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Abstract

Let H be a digraph, possibly with loops, D a digraph without loops, and
ρ : A(D)→ V (H) a coloring of A(D) (D is said to be an H-colored digraph).
If W = (x0, . . . , xn) is a walk in D, and i ∈ {0, . . . , n− 1}, then we say that
there is an obstruction on xi whenever (ρ(xi−1, xi), ρ(xi, xi+1)) /∈ A(H)
(when x0 = xn the indices are taken modulo n). We denote by OH(W ) the
set {i ∈ {0, . . . , n− 1} : there is an obstruction on xi}. The H-length of W ,
denoted by lH(W ), is defined by |OH(W )| if W is closed or |OH(W )|+ 1 in
the other case.

A (k,H)-kernel of an H-colored digraph D (k ≥ 2) is a subset of vertices
of D, say S, such that, for every pair of different vertices in S, every path be-
tween them has H-length at least k, and for every vertex x ∈ V (D)\S there
exists an xS-path with H-length at most k−1. This concept widely general-
ize previous nice concepts such as kernel, k-kernel, kernel by monochromatic
paths, kernel by properly colored paths, and H-kernel.

In this paper, we introduce the concept of (k,H)-kernel and we will study
the existence of (k,H)-kernels in interesting classes of digraphs, called nearly
tournaments, which have been large and widely studied due to its applica-
tions and theoretical results. We will show several conditions that guarantee
the existence of a (k,H)-kernel in tournaments, r-transitive digraphs, r-
quasi-transitive digraphs, multipartite tournaments, and local tournaments.
As a consequence, previous results for k-kernels and kernels by alternating
paths will be generalized, and some conditions for the existence of kernels by
monochromatic paths and H-kernels in nearly tournaments will be shown.
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1. Introduction

A digraph D is semicomplete if every two different vertices in D are joined by
at least one arc. An arc (u, v) in a digraph D is symmetric if (v, u) ∈ A(D). A
tournament is a semicomplete digraph without symmetric arcs. The class of tour-
naments is one of the most well-studied classes of digraphs with many deep and
important results and applications, and provide a useful class of digraphs which
allows to have a first approach to solve very difficult problems. As a consequence,
several authors defined some new classes of digraphs which are generalizations of
tournaments, commonly called nearly tournaments. For instance, the class of lo-
cal in-tournaments (local out-tournaments) was introduced by Bang-Jensen in [8],
as a digraph D such that for every x ∈ V (D), the induced subdigraph of N−(x)
(respectively N+(x)) is a tournament. A local tournament is a digraph which is
both local in-tournament and local out-tournament. Several results related with
local tournaments have been proved. For a deeply study of local tournaments,
see [5].

Other digraphs related to nearly tournaments are the multipartite tourna-
ments. An arc (u, v) in a digraph D is asymmetric if (v, u) is not an arc in D.
An r-partite tournament (r ≥ 2) is a digraph D such that V (D) can be parti-
tioned into r disjoint independent sets, and every two vertices in different classes
are joined by an asymmetric arc. Multipartite tournaments were considered by
Moon in [36], and several authors studied such class of digraphs. For a deeply
study of multipartite tournaments, see [5].

A digraph D is r-transitive (r ≥ 2) if for every {u, v} ⊆ V (D), whenever
there exists a uv-path with length r, we have that (u, v) ∈ A(D). When r = 2,
an r-transitive digraph is called transitive. The class of r-transitive digraphs
is one of the most studied nearly tournaments, due to their particularly nice
structure, and several results related with such digraphs arose. For instance, see
[5, 28, 31] and [40].

A digraph D is quasi-transitive if for every {u, v} ⊆ V (D), whenever there
exists a uv-path with length 2, we have that u and v are joined by an arc, that is,
either (u, v) ∈ A(D) or (v, u) ∈ A(D). Quasi-transitive digraphs were introduced
by Ghouila-Houri in [29] as a consequence of their relation with comparability
graphs, and it is one of the most studied class of digraphs, probably the main
reason is the characterization theorem showed by Bang-Jensen and Huang in
[7]. Bang-Jensen [3] introduced the family of 3-quasi-transitive digraphs in the
context of strong arc-locally semicomplete digraphs. A digraph D is 3-quasi-
transitive if for every {u, v} ⊆ V (D), whenever there exists a uv-path with length
3, we have that u and v are joined by an arc. In an analogous way, a digraph
D is r-quasi-transitive (r ≥ 2) if for every {u, v} ⊆ V (D), whenever there exists
a uv-path with length r, we have that u and v are joined by an arc. This class
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was introduced by Galeana-Sánchez and Hernández-Cruz [32] in the context of
k-kernels. For a deeply study of r-quasi-transitive digraphs, see [5].

The concept of kernel was introduced by von Neumann and Morgenstern
in [37] as a subset S of vertices of a digraph D, such that for every pair of
different vertices in S, there is no arc between them (that is, S is an independent
set), and every vertex not in S has at least one out-neighbor in S (that is, S is
an absorbent set). This concept has been deeply and widely studied by several
authors due to a large amount of theoretical and practical applications, see for
instance [12, 15, 16] and [18]. In [10] Chvátal proved that deciding if a digraph
has a kernel is an NP-complete problem. As a consequence, several conditions
that guarantee the existence of kernels has been showed. For instance, we have
the following two classical results.

Theorem 1 (König [33]). Every transitive digraph has a kernel.

Theorem 2 (Duchet [17]). If D is a digraph and every cycle in D has a sym-
metric arc, then D has a kernel.

The concept of kernel has been generalized over the years. A subset S of
vertices of D is said to be a kernel by paths, if for every x ∈ V (D) \ S, there
exists an xS-path (that is, S is absorbent by paths) and, for every pair of different
vertices {u, v} ⊆ S, there is no uv-path in D (that is, S is independent by paths).
This concept was introduced by Berge in [9], and it is a well known result that
every digraph has a kernel by paths [9] (see Corollary 2 on p. 311). The concept
of (k, l)-kernel was introduced by Borowiecki and Kwaśnik in [34] as follows. If
k ≥ 2, a subset S of vertices of a digraph D is a k-independent set, if for every
pair of different vertices in S, every walk between them has length at least k. If
l ≥ 1, we say that S is an l-absorbent set if for every x ∈ V (D) \ S there exists
an xS-walk with length at most l. If k ≥ 2 and l ≥ 1, a (k, l)-kernel is a subset
of V (D) which is both k-independent and l-absorbent. If l = k − 1, the (k, l)-
kernel is called k-kernel. Notice that every 2-kernel is a kernel. A (2, 2)-kernel
is called quasi-kernel, and it is known that every digraph has a quasi-kernel [11]
(called semi-kernel by the authors). Several sufficient conditions for the existence
of k-kernels in nearly tournaments have been proved. For instance, see [4, 30, 32]
and [41].

