, $H$-kernel, $H$-coloring, kernel by monochromatic paths, kernel by alternating paths

References:

  1. C. Andenmatten, $H$-distance, $H$-$A$-kernel and in-state splitting in $H$-colored graphs and digraphs (MSc Thesis supervised by H. Galeana-Sánchez and J. Pach, École Polytechnique Fédérale de Lausanne, Switzerland, 2019).
  2. P. Arpin and V. Linek, Reachability problems in edge-colored digraphs, Discrete Math. 307 (2007) 2276–2289.
    https://doi.org/10.1016/j.disc.2006.09.042
  3. J. Bang-Jensen, The structure of strong arc-locally semicomplete digraphs, Discrete Math. 283 (2004) 1–6.
    https://doi.org/10.1016/j.disc.2004.01.011
  4. J. Bang-Jensen, Y. Guo, G. Gutin and L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167–168 (1997) 101–114.
    https://doi.org/10.1016/S0012-365X(96)00219-1
  5. J. Bang-Jensen and G. Gutin, Classes of Directed Graphs (Springer, 2018).
    https://doi.org/10.1007/978-3-319-71840-8
  6. J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Second Edition (Springer, London, 2000).
    https://doi.org/10.1007/978-1-84800-998-1
  7. J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141–161.
    https://doi.org/10.1002/jgt.3190200205
  8. J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory Ser. B 59 (1993) 267–287.
    https://doi.org/10.1006/jctb.1993.1069
  9. C. Berge, Graphs and Hypergraphs (North-Holland Publishing Co., Amsterdam, 1985).
  10. V. Chvátal, On the computational complexity of finding a kernel, Report CRM300 (Centre de Recherches Mathématiques, Université de Montréal, 1973).
  11. V. Chvátal and L. Lovasz, Every directed graph has a semi-kernel, in: Hypergraph Seminar, Part II: Graphs, Matroids, Designes, C. Berge and D. Ray-Chandhuri (Ed(s)), (Lecture Notes in Mathematics 411, Springer-Verlag 1974) 175.
    https://doi.org/10.1007/BFb0066192
  12. N. Creignou, The class of problems that are linearly equivalent to satisfiability or a uniform method for proving NP-completeness, Theoret. Comput. Sci. 145 (1995) 111–145.
    https://doi.org/10.1016/0304-3975(94)00182-I
  13. P. Delgado-Escalante, H. Galeana-Sánchez and S. Arumugam, Restricted domination in arc-colored digraphs, AKCE Int. J. Graphs Comb. 11 (2014) 95–104.
  14. P. Delgado-Escalante, H. Galeana-Sánchez and E. O'Reilly-Regueiro, Alternating kernels, Discrete Appl. Math. 236 (2018) 153–164.
    https://doi.org/10.1016/j.dam.2017.10.013
  15. Y. Dimopoulos and V. Magirou, A graph theoretic approach to default logic, Inform. Comput. 112 (1994) 239–256.
    https://doi.org/10.1006/inco.1994.1058
  16. Y. Dimopoulos and A. Torres, Graph theoretical structures in logic programs and default theories, Theoret. Comput. Sci. 170 (1996) 209–244.
    https://doi.org/10.1016/S0304-3975(96)80707-9
  17. P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93–101.
    https://doi.org/10.1016/S0167-5060(08)70041-4
  18. A.S. Fraenkel, Combinatorial game theory foundations applied to digraph kernels, Electron. J. Combin. 4 (2) (1997) #R10.
    https://doi.org/10.37236/1325
  19. H. Galeana-Sánchez and C. Hernández-Cruz, $k$-kernels in generalizations of transitive digraphs, Discuss. Math. Graph Theory 31 (2011) 293–312.
    https://doi.org/10.7151/dmgt.1546
