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Abstract

We consider the problem of extending and avoiding partial edge colorings
of trees; that is, given a partial edge coloring ϕ of a tree T we are interested
in whether there is a proper ∆(T )-edge coloring of T that agrees with the
coloring ϕ on every edge that is colored under ϕ; or, similarly, if there is
a proper ∆(T )-edge coloring that disagrees with ϕ on every edge that is
colored under ϕ. We characterize which partial edge colorings with at most
∆(T ) + 1 precolored edges in a tree T are extendable, thereby proving an
analogue of a result by Andersen for Latin squares. Furthermore we obtain
some “mixed” results on extending a partial edge coloring subject to the
condition that the extension should avoid a given partial edge coloring; in
particular, for all 0 ≤ k ≤ ∆(T ), we characterize for which configurations
consisting of a partial coloring ϕ of ∆(T )− k edges and a partial coloring ψ
of k + 1 edges of a tree T , there is an extension of ϕ that avoids ψ.
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1. Introduction

In this paper we are interested in extending partial edge colorings of graphs. A
partial edge coloring (or precoloring) of a graph G is a coloring of some subset
E′ ⊆ E(G). Unless otherwise stated, we shall assume that all (partial) edge
colorings are proper. A partial t-edge coloring ϕ of G is called extendable if there
is a proper t-edge coloring f of G such that f(e) = ϕ(e) for every edge e that is
colored under ϕ; f is called an extension of ϕ. We only consider extensions of a
graph G with χ′(G) colors, unless otherwise stated, where χ′(G) as usual denotes
the chromatic index of G.

The problem of extending precolorings have immediate applications in sche-
duling problems where some activities are prescheduled and we aim for a schedule
of minimum “size” (i.e., using a minimum number of colors).

Edge precoloring extension problems seem to have been first considered for
the balanced complete bipartite graphs Kn,n: these type of problems were already
considered in the 1960s in connection with the problem of completing partial
Latin squares and the well-known Evans’ conjecture [9]. This conjecture suggests
that any n × n partial Latin square with at most n − 1 non-empty cells can be
completed to an n × n Latin square, which is equivalent to asking for a proper
n-edge coloring of Kn,n that agrees with n− 1 precolored edges. The conjecture
was proved for large n by Häggkvist [12], and then for all n independently by
Smetaniuk [15] and Andersen and Hilton [3]. Moreover, Andersen and Hilton
[3] completely characterized n × n partial Latin squares with n non-empty cells
that cannot be completed to a Latin square. In a follow-up paper Andersen [2]
characterized which n × n partial Latin squares with n + 1 non-empty cells are
completable to Latin squares.

Kuhl and Denley [13] proved a “mixed” result in the same vein by showing
that if P is a partial Latin square of order 4t with at most t− 1 non-empty cells
and Q is a partial Latin square of the same order that does not agree with P
on any non-empty cell, then there is a completion of P that avoids Q, that is,
the completion of P disagrees with Q on every non-empty cell of Q. Moreover,
they conjectured that the same holds for partial Latin squares of any order n ≥ 4
under the assumption that P has at most n− 2 non-empty cells, which would be
best possible.

Quite recently, motivated by results on completing partial Latin squares,
questions on extending partial edge colorings of hypercubes were studied in [5].
In particular, a characterization of which partial edge colorings with at most d
precolored edges are extendable to d-edge colorings of the d-dimensional hyper-
cube Qd was obtained, thereby establishing an analogue for hypercubes of the
characterization by Andersen and Hilton [3] for partial Latin squares. More-
over, in [4] Casselgren et al. proved a “mixed” result by characterizing, for all
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1 ≤ k ≤ d, for which configurations consisting of a partial coloring ϕ of d − k
edges and a partial coloring ψ of k edges, there is an extension of ϕ that avoids ψ.

In [6], we studied similar questions on edge precoloring extension of trees.
In particular, we obtained an analogue for trees of the aforementioned result of
Andersen and Hilton by characterizing exactly which precolorings of at most ∆(T )
edges in a tree T are extendable to ∆(T )-edge colorings of T . We also proved
sharp conditions on when it is possible to extend a precoloring of a matching or
a precoloring of a collection of connected subgraphs of a tree T to a ∆(T )-edge
coloring of T .

In this paper, we continue our study of questions on extending edge precol-
orings of trees. First, we prove an analogue for trees of the result of Andersen
[2] by characterizing exactly which precolorings of at most ∆(T ) + 1 edges in a
tree T are extendable to ∆(T )-edge colorings of T . Next, we use this result for
proving a characterization, for all 1 ≤ r ≤ ∆(T ) + 1, for which configurations
consisting of a precoloring ϕ of a tree T with ∆(T ) + 1− r colored edges, and a
precoloring ψ of T with r colored edges, there is an extension of ϕ that avoids ψ.

On a slightly different note, Cropper et al. [7] proved necessary and sufficient
conditions for the existence of an edge list multicoloring of a tree, which we were
made aware of while preparing this paper. Since a precoloring extension problem
has a natural interpretation as a list coloring problem, the results in this paper
could, at least in principle, be deduced from results therein. Nevertheless, our
focus, and approach, in this paper (as well as in [6]) is different, and we have not
made any attempt to apply their results.