Let H be a digraph, possibly with loops, D a digraph without loops, and
ρ : A(D)→ V (H) a coloring of A(D) (D is said to be an H-colored digraph). A
path W in D is an H-path, whenever the consecutive colors encountered on W
form a walk in H (the concepts of H-cycle and H-walk are defined analogously).
If W = (x0, . . . , xn) is an H-path, W is said to be an x0xn-H-path. If S ⊆ V (D)
and xn ∈ S, we say that W is an x0S-H-path. In [35] Linek and Sands introduced
the concept of H-walk and their work was later considered by several authors,
as example, [2, 13, 22] and [38]. A subset S of vertices of D is absorbent by
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H-paths, if for every x ∈ V (D)\S there exists an xS-H-path; and S is said to be
independent by H-paths, if for every pair of different vertices {u, v} ⊆ S, there is
no uv-H-path between them. A kernel by H-paths, or simply H-kernel, is a subset
of vertices of D that is both absorbent by H-paths and independent by H-paths.
Several interesting kinds of kernels are particular cases of H-kernels, as example,
kernels by paths, kernels by monochromatic paths, kernels by alternating paths,
kernels by rainbow paths, and usual kernels. Several conditions on the existence
of H-kernels have been showed, as example, see [22] and [23].

If W =(x0, . . . , xn) is a walk in an H-colored digraph D, and i∈{1, . . . , n−1}
(i ∈ {0, . . . , n−1} when x0 = xn), we say that there is an obstruction on xi if and
only if (ρ(xi−1, xi), ρ(xi, xi+1)) /∈ A(H) (indices are taken modulo n if x0 = xn).
We denote by OH(W ) the set {i ∈ {0, . . . , n − 1} : there is an obstruction on
xi}. The H-length of W , denoted by lH(W ), is defined as lH(W ) = |OH(W )| if
W is closed or lH(W ) = |OH(W )| + 1 otherwise. The H-length was primarily
studied by Galeana-Sánchez and Sánchez-López in [22] for closed walks, and by
Andenmatten, Galeana-Sánchez and Pach in [1] for open paths. Clearly, the usual
length l(W ) coincides with the H-length lH(W ), in the very particular case when
A(H) = ∅. An open walk in an H-colored digraph is an H-walk if and only if it
has H-length 1. A particular kind of H-coloring in graphs was studied by Szeider
in [39] and, as a consequence, in [1] it was proved that under the assumption P
6= NP, finding uv-paths of minimum H-length in H-colored graphs (H-colored
digraphs) has no polynomial solution (although there is a polynomial algorithm
to find uv-paths of minimum H-length for some H, see [1]).

Let D be an H-colored digraph and S a subset of vertices of D. If l ≥ 1, we
say that S is an (l,H)-absorbent set, if for every v ∈ V (D) \ S there exists a vS-
path whose H-length is at most l. If k ≥ 2, we say that S is a (k,H)-independent
set, if for every pair of different vertices in S, every path between them has H-
length at least k. If k ≥ 2 and l ≥ 1, we say that S is a (k, l,H)-kernel if it is both
(k,H)-independent and (l,H)-absorbent. If l = k − 1, a (k, l,H)-kernel is called
(k,H)-kernel. It is straightforward to see that every H-kernel is a (2, H)-kernel,
and every (k, l)-kernel is a (k, l,H)-kernel if H has no arcs nor loops. Since finding
(k, l)-kernels in digraphs is an NP-complete problem, finding (k, l,H)-kernels in
H-colored digraphs is also an NP-complete problem.

In this paper, we study the existence of (k,H)-kernels in H-colored nearly
tournaments. For instance, we will prove that if D is an H-colored digraph, D
has a (k,H)-kernel provided that:

(i) k ≥ 3 and D is a tournament;

(ii) k ≥ r ≥ 2 and D is an r-transitive digraph;

(iii) k ≥ 4 and D is a quasi-transitive digraph;

(iv) k ≥ 5 and D is a 3-quasi-transitive digraph;
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(v) k ≥ r ≥ 2, D is an r-quasi-transitive digraph, and every cycle with length
r + 1 is an H-cycle;

(vi) k ≥ 5 and D is an r-partite tournament (r ≥ 2);

(vii) D is a local in-tournament (out-tournament) and every cycle has H-length
at most k − 2.

Previous results for k-kernels and kernels by alternating paths will be gen-
eralized. Also, some conditions for the existence of kernels by monochromatic
paths and H-kernels in nearly tournaments will be shown.

2. Preliminaries

For terminology and notation not defined here, we refer the reader to [6]. Two
vertices in a digraph are adjacent if there exist an arc between them. In this
paper we write walk, path and cycle, instead of directed walk, directed path, and
directed cycle, respectively. If W = (x0, . . . , xn) is a walk (path), we say that W
is an x0xn-walk (x0xn-path). If n ≥ 2 and i ∈ {1, . . . , n − 1}, we say that xi is
an internal vertex of W . The length of W is the number n and it is denoted by
l(W ). A cycle with length k is called k-cycle.

If T1 = (z0, . . . , zn) and T2 = (w0, . . . , wm) are walks in a digraph D, and
zn = w0, we denote by T1∪T2 the walk (z0, . . . , zn = w0, . . . , wm). Let {v0, . . . , vn}
be a subset of vertices of D, and for every i ∈ {0, . . . , n − 1}, Ti a vivi+1-walk;
we denote by

⋃n−1
i=0 Ti the concatenation of such walks. Given W = (x0, . . . , xn)

a walk in D, and {i, j} ⊆ {0, . . . , n − 1} with i < j, we denote by (xi,W, xj)
the walk (xi, xi+1, . . . , xj). If S1 and S2 are two disjoint subsets of V (D), a uv-
walk in D is called an S1S2-walk whenever u ∈ S1 and v ∈ S2. If S1 = {x} or
S2 = {x}, then we write xS2-walk or S1x-walk, respectively. If there exists at
least one uv-path in D, a uv-path with minimum length is called a uv-geodesic,
and its length is denoted by dD(u, v).

An m-colored digraph is a digraph whose arcs are colored with m colors. If D
is an m-colored digraph, a walk W in D is monochromatic (alternating) if every
two consecutive arcs in W are colored alike (respectively, every two consecutive
arcs in W have different colors). A kernel by monochromatic paths (kernel by
properly colored paths) is a subset of V (D), say S, such that (i) no two different
vertices in S are joined by a monochromatic path (respectively, alternating path)
and (ii) for every w ∈ V (D) \ S, there exists x ∈ S and a wx-monochromatic
path (respectively, a wx-alternating path).