  20. H. Galeana-Sánchez and C. Henrández-Cruz, $k$-kernels in $k$-transitive and $k$-quasi-transitive digraphs, Discrete Math. 312 (2012) 2522–2530.
    https://doi.org/10.1016/j.disc.2012.05.005
  21. H. Galeana-Sánchez, C. Hernández-Cruz and S. Arumugam, $k$-kernels in multipartite tournaments, AKCE Int. J. Graphs Comb. 8 (2011) 181–198.
  22. H. Galeana-Sánchez and R. Sánchez-López, $H$-kernels and $H$-obstructions in $H$-colored digraphs, Discrete Math. 338 (2015) 2288–2294.
    https://doi.org/10.1016/j.disc.2015.05.021
  23. H. Galeana-Sánchez and R. Sánchez-López, Richardson's theorem in $H$-coloured digraphs, Graphs Combin. 32 (2016) 629–638.
    https://doi.org/10.1007/s00373-015-1609-3
  24. H. Galeana-Sánchez and R. Strausz, On panchromatic digraphs and the panchromatic number, Graphs Combin. 31 (2015) 115–125.
    https://doi.org/10.1007/s00373-013-1367-z
  25. H. Galeana-Sánchez and R. Strausz, On panchromatic patterns, Discrete Math. 339 (2016) 2536–2542.
    https://doi.org/10.1016/j.disc.2016.03.014
  26. H. Galeana-Sánchez and M. Tecpa-Galván, $\mathscr{H}$-panchromatic digraphs, AKCE Int. J. Graphs Comb. 17 (2020) 303–313.
    https://doi.org/10.1016/j.akcej.2019.05.005
  27. H. Galeana-Sánchez and M. Toledo, New classes of panchromatic digraphs, AKCE Int. J. Graphs Comb. 12 (2015) 261–270.
    https://doi.org/10.1016/j.akcej.2015.11.006
  28. P. Garcia-Vázquez and C. Hernández-Cruz, Some results on $4$-transitive digraphs, Discuss. Math. Graph Theory 37 (2017) 117–129.
    https://doi.org/10.7151/dmgt.1922
  29. A. Ghouila-Houri, Caractérisation des graphes non orientés dont on peut orienter les de maniere a obtenir le graphe d'une relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370–1371.
  30. S. Heard and J. Huang, Disjoint quasi-kernels in digraphs, J. Graph Theory 58 (2008) 251–260.
    https://doi.org/10.1002/jgt.20310
  31. C. Hernández-Cruz, $3$-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205–219.
    https://doi.org/10.7151/dmgt.1613
  32. C. Hernández-Cruz and H. Galeana-Sánchez, $k$-kernels in $k$-transitive and $k$-quasi-transitive digraphs, Discrete Math. 312 (2012) 2522–2530.
    https://doi.org/10.1016/j.disc.2012.05.005
  33. D. König, Theorie der Endlichen und Unendlichen Graphen (Reprinted from AMS Chelsea Publishing Company, Providence, Rhode Island, 1950).
  34. M. Kwaśnik, On $(k,l)$-kernels in graphs and their products, Ph.D. Thesis (Technical University of Wroc\l aw, Wroc\l aw, 1980).
  35. V. Linek and B. Sands, A note on paths in edge-colored tournaments, Ars Combin. 44 (1996) 225–228.
  36. J.W. Moon, Topics on Tournaments (Holt, Rinehart and Winston, New York, 1968).
  37. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1944).
  38. K.B. Reid, Monotone reachability in arc-colored tournaments, Congr. Numer. 146 (2000) 131–141.
  39. S. Szeider, Finding paths in graphs avoiding forbidden transitions, Discrete Appl. Math. 126 (2003) 261–273.
    https://doi.org/10.1016/S0166-218X(02)00251-2
  40. R. Wang, $(k-1)$-kernels in strong $k$-transitive digraphs, Discuss. Math. Graph Theory 35 (2015) 229–235.
    https://doi.org/10.7151/dmgt.1787
  41. R. Wang and H. Zhang, $(k+1)$-kernels and the number of $k$-kings in $k$-quasi-transitive digraphs, Discrete Math. 338 (2015) 114–121.
    https://doi.org/10.1016/j.disc.2014.08.009

Close