2. Extending Precolorings of a Tree T with ∆(T ) + 1 Precolored
Edges

We shall use standard terminology for edge colorings. Let ϕ be a proper t-edge
coloring of G. If ϕ(e) = i, then we say that e is ϕ-colored i. For a vertex v ∈ V (G),
we say that a color i appears at v under ϕ if there is an edge e incident to v with
ϕ(e) = i. Moreover, if 1 ≤ a, b ≤ t, then a path P in G is called (a, b)-colored
under ϕ if the edges of P are alternately colored a and b. We also say that such
a path is bicolored under ϕ.

In all the above definitions, we often leave out the explicit reference to a
coloring ϕ, if the coloring is clear from the context.

In [6] we proved that a proper precoloring of at most ∆(T ) edges in a tree
T is always extendable unless the precoloring ϕ satisfies any of the following
conditions:

(C1) there is an uncolored edge uv in T such that u is incident with edges of
k < ∆(T ) distinct colors and v is incident to ∆(T )−k edges colored with ∆(T )−k
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other distinct colors (so uv is adjacent to edges of ∆(T ) distinct colors);

(C2) there is a vertex u of degree ∆(T ) that is incident with edges of ∆(T ) − k
distinct colors c1, . . . , c∆(T )−k, and k vertices v1, . . . , vk, where 1 ≤ k < ∆(T ),
such that for i = 1, . . . , k, uvi is uncolored but vi is incident with an edge colored
by a fixed color c /∈ {c1, . . . , c∆(T )−k};

(C3) there is a vertex u of degree ∆(T ) such that every edge incident with u is
uncolored but there is a fixed color c satisfying that every edge incident with u
is adjacent to another edge colored c;

(C4) ∆(T ) = 2 and there are two precolored edges using the same color if they
are at even distance, and using different colors if they are at odd distance.

For a tree T with ∆(T ) ≥ 2, the set of all colorings satisfying the corresponding
condition above is denoted by Ci for i = 1, 2, 3, 4, and we set C =

⋃
Ci. The

following is a main result of [6].

Theorem 2.1. Let T be a forest with maximum degree ∆(T ). If ϕ is a proper
∆(T )-edge precoloring of T with at most ∆(T ) precolored edges and ϕ /∈ C, then
ϕ is extendable to a proper ∆(T )-edge coloring of T .

An immediate consequence of this theorem is the following.

Corollary 2.2. If T is a forest with maximum degree ∆(T ), then any partial
edge coloring with at most ∆(T ) − 1 precolored edges is extendable to a proper
∆(T )-edge coloring of T .

Here, we shall prove that a proper precoloring of at most ∆(T )+1 edges in a
tree T is always extendable unless the precoloring ϕ satisfies any of the following
four conditions:

(R1) ϕ satisfies any of the conditions (C1), (C2), (C3) or (C4);

(R2) there are two uncolored adjacent edges uv and uw in T such that u is
incident with edges of ∆(T )− 3 distinct colors c1, . . . , c∆(T )−3, and both v and w
are incident to two edges colored with two other distinct colors c∆(T )−2, c∆(T )−1

(so both uv and uw are adjacent to edges of ∆(T )− 1 distinct colors);

(R3) ∆(T ) = 3, there are two uncolored adjacent edges uv and uw with d(v) =
d(w) = 3 in T , and there is a color c, such that every edge incident with v or
w except uv and uw, is either uncolored but adjacent to an edge colored c, or
colored by a color distinct from c;

(R4) ∆(T ) = 3 and there is an uncolored edge uv with d(u) = d(v) = 3, and
there are two colors c and c′ in T such that every edge incident with u except
uv is either uncolored but adjacent to an edge colored c or colored by some color



Edge Precoloring Extension of Trees II 617

distinct from c, and every edge incident with v except uv is either uncolored but
adjacent to an edge colored c′ or colored by some color distinct from c′.

For i = 1, 2, 3, 4, we denote by Ri the set of all partial colorings of a tree T ,
∆(T ) ≥ 2, satisfying the corresponding condition above, and we set R =

⋃
Ri.

Let us briefly explain why ϕ is not extendable if it is a precoloring of T with
exactly ∆(T ) + 1 precolored edges and ϕ ∈ R.

Suppose first that the precoloring ϕ satisfies the first condition (R1). Since
any precoloring contained in C is not extendable, there is no proper ∆(T )-edge
coloring of T that agrees with ϕ. If ϕ, on the other hand, satisfies condi-
tion (R2), then any extension of ϕ satisfies that color c∆(T ) ∈ {1, . . . ,∆(T )} \
{c1, . . . , c∆(T )−1} must appear on both uv and uw. However, such a ∆(T )-edge
coloring cannot be proper, since this implies that u is incident with two edges
colored c∆(T ).

Suppose now that ϕ satisfies condition (R3). If f is a ∆(T )-edge coloring
that is an extension of ϕ, then f satisfies that the color c must appear on both
uv and uw. Thus, f cannot be proper. We leave to the reader to verify that ϕ is
not extendable if it satisfies condition (R4). Our main result is the following.