Let D be an H-colored digraph and k ≥ 2. We define the (k − 1, H)-closure
of D, denoted by Ck−1

H (D), as the digraph such that V (Ck−1
H (D)) = V (D) and

(u, v) ∈ A
(
Ck−1
H (D)

)
if and only if there exists a uv-path in D with H-length at

most k − 1. The following lemmas will be useful in what follows.



644 H. Galeana-Sánchez and M. Tecpa-Galván

Lemma 3. Let D be an H-colored digraph and k ≥ 2. The following assertions
hold.

(a) If W is an open walk in D, then lH(W ) ≤ l(W ).

(b) If {u, v} ⊆ V (D), and there exists a uv-walk with length at most k− 1 in D,
then (u, v) ∈ A

(
Ck−1
H (D)

)
.

(c) If {u, v} ⊆ V (D), and there exists a closed walk in D with length at most k,
say W , such that {u, v} ⊆ V (W ), then (u, v) is a symmetric arc in Ck−1

H (D).

Proof. It follows from the definition of H-length that (a) holds. On the other
hand, from Lemma 3(a), and the definition of (k − 1, H)-closure, we have that
(b) holds. In order to show that (c) holds, notice that two different vertices in
W are joined by a subpath of W with length at most k− 1. By applying Lemma
3(b), we can conclude (c).

Lemma 4. Let D be an H-colored digraph, and W = (x0, . . . , xn) a cycle in D.
If {i, j} ⊆ {0, . . . , n} with i < j, and W ′ = (xi,W, xj), then OH(W ′) ⊆ OH(W ).

Proof. Clearly, Lemma 4 holds when OH(W ′) = ∅. Now, suppose that OH(W ′)
6= ∅ and let t ∈ OH(W ′). It follows from the definition of OH(W ′) that t ∈
{i+ 1, . . . , j − 1} and (ρ(xt−1, xt), ρ(xt, xt+1)) /∈ A(H). Hence, t ∈ {0, . . . , n− 1}
and (ρ(xt−1, xt), ρ(xt, xt+1)) /∈ A(H), which implies that t ∈ OH(W ). Therefore,
OH(W ′) ⊆ OH(W ).

Given k ≥ 2, a natural relation between (k,H)-kernels in H-colored digraphs
and kernels in the (k − 1, H)-closure is showed in the following lemma.

Lemma 5. Let D be an H-colored digraph and k ≥ 2. D has a (k,H)-kernel if
and only if Ck−1

H (D) has a kernel.

Proof. First we will show that if D has a (k,H)-kernel, say S, then S is a kernel
in Ck−1

H (D).

In order to show that S is an absorbent set in Ck−1
H (D), consider x ∈

V (Ck−1
H (D)) \ S. Since S is a (k,H)-kernel in D, there exists w ∈ S, and an

xw-path in D with H-length at most k − 1. It follows from the definition of
Ck−1
H (D) that (x,w) ∈ A

(
Ck−1
H (D)

)
, which implies that S is an absorbent set in

Ck−1
H (D).

Now, we will show that S is an independent set in Ck−1
H (D). Proceed-

ing by contradiction, suppose that there exists {u, v} ⊆ S such that (u, v) ∈
A
(
Ck−1
H (D)

)
. It follows from the definition of Ck−1

H (D) that there exists a uv-
path with length at most k − 1 in D, which is not possible since S is a (k,H)-
independent set in D. Hence, S is an independent set in Ck−1

H (D). Therefore, if

D has a (k,H)-kernel, then Ck−1
H (D) has a kernel.
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Now, we will show that if Ck−1
H (D) has a kernel, say S′, then S′ is a (k,H)-

kernel in D.

In order to show that S′ is a (k − 1, H)-absorbent set in D, consider x ∈
V (D) \ S′. Since S′ is a kernel in Ck−1

H (D), there exists w ∈ S′ such that

(x,w) ∈ A
(
Ck−1
H (D)

)
. Hence, by the definition of Ck−1

H (D), there exists an
xw-path in D with H-length at most k− 1, which implies that S′ is a (k− 1, H)-
absorbent set in D.

Now, we will show that S′ is a (k,H)-independent set in D. Proceeding by
contradiction, suppose that there exists {u, v} ⊆ S′ and a uv-path in D, with
H-length at most k − 1. It follows from the definition of Ck−1

H (D) that (u, v) ∈
A
(
Ck−1
H (D)

)
, which is not possible since S′ is an independent set in Ck−1

H (D).

Hence, S′ is a (k,H)-independent set in Ck−1
H (D). Therefore, if Ck−1

H (D) has a
kernel, then D has a (k,H)-kernel.

3. (k,H)-Kernels in Nearly Tournaments

In this section, we will show several conditions in H-colored nearly tournaments
that guarantee the existence of (k,H)-kernels for certain values of k.

3.1. Tournaments and semicomplete digraphs

Theorem 6. Let D be an H-colored semicomplete digraph. If k ≥ 3, then D has
a (k,H)-kernel.

Proof. Let S be a quasi-kernel of D. Since D is semicomplete, then S = {x}
for some x ∈ V (D). Clearly, S is a (k,H)-independent set in D. On the other
hand, since for every vertex w ∈ V (D) \ S it holds that dD(w, x) ≤ 2, it follows
from Lemma 3(a) that S is a (k − 1, H)-absorbent set in D. Therefore, S is a
(k,H)-kernel in D.

Theorem 7. Let D be an H-colored semicomplete digraph in which every 3-cycle
is an H-cycle. If k ≥ 2, then D has a (k,H)-kernel.

Proof. It follows from Theorem 6 that it only remains to show that D has a
kernel by H-paths. Consider a quasi-kernel of D, say S. Since D is semicomplete,
then S = {x} for some x ∈ V (D). Clearly, S is an independent set by H-paths. In
order to show that S is an absorbent set by H-paths, consider w ∈ V (D) \S. By
the choice of S, we have that either dD(w, x) = 1 or dD(w, x) = 2. If dD(w, x) = 1,
then (w, x) is a wx-H-path. If dD(w, x) = 2, consider a wx-geodesic in D, say
(w, z, x). Since D is semicomplete, then w and x are joined by an arc in D and,
since dD(w, x) = 2, it follows that (x,w) ∈ A(D). Hence, C = (w, z, x, w) is a
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3-cycle in D and, by hypothesis, C is an H-cycle. We can conclude that (w, z, x)
is a wx-H-path. Therefore, S is an absorbent set by H-paths in D.

From Theorems 6 and 7, it is straightforward to see the following corollaries.

Corollary 8. If D is an H-colored tournament, then for every k ≥ 3, D has a
(k,H)-kernel.

Corollary 9. If D is an H-colored tournament, and every 3-cycle in D is an
H-cycle, then for every k ≥ 2, D has a (k,H)-kernel.

Corollary 10. Let D be an m-colored tournament such that every 3-cycles is
monochromatic. Then D has a kernel by monochromatic paths.

