DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

C.J. Casselgren

Carl Johan Casselgren

Linköping Universitet

email: carl.johan.casselgren@liu.se

F.B. Petros

Fikre B. Petros

Department of Mathematics
Addis Ababa University
1176 Addis Ababa

email: fikre.bogale@aau.edu.et

Title:

Edge precoloring extension of trees II

PDF

Source:

Discussiones Mathematicae Graph Theory 44(2) (2024) 613-637

Received: 2021-09-13 , Revised: 2022-06-12 , Accepted: 2022-06-13 , Available online: 2022-06-27 , https://doi.org/10.7151/dmgt.2461

Abstract:

We consider the problem of extending and avoiding partial edge colorings of trees; that is, given a partial edge coloring $\varphi$ of a tree $T$ we are interested in whether there is a proper $\Delta(T)$-edge coloring of $T$ that agrees with the coloring $\varphi$ on every edge that is colored under $\varphi$; or, similarly, if there is a proper $\Delta(T)$-edge coloring that disagrees with $\varphi$ on every edge that is colored under $\varphi$. We characterize which partial edge colorings with at most $\Delta(T)+1$ precolored edges in a tree $T$ are extendable, thereby proving an analogue of a result by Andersen for Latin squares. Furthermore we obtain some ``mixed'' results on extending a partial edge coloring subject to the condition that the extension should avoid a given partial edge coloring; in particular, for all $0 \leq k \leq \Delta(T)$, we characterize for which configurations consisting of a partial coloring $\varphi$ of $\Delta(T)-k$ edges and a partial coloring $\psi$ of $k+1$ edges of a tree $T$, there is an extension of $\varphi$ that avoids $\psi$.

Keywords:

edge coloring, tree, precoloring extension, avoiding edge coloring

References:

  1. M.O. Albertson and E.H. Moore, Extending graph colorings using no extra colors, Discrete Math. 234 (2001) 125–132.
    https://doi.org/10.1016/S0012-365X(00)00376-9
  2. L.D. Andersen, Completing partial Latin squares, Mat.-Fys. Medd. Danske Vid. Selsk. 41 (1985) 25–64.
  3. L.D. Andersen and A.J.W. Hilton, Thanks Evans!, Proc. Lond. Math. Soc. 47 (1983) 507–522.
    https://doi.org/10.1112/plms/s3-47.3.507
  4. C.J. Casselgren, P. Johansson and K. Markström, Avoiding and extending partial edge colorings of hypercubes, Graphs Combin. 38 (2022) #79.
    https://doi.org/10.1007/s00373-022-02485-z
  5. C.J. Casselgren, K. Markström and L.A. Pham, Edge precoloring extension of hypercubes, J. Graph Theory 95 (2020) 410–444.
    https://doi.org/10.1002/jgt.22561
  6. C.J. Casselgren and F.B. Petros, Edge precoloring extension of trees, Australas. J. Combin. 81 (2021) 233–244.
  7. M. Cropper, A. Gyárfás and J. Lehel, Edge list multicoloring trees: An extension of Hall's theorem, J. Graph Theory 42 (2003) 246–255.
    https://doi.org/10.1002/jgt.10093
  8. K. Edwards, A. Girão, J. van den Heuvel, R.J. Kang, G.J. Puleo and J.-S. Serini, Extension from precoloured sets of edges, Electron. J. Combin. 25 (2018) #P3.1.
    https://doi.org/10.37236/6303
  9. T. Evans, Embedding incomplete latin squares, Amer. Math. Monthly 67 (1960) 958–961.
  10. F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995) 153–158.
    https://doi.org/10.1006/jctb.1995.1011
  11. A. Girão and R.J. Kang, Precolouring extension of Vizing's theorem, J. Graph Theory 92 (2019) 255–260.
    https://doi.org/10.1002/jgt.22451
  12. R. Häggkvist, A solution to the Evans conjecture for Latin squares of large size, Colloq. Math. Soc. Janos Bolyai 18 (1978) 405–513.
  13. J. Kuhl and T. Denley, Constrained completion of partial latin squares, Discrete Math. 312 (2012) 1251–1256.
    https://doi.org/10.1016/j.disc.2011.10.025
  14. O. Marcotte and P. Seymour, Extending an edge-coloring, J. Graph Theory 14 (1990) 565–573.
    https://doi.org/10.1002/jgt.3190140508
  15. B. Smetanuik, A new construction on Latin squares. I. A proof of the Evans conjecture, Ars Combin. 11 (1981) 155–172.

Close