Proof. Let H be the digraph whose vertices are the colors represented in A(D),
and (c, c′) ∈ A(H) if and only if c = c′. Clearly, D is an H-colored digraph, and
a walk in D is monochromatic if and only if it is an H-walk. Notice that every
3-cycle in D is an H-cycle.

It follows from Corollary 9 that D has an H-kernel, which is a kernel by
monochromatic paths.

Corollary 11. If D is a tournament whose 3-cycles are alternating, then D has
a kernel by alternating paths.

Proof. Let H be the digraph whose vertices are the colors represented in A(D),
and (c, c′) ∈ A(H) if and only if c 6= c′. Clearly, D is an H-colored digraph, and
a walk in D is alternating if and only if it is an H-walk. Notice that every 3-cycle
in D is an H-cycle.

It follows from Corollary 9 that D has an H-kernel, which is a kernel by
alternating paths.

3.2. r-transitive digraphs

The following lemma will be useful in what follows.

Lemma 12 [20]. Let D be an r-transitive digraph (r ≥ 2), and {u, v} ⊆ V (D).
If there exists a uv-path in D, then dD(u, v) ≤ r − 1.

As a consequence of the previous lemma, we have the following results.

Theorem 13. Let D be an H-colored r-transitive digraph (r ≥ 2). For every
l ≥ r − 1 and k ≥ 2, D has a (k, l,H)-kernel.

Proof. Let N be a kernel by paths in D. Since N is a path-independent set,
then for every k ≥ 2, N is a (k,H)-independent set. On the other hand, consider
x ∈ V (D) \ N . Since N is a kernel by paths in D, there exists w ∈ N and an
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xw-path W . If W is an xw-geodesic, then l(W ) ≤ r − 1 (Lemma 12), which
implies that lH(W ) ≤ r − 1 (Lemma 3(a)). Hence, lH(W ) ≤ l, concluding that
N is an (l,H)-absorbent set. Therefore, N is a (k, l,H)-kernel.

Corollary 14. Let D be an H-colored r-transitive digraph. For every k ≥ r, D
has a (k,H)-kernel.

Corollary 15. Let D be an H-colored transitive digraph. If k ≥ 2, then D has
a (k,H)-kernel.

Corollary 16 [20]. If D is an r-transitive digraph (r ≥ 2), then D has a k-kernel
for every k ≥ 2.

Proof. Let k ≥ 2 and H a digraph with order |A(D)| and A(H) = ∅. We consider
an H-coloring of D in which every two different arcs have different colors. Notice
that for every walk W in D, lH(W ) = l(W ). It follows from Corollary 14 that D
has a (k,H)-kernel, say S. It is straightforward to see that S is a k-kernel.

3.3. Quasi-transitive digraphs.

The following lemma provides a nice structure on quasi-transitive digraphs, and
will be useful to guarantee the existence of (k,H)-kernels for certain values of k
in H-colored quasi-transitive digraphs.

Lemma 17 [6]. Let D be a quasi-transitive digraph and {u, v} ⊆ V (D) such that
there exists a uv-path in D. If u and v are not adjacent in D, then there exists
{x, z} ⊆ V (D) \ {u, v} such that (u, x), (x, z), (z, v), (z, u) and (v, x) are arcs of
D (see Figure 1).

Figure 1.

As a consequence of the previous lemma, we have the following result.

Lemma 18. Let D be an H-colored quasi-transitive digraph, and k ≥ 4. If
there exists a uv-walk in D, then either u and v are adjacent in D or (v, u) is a
symmetric arc in Ck−1

H (D).

Proof. If (u, v) or (v, u) is an arc of D, we are done. Now, suppose that u and
v are not adjacent in D. It follows from Lemma 17 that there exists {x, z} ⊆
V (D) \ {u, v} such that (u, x), (x, z), (z, v), (z, u) and (v, x) are all arcs of D.
Hence, (u, x, z, v) and (v, x, z, u) are paths in D with length 3. By Lemma 3(b),
we can conclude that (u, v) is a symmetric arc in Ck−1

H (D).
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Theorem 19. Let D be an H-colored quasi-transitive digraph. If k ≥ 4, then D
has a (k,H)-kernel.

Proof. First, we will show that every cycle in Ck−1
H (D) has a symmetric arc,

then, by applying Theorem 2 and Lemma 5, we will conclude that D has a
(k,H)-kernel. Proceeding by contradiction, suppose that there exist a cycle in
Ck−1
H (D), say C = (u0, . . . , un), with no symmetric arcs. Clearly, n ≥ 3.

It follows from Lemma 18 that, for every i ∈ {0, . . . , n− 1}, ui and ui+1 are
adjacent in D (indices are taken modulo n). Moreover, since C has no symmetric
arcs in Ck−1

H (D), we can conclude that for every i ∈ {0, . . . , n − 1}, (ui, ui+1) ∈
A(D), which implies that C is a cycle in D. Let q = max{i ∈ {1, . . . , n − 1} :
(u0, ui) ∈ A(D)}.

Notice that q ≤ n − 2, otherwise, (un−1, u0) is a symmetric arc in D, which
implies that C has a symmetric arc in Ck−1

H (D), contradicting the choice of C.
Hence, (u0, uq, uq+1) is a path in D. Since D is a quasi-transitive digraph, we have
that either (uq+1, u0) ∈ A(D) or (u0, uq+1) ∈ A(D). By the choice of q, it follows
that (uq+1, u0) ∈ A(D). We can conclude that (uq+1, u0, uq) is a path in D with
length 2 ≤ k − 1, and, by Lemma 3(b), we have that

(
uq+1, uq

)
∈ A

(
Ck−1
H (D)

)
,

contradicting the choice of C. Therefore, every cycle in Ck−1
H (D) has a symmetric

arc.

It follows from Theorem 2 that Ck−1
H (D) has a kernel, which implies that D

has a (k,H)-kernel (Lemma 5).

Corollary 20 [19]. If D is a quasi-transitive digraph, then for every k ≥ 4, D
has a k-kernel.

Proof. Let k ≥ 4 and H be a digraph with order |A(D)| and A(H) = ∅. We
consider an H-coloring of D in which every two different arcs of D have different
colors. Notice that for every walk W in D, lH(W ) = l(W ). It follows from
Theorem 19 that D has a (k,H)-kernel, say S. It is straightforward to see that
S is a k-kernel of D.

3.4. 3-quasi-transitive digraphs

The following lemma for 3-quasi-transitive digraphs will be useful.

Lemma 21 [20]. Let D be a 3-quasi-transitive digraph, and {u, v} ⊆ V (D) such
that there exists a uv-walk in D. The following assertions hold.

(a) If d(u, v) = 3 or d(u, v) ≥ 5, then d(v, u) = 1.

(b) If d(u, v) = 4, then d(v, u) ≤ 4.

By the previous lemma, we have the following corollary.
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Corollary 22. Let D be an H-colored 3-quasi-transitive digraph, k ≥ 5, and
(u, v) ∈ A

(
Ck−1
H (D)

)
. If (u, v) is an asymmetric arc in Ck−1

H (D), then dD(u, v)
≤ 2.

Proof. Proceeding by contradiction, suppose that dD(u, v) ≥ 3. It follows from
Lemma 21 that there exists a vu-path with length at most 4 in D. By Lemma
3(b), we can conclude that (v, u) ∈ A

(
Ck
H(D)

)
, which is not possible since (u, v)

is an asymmetric arc in Ck−1
H (D). Hence, dD(u, v) ≤ 2.

A more elaborated proof will show that every H-colored 3-quasi-transitive
digraph has a (k,H)-kernel for every k ≥ 5.

Theorem 23. Let D be an H-colored 3-quasi-transitive digraph. For every k ≥ 5,
D has a (k,H)-kernel.

Proof. First, we will show that every cycle in Ck−1
H (D) has a symmetric arc,

then, by applying Theorem 2 and Lemma 5, we will conclude that D has a
(k,H)-kernel. Proceeding by contradiction, suppose that there exist a cycle in
Ck−1
H (D), say C = (u0, . . . , un), with no symmetric arcs. Clearly, n ≥ 3.

For every i ∈ {0, . . . , n − 1}, we consider a uiui+1-geodesic in D, say Wi

(indices are taken modulo n). It follows from Corollary 22 that for every i ∈
{0, . . . , n− 1}, l(Wi) ≤ 2. Let C ′ =

⋃n−1
i=0 Wi, and assume that C ′ = (x0, . . . , xl).

Notice that C ′ is a closed walk in D, and x0 = xl = u0 = un.

Claim 1. For every i ∈ {l − 3, l − 2, l − 1, l}, (u1, xi) /∈ A(D).

Proceeding by contradiction, suppose that there exists i ∈ {l−3, l−2, l−1, l},
such that (u1, xi) ∈ A(D). Since C is asymmetric, we have that (u0, u1) is an
asymmetric arc in Ck−1

H (D), then i 6= l. It follows that (u1, xi) ∪ (xi, C
′, x0) is a

u1u0-walk in D with length at most 4, which implies that (u1, u0) ∈ A
(
Ck−1
H (D)

)
(Lemma 3(b)), contradicting the choice of C, and the claim holds.

On the other hand, since u1 ∈ V (C ′), then u1 has at least one out-neighbor
in V (C ′), and let q = max{i ∈ {1, . . . , l} : (u1, xi) ∈ A(D)}. The following
assertions will be useful:

(i) q ≤ l − 4.
It follows from Claim 1.

(ii) For every t ∈ {q + 1, q + 2, q + 3, q + 4}, xq 6= xt.
It follows from the choice of q.

(iii) For every t ∈ {q, q + 1, q + 2, q + 3, q + 4}, u1 6= xt.

If q < l − 4, then by the choice of q, we have that u1 6= xi for every i ∈
{q, q + 1, q + 2, q + 3, q + 4}. If q = l − 4 (that is, xq+4 = xl), then by the choice
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of q, we have that u1 6= xi for every i ∈ {q, q+ 1, q+ 2, q+ 3} and, since u0 = xl,
we have that u1 6= xl.

It follows from (ii) and (iii) that (u1, xq, xq+1, xq+2) is a path in D. Since D is
a 3-quasi-transitive digraph, then either (u1, xq+2) ∈ A(D) or (xq+2, u1) ∈ A(D).
By the choice of q, we have that (xq+2, u1) ∈ A(D).

Claim 2. There exists t ∈ {0, . . . , n− 1} such that xq+1 = ut and xq+3 = ut+1.

First, we will show that (xq, xq+1, xq+2) has no two consecutive vertices of
C, such a property will be called (*). Proceeding by contradiction, suppose
that (xq, xq+1, xq+2) has two consecutive vertices of C, say ur and ur+1. Since
(u1, xq, xq+1, xq+2, u1) is a 4-cycle in D, it follows from Lemma 3(c) that ur and
ur+1 are joined by a symmetric arc in Ck−1

H (D), which is not possible by the
choice of C. Therefore, property (*) holds.

On the other hand, from the choice of C ′, we can conclude that there exists
t ∈ {0, . . . , n− 1} such that A(Wt)∩ {(xq, xq+1), (xq+1, xq+2)} 6= ∅. Remark that
l(Wt) ≤ 2. It follows from property (*) that xq+1 = ut and xq+3 = ut+1, and the
claim holds (see Figure 2).

Figure 2.

Now, we will show that (xq, xq+1, . . . , xq+4) is a path in D. Remark that
xq /∈ {xq+1, xq+2, xq+3, xq+4} (because of (ii)). In order to show that xq+1 /∈
{xq+2, xq+3, xq+4}, notice that, since (xq+1, xq+2) ∈ A(D), then xq+1 6= xq+2.
Since ut = xq+1 and ut+1 = xq+3 (Claim 2), then xq+1 6= xq+3. Now, xq+1 6= xq+4,
otherwise, (ut+1, ut) ∈ A

(
Ck−1
H (D)

)
, which is not possible by the choice of C. In

order to show that xq+2 /∈ {xq+3, xq+4}, we have that xq+2 6= xq+3 because they
are joined by an arc in D. Moreover, we can see that xq+2 6= xq+4, otherwise,
(ut+1, xq+2, u1, xq, ut) is a ut+1ut-walk in D with length at most 4, and by Lemma
3(b), (ut+1, ut) ∈ A

(
Ck−1
H (D)

)
, which is not possible by the choice of C. Finally,

xq+3 6= xq+4 because they are joined by an arc in D. Hence, (xq, xq+1, . . . , xq+4)
is a path in D.
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Since D is a 3-quasi-transitive digraph, then we have that either (xq, xq+3) ∈
A(D) or (xq+3, xq) ∈ A(D). If (xq+3, xq) ∈ A(D), then (xq+3, xq, xq+1) is a
ut+1ut-path in D with length at most k − 1, which implies that (ut+1, ut) ∈
A
(
Ck−1
H (D)

)
, contradicting the choice of C. Hence, (xq, xq+3) ∈ A(D). It follows

that (u1, xq, xq+3, xq+4) is a 3-path in D, concluding that either (u1, xq+4) ∈ A(D)
or (xq+4, u1) ∈ A(D). By the choice of q, we have that (xq+4, u1) ∈ A(D). In that
case, (xq+3, xq+4, u1, xq, xq+1) is a ut+1ut-path in D with length at most k − 1,
concluding that (ut+1, ut) ∈ A

(
Ck−1
H (D)

)
(Lemma 3(b)), contradicting the choice

of C (see Figure 3).

Figure 3.

Therefore, every cycle in Ck−1
H (D) has a symmetric arc, concluding that

Ck−1
H (D) has a kernel (Theorem 2), which implies that D has a (k,H)-kernel

(Lemma 5).

As a direct consequence of Theorem 23 we have the following corollary. An
analogous result can be found in [20].

Corollary 24 [20]. If D is a 3-quasi-transitive digraph, then D has a k-kernel
for every k ≥ 5.

Proof. Let k ≥ 5 andH a digraph with order |A(D)| and A(H) = ∅, and consider
an H-coloring of D in which every two different arcs have different colors. Notice
that for every walk W in D, lH(W ) = l(W ). It follows from Theorem 23 that
D has a (k,H)-kernel, say S. It is straightforward to see that S is a k-kernel
of D.

It follows from Theorems 19 and 23 that we have the following conjecture.

Conjecture 25. If D is an H-colored r-quasi-transitive digraph (r ≥ 2), then D
has a (k,H)-kernel for every k ≥ r + 2.
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3.5. r-quasi-transitive digraphs

Theorem 27 will show that, under certain conditions on the cycles of an H-
colored r-quasi-transitive digraph, it is possible to guarantee the existence of
(k,H)-kernels in such digraphs. First, we have the following result.

Theorem 26. Let D be an H-colored r-quasi-transitive digraph (r ≥ 2), such
that every cycle in D with length r + 1 is an H-cycle, and let {u, v} ⊆ V (D). If
dD(u, v) ≥ r and T is a uv-geodesic in D, then T is an H-path.

Proof. Let T = (u = x0, . . . , xn = v). If n = r, it follows from the fact that D
is an r-quasi-transitive digraph that either (u, v) ∈ A(D) or (v, u) ∈ A(D). Since
dD(u, v) ≥ r, then we have that (v, u) ∈ A(D). Hence, C ′ = T ∪ (v, u) is a cycle
with length r + 1. By hypothesis, C ′ is an H-cycle, which implies that T is an
H-path in D.

Now, suppose that n > r. In order to show that T is an H-path, we will show
that T has no obstructions. Let i ∈ {1, . . . , n − 1}, and consider the following
cases.

Case 1. i ∈ {1, . . . , n − r}. In this case, notice that (xi−1, xi, . . . , xi+r−1)
is a path with length r. Since D is an r-quasi-transitive digraph, then either
(xi−1, xi+r−1) ∈ A(D) or (xi+r−1, xi−1) ∈ A(D). It follows from the fact that T
is a uv-geodesic that (xi−1, xi+r−1) /∈ A(D), which implies that (xi+r−1, xi−1) ∈
A(D). Hence, (xi−1, xi, . . . , xi+r−1, xi−1) is a cycle with length r+ 1, which is an
H-cycle by hypothesis. Therefore, (ρ(xi−1, xi), ρ(xi, xi+1)) ∈ A(H).

Case 2. i ∈ {n−r+1, . . . , n−1}. In this case, notice that (xn−r, . . . , xi−1, xi,
xi+1, . . . , xn) is a path with length r. Since D is an r-quasi-transitive digraph,
then either (xn−r, xn) ∈ A(D) or (xn, xn−r) ∈ A(D). It follows from the fact that
T is a uv-geodesic that (xn−r, xn) /∈ A(D), which implies that (xn, xn−r) ∈ A(D).
Hence, (xn−r, xn−r+1, . . . , xn, xn−r) is a cycle with length r + 1, which is an H-
cycle by hypothesis. Therefore, (ρ(xi−1, xi), ρ(xi, xi+1)) ∈ A(H)

By the previous cases, we conclude that T is an H-path.

Theorem 27. Let D be an H-colored r-quasi-transitive digraph (r ≥ 2), such
that every cycle with length r + 1 is an H-cycle. For every k ≥ r, D has a
(k,H)-kernel.

Proof. First, we will show that for every k ≥ r, Ck−1
H (D) is a transitive digraph.

Then, by applying Theorem 1, we can conclude that Ck−1
H (D) has a kernel and,

by Lemma 5, D has a (k,H)-kernel.
Consider (u, v) and (v, w) in A

(
Ck−1
H (D)

)
with u 6= w. It follows that there

exists a uv-path in D with H-length at most k − 1, say T1, and there exists a
vw-path in D with H-length at most k − 1, say T2. Hence, T1 ∪ T2 is a uw-
walk in D. Now, consider a uw-geodesic in D, say T . If l(T ) ≤ k − 1, then
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(u,w) ∈ A
(
Ck−1
H (D)

)
(Lemma 3(b)). If l(T ) ≥ k, then by Theorem 26 we have

that T is a uw-H-path, which implies that (u,w) ∈ A
(
Ck−1
H (D)

)
.

Therefore, Ck−1
H (D) is a transitive digraph, which implies that Ck−1

H (D) has
a kernel (Theorem 1). We can conclude that D has a (k,H)-kernel (Lemma 5).

As a consequence of the previous theorem, we have the following corollaries.

Corollary 28. If D is an r-quasi-transitive digraph (r ≥ 2) with no cycle of
length r + 1, then for every k ≥ r, D has a k-kernel.

Proof. Let k ≥ r and H a digraph with order |A(D)| and A(H) = ∅. We consider
an H-coloring of D in which every two different arcs have different colors. Notice
that for every walk W in D, lH(W ) = l(W ). It follows from Theorem 27 that
D has a (k,H)-kernel, say S. It is straightforward to see that S is a k-kernel
of D.

Corollary 29. Let D be an H-colored quasi-transitive digraph such that every
3-cycle is an H-cycle. For every k ≥ 2, D has a (k,H)-kernel.

Corollary 30. If D is an m-colored quasi-transitive digraph in which every 3-
cycle is monochromatic, then D has a kernel by monochromatic paths.

Proof. Let H be the digraph whose vertices are the colors represented in A(D),
and (u, v) ∈ A(H) if and only if u = v. Clearly, D is an H-colored digraph, and
a walk in D is an H-walk if and only if it is monochromatic. It follows from
Corollary 29 that D has a (2, H)-kernel, say S. It is straightforward to see that
S is a kernel by monochromatic paths.

Corollary 31 [14]. If D is an m-colored quasi-transitive digraph in which every
3-cycle is alternating, then D has a kernel by alternating paths.

Proof. Let H be the digraph whose vertices are the colors represented in A(D)
and (u, v) ∈ A(H) if and only if u 6= v. Clearly, D is an H-colored digraph, and
a walk in D is an H-walk if and only if it is alternating. It follows from Corollary
29 that D has a (2, H)-kernel, say S. It is straightforward to see that S is a
kernel by alternating paths.

3.6. Multipartite tournaments

The following lemma will be useful in order to show that every H-colored multi-
partite tournament has a (k,H)-kernel, for certain values of k.

Lemma 32. Let D be an H-colored r-partite tournament (r ≥ 2), k ≥ 5, and
(u, v) ∈ A

(
Ck−1
H (D)

)
. If (u, v) is an asymmetric arc in Ck−1

H (D), then dD(u, v)
≤ 2.
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Proof. Let {S1, . . . , Sr} be the partition of V (D) into independent sets. Proceed-
ing by contradiction, suppose that dD(u, v) ≥ 3, and let W = (u = x0, . . . , xn =
v) be a uv-geodesic in D. If u ∈ Si and v ∈ Sj with i 6= j, then either (u, v) ∈
A(D) or (v, u) ∈ A(D). Since dD(u, v) ≥ 3, we conclude that (v, u) ∈ A(D),
which implies that (v, u) ∈ A

(
Ck−1
H (D)

)
, contradicting the assumption on (u, v).

Hence, there exists t ∈ {1, . . . , r} such that {u, v} ⊆ St. Consider the following
cases.

Case 1. l(W ) = 3. Since D is an r-partite tournament, then either (x1, v) ∈
A(D) or (v, x1) ∈ A(D). It follows from the fact that W is a uv-geodesic that
(x1, v) /∈ A(D), which implies that (v, x1) ∈ A(D). A similar argument shows
that (x2, u) ∈ A(D). Hence, (v, x1, x2, u) is a walk in D with length 3 ≤ k−1. By
Lemma 3(b) we have that (v, u) ∈ A

(
Ck−1
H (D)

)
, contradicting the assumption on

(u, v), and the claim holds.

Case 2. l(W ) ≥ 4. First, we will show that for every i ∈ {2, . . . , n − 2},
xi ∈ St. Proceeding by contradiction, suppose that there exists i ∈ {2, . . . , n−2}
such that xi /∈ St. It follows from the fact that D is an r-partite tournament
that either (u, xi) ∈ A(D) or (xi, u) ∈ A(D). Since W is a uv-geodesic, then
(u, xi) /∈ A(D), which implies that (xi, u) ∈ A(D). A similar argument shows
that (v, xi) ∈ A(D). Hence, (v, xi, u) is a path in D with length 2 ≤ k − 1
and, by Lemma 3(b), we conclude that (v, u) ∈ A

(
Ck−1
H (D)

)
, contradicting our

assumption on (u, v). Therefore, for every i ∈ {2, . . . , n− 2}, xi ∈ St. Since St is
an independent set, we have that n = 4.

On the other hand, as x1 /∈ St and D is an r-partite tournament, then we
have that either (v, x1) ∈ A(D) or (x1, v) ∈ A(D). Since W is a uv-geodesic, then
(x1, v) /∈ A(D), which implies that (v, x1) ∈ A(D). By applying an analogous
argument on x3 and u, we have that (x3, u) ∈ A(D). Hence, (v, x1, x2, x3, u)
is a vu-path with length at most k − 1 and, by Lemma 3(b), we conclude that
(v, u) ∈ A

(
Ck−1
H (D)

)
, contradicting the assumption on (u, v)

By the previous cases, we have that dD(u, v) ≤ 2.

Theorem 33. Let D be an H-colored r-partite tournament (r ≥ 2). If k ≥ 5,
then D has a (k,H)-kernel.

Proof. First, we will show that every cycle in Ck−1
H (D) has a symmetric arc,

then, by applying Theorem 2 and Lemma 5, we will conclude that D has a (k,H)-
kernel. Proceeding by contradiction, suppose that there exists a cycle in Ck−1

H (D),
say C = (u0, . . . , un), with no symmetric arcs. For every i ∈ {0, . . . , n − 1},
consider a uiui+1-geodesic in D, say Wi (indices are taken modulo n). It follows
from Lemma 32 that for every i ∈ {0, . . . , n − 1}, l(Wi) ≤ 2. Let C ′ =

⋃n−1
i=0 Wi

and assume that C ′ = (x0, . . . , xl). Notice that C ′ is a closed walk and x0 = xl =
u0 = un.



(k,H)-Kernels in Nearly Tournaments 655

Claim 1. For every i ∈ {l − 3, l − 2, l − 1, l}, (u1, xi) /∈ A(D).

Proceeding by contradiction, suppose that (u1, xi) ∈ A(D) for some i ∈
{l − 3, l − 2, l − 1, l}. Since xl = u0, we have that i 6= l. It follows that (u1, xi) ∪
(xi, C

′, x0) is a u1u0-walk in D with length at most k − 1, which implies that
(u1, u0) ∈ A

(
Ck−1
H (D)

)
(Lemma 3(b)), contradicting the choice of C.

On the other hand, since u1 ∈ V (C ′), then u1 has at least one out-neighbor
in C. Consider q = max{i ∈ {1, . . . , l} : (u1, xi) ∈ A(D)}. Notice that q ≤ l − 4
(Claim 1). In order to present our proof more compact, we will show the following
claims.

Claim 2. (xq+2, u1) ∈ A(D).

Proceeding by contradiction, suppose that (xq+2, u1) /∈ A(D). By the choice
of q, we have that (u1, xq+2) /∈ A(D), which implies that there exists m ∈
{1, . . . , r} such that {u1, xq+2} ⊆ Sm. It follows from the fact that D is an
r-partite digraph, that either (xq+3, u1) ∈ A(D) or (u1, xq+3) ∈ A(D). By the
choice of q, we conclude that (xq+3, u1) ∈ A(D). Notice that (xq, xq+1, xq+2, xq+3,
u1, xq) is a 5-cycle in D. Since every uiui+1-geodesic has length at most 2, then
(xq, xq+1, xq+2, xq+3) has at least two consecutive vertices in C, say ut and ut+1.
It follows from Lemma 3(c) that (ut, ut+1) is a symmetric arc in Ck−1

H (D), which
is not possible by the choice of C (see Figure 4). Hence, the claim holds.

Figure 4.

Claim 3. There exists t ∈ {0, . . . , n− 1} such that xq+1 = ut and xq+3 = ut+1.

First, we will show that (xq, xq+1, xq+2) has no two consecutive vertices of
C, such a property will be called (*). Proceeding by contradiction, suppose
that (xq, xq+1, xq+2) has two consecutive vertices of C, us and us+1. Since
(u1, xq, xq+1, xq+2, u1) is a 4-cycle in D, it follows from Lemma 3(c) that us and
us+1 are joined by a symmetric arc in Ck−1

H (D), which is not possible by the
choice of C. Therefore, property (*) holds.



656 H. Galeana-Sánchez and M. Tecpa-Galván

On the other hand, from the choice of C ′, we can conclude that there exists
t ∈ {0, . . . , n− 1} such that A(Wt)∩ {(xq, xq+1), (xq+1, xq+2)} 6= ∅. Remark that
l(Wt) ≤ 2. It follows from property (*) that xq+1 = ut and xq+3 = ut+1, and the
claim holds.

Now, we consider the following cases.

Case 1. {u1, xq+3} ⊆ Sm for some m ∈ {1, . . . , r}. In this case, we have
that u1 and xq+4 are adjacent in D, and by the choice of q, we can conclude that
(xq+4, u1) ∈ A(D). Hence, (xq+3, xq+4, u1, xq, xq+1) is a ut+1ut-walk in D with
length at most 4, which implies that (ut+1, ut) ∈ A

(
Ck−1
H (D)

)
(Lemma 3(b)),

contradicting the choice of C (see Figure 5).

Figure 5.

Case 2. u1 ∈ Sm and xq+3 ∈ Sm′ for some {m,m′} ⊆ {1, . . . , r}, and m 6= m′.
In this case, we have that u1 and xq+3 are adjacent in D, and by the choice of q,
we conclude that (xq+3, u1) ∈ A(D). Hence, (xq+3, u1, xq, xq+1) is a ut+1ut-walk
in D with length at most 3, which implies that (ut+1, ut) ∈ A

(
Ck−1
H (D)

)
(Lemma

3(b)), contradicting the choice of C (see Figure 6).
Therefore, we have that every cycle in Ck−1

H (D) has a symmetric arc, which

implies that Ck−1
H (D) has a kernel (Theorem 2), concluding that D has a (k,H)-

kernel (Lemma 5).

As a direct consequence of Theorem 33 we have the following corollary. An
analogous result can be found in [21].

Corollary 34 [21]. If D is an r-partite tournament, then for every k ≥ 5, D has
a k-kernel.

Proof. Let k ≥ 5 and H a digraph with order |A(D)| and A(H) = ∅. We consider
an H-coloring of D in which every two different arcs have different colors. Notice
that for every walk W in D, lH(W ) = l(W ). It follows from Theorem 33 that
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Figure 6.

D has a (k,H)-kernel, say S. It is straightforward to see that S is a k-kernel
in D.

3.7. Local tournaments

The following lemma will be useful in what follows.

Lemma 35 [8]. Every pair of vertices in each strong component of a local in-
tournament (out-tournament) lie on a cycle.

As a consequence of the previous lemma, we have the following result for
H-colored local in-tournaments.

Theorem 36. Let D be an H-colored local in-tournament. If every cycle in D
has H-length at most k − 2 (k ≥ 2), then D has a (k,H)-kernel.

Proof. First, we will show that every cycle in Ck−1
H (D) has a symmetric arc,

then, by applying Theorem 2 and Lemma 5, we will conclude that D has a
(k,H)-kernel.

Let C = (u0, . . . , un) be a cycle in Ck−1
H (D). For every i ∈ {0, . . . , n − 1},

we consider a uiui+1-path with H-length at most k− 1, say Ti (indices are taken
modulo n). Clearly, C ′ =

⋃n−1
i=0 Ti is a closed walk in D containing u0 and u1,

which implies that u0 and u1 lie in the same strong component of D. It follows
from Lemma 35 that there exists a cycle in D, say C0, such that {u0, u1} ⊆ V (C0).
Suppose that C0 = (u1 = x0, . . . , u0 = xt, . . . , xl). If C ′0 = (u1, C0, u0), then
|OH(C ′0)| ≤ |OH(C0)| (Lemma 4). By hypothesis, we conclude that |OH(C ′0)| ≤
k − 2, which implies that lH(C ′0) ≤ k − 1. Hence, (u1, u0) ∈ A

(
Ck−1
H (D)

)
,

concluding that C has a symmetric arc in Ck−1
H (D).

Therefore, we have that every cycle in Ck−1
H (D) has a symmetric arc, which

implies that Ck−1
H (D) has a kernel (Theorem 2), concluding that D has a (k,H)-

kernel (Lemma 5).
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Theorem 37. Let D be an H-colored local out-tournament. If every cycle in D
has H-length at most k − 2 (k ≥ 2), then D has a (k,H)-kernel.

Proof. An analogous proof as in Theorem 36 will show Theorem 37.

Corollary 38. Let D be an H-colored local tournament. If every cycle in D has
H-length at most k − 2 (k ≥ 2), then D has a (k,H)-kernel.

Corollary 39. Let D be a local in-tournament and k ≥ 4. If every cycle in D
has length at most k − 2, then D has a k-kernel.

Proof. Let k ≥ 4 and H a digraph with order |A(D)| and A(H) = ∅. We consider
an H-coloring of D in which every two different arcs have different colors. Notice
that for every walk W in D, lH(W ) = l(W ). Since every cycle in D has length
at most k− 2, then every cycle in D has H-length at most k− 2. It follows from
Theorem 36 that D has a (k,H)-kernel, say S. It is straightforward to see that
S is a k-kernel in D.

Corollary 40. Let D be a local out-tournament and k ≥ 4. If every cycle in D
has length at most k − 2, then D has a k-kernel.

4. A Brief Note on (k,H)-Panchromatic Digraphs

Let D be a digraph and k ≥ 2; we say that D is a (k,H)-panchromatic digraph
if for every digraph H (possibly with loops), and every H-coloring of D, D has
a (k,H)-kernel. Previous work on panchromaticity in digraphs can be found
in [24, 25, 26] and [27]. As a direct consequence of the results proved in this
paper, we have that the following nearly tournaments are (k,H)-panchromatic
for certain values of k.

Theorem 41. If D is a digraph, then D is (k,H)-panchromatic provided that:

(i) (Theorem 6) D is semicomplete and k ≥ 3;

(ii) (Corollary 15) D is transitive and k ≥ 2;

(iii) (Corollary 14) D is r-transitive (r ≥ 2) and k ≥ r;
(iv) (Theorem 19) D is quasi-transitive and k ≥ 4;

(v) (Theorem 23) D is 3-quasi-transitive and k ≥ 5;

(vi) (Theorem 33) D is an r-partite tournament (r ≥ 2) and k ≥ 5.

Acknowledgments

The authors wish to thank the anonymous referees for their suggestions which
improved the rewriting of this paper.



(k,H)-Kernels in Nearly Tournaments 659

Hortensia Galeana-Sánchez is supported by UNAM-DGAPA-PAPIIT IN
102320 and CONACYT FORDECYT-PRONACES/39570/2020. Miguel Tecpa-
Galván is supported by CONACYT-604315.

References

[1] C. Andenmatten, H-distance, H-A-kernel and in-state splitting in H-colored graphs
and digraphs (MSc Thesis supervised by H. Galeana-Sánchez and J. Pach, École
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