Theorem 2.3. Let T be a forest with maximum degree ∆(T ). If ϕ is a proper
∆(T )-edge precoloring of T with at most ∆(T ) + 1 precolored edges and ϕ /∈ R,
then ϕ is extendable to a proper ∆(T )-edge coloring of T .

Proof. The proof of Theorem 2.3 proceeds by induction on |E(T )|. The state-
ment is trivial for any forest with at most two edges; thus we assume that T
is a forest with |E(T )| ≥ 3 and that the theorem holds for any forest T ′, with
|E(T ′)| < |E(T )|, that is, any proper partial coloring ϕ′ of at most ∆(T ′) + 1
edges is extendable to a proper ∆(T ′)-edge coloring unless ϕ′ ∈ R, and consider
a proper partial coloring ϕ of T with exactly ∆(T ) + 1 precolored edges; for the
case of fewer precolored edges, Theorem 2.1 yields the result.

If ∆(T ) = 1, then the statement trivially holds. Now assume that ∆(T ) = 2;
then every component of T is a path and exactly three edges of T are precolored
under ϕ. Let us first assume that all precolored edges have the same color. Let
e1, e2, e3 be the precolored edges of T . We may assume that all the precolored
edges are in the same component because otherwise if every component contains
at most one precolored edge, then we are done by Corollary 2.2; else, if there is
a component that contains two precolored edges and ϕ /∈ C4, then we are done
by Theorem 2.1.

Without loss of generality we can assume that e2 is contained in a path from
e1 to e3. If the distance between e1 and e2, or e2 and e3 is even, then ϕ ∈ C4;
otherwise since every component is a path, we can color the edges of T by colors
1 and 2 alternatively. A similar argument applies in the case when two different
colors appear on the precolored edges.
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Let us now consider the case when ∆(T ) ≥ 3. If T has an uncolored pendant
edge e such that ∆(T −e) = ∆(T ), then the restriction of ϕ to T −e is extendable
by the induction hypothesis; thus ϕ is extendable to a proper ∆(T )-edge coloring
of T . Therefore we assume that T has no such pendant edge e. Note that, since
∆(T )+1 edges are precolored, this implies that T contains only one unique vertex
v of maximum degree if ∆(T ) ≥ 4, and at most two vertices u and v of maximum
degree if ∆(T ) = 3.

Without loss of generality we shall assume that color 1 is used at least as
frequently as any other color, and let Ei be the set of all edges colored i. Thus
E1 contains at least two edges. Our general proof strategy is to show that there
is a matching M in T containing all edges precolored 1, no other precolored
edges, and covering every vertex of degree ∆(T ), subject to the condition that
the restriction of the coloring ϕ to T −M not being in C; we can then deduce
the result from the induction hypothesis. We shall need to consider many cases,
and first we consider the case when ∆(T ) = 3.

Case 1. ∆(T ) = 3. We shall distinguish between two different cases, whether
T contains only one unique vertex v or two vertices u and v of maximum degree
3. Note that since T contains four precolored edges and color 1 is used at least
as frequently as any other color, |E2|+ |E3| ≤ 2.

Case 1.1. T contains a unique vertex v of degree 3. Suppose first that T
contains a unique vertex v of maximum degree 3 and that some edge of E1 is
incident with v. If the restriction of ϕ to T − E1 does not satisfy (C4), then by
the induction hypothesis, the restriction of ϕ to T −E1 is extendable to a proper
edge coloring using colors 2, 3; hence ϕ is extendable.

If the restriction of ϕ to T−E1 satisfies (C4), then since |E2|+|E3| ≤ 2, there
are exactly two precolored edges e1 and e2 precolored 2 or 3, at even distance if
they have the same color, or at odd distance if they have different colors. We pick
an uncolored edge e that is not adjacent to any edge from E1 which is contained
in a path from e1 to e2; since there is a unique vertex of degree 3, and ϕ /∈ C1∪C2,
there is such an edge e.

We assign the color 1 to e and consider the graph T − (E1 ∪ {e}). Since this
graph only contains two precolored edges, the restriction of ϕ to T − (E1 ∪ {e})
is not in C4. Thus, since ∆(T − (E1 ∪ {e}) = 2, it is extendable to a proper edge
coloring of T − (E1 ∪ {e}) by Theorem 2.1. Hence, ϕ is extendable.

Assume now that no edge from E1 is incident with v. Then we pick an
uncolored edge e incident to v that is not adjacent to any edge from E1; since
ϕ /∈ C1 ∪ C2 ∪ C3, there is such an edge e. Now, if the restriction of ϕ to
T − (E1 ∪ {e}) does not satisfy (C4), then we color e with the color 1, and apply
the induction hypothesis to the restriction of ϕ to T − (E1 ∪ {e}) to obtain an
extension of ϕ; otherwise, if the restriction of ϕ to T − (E1 ∪ {e}) satisfies (C4),
then we need to consider two different cases depending on whether v is contained
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in the path P between the two precolored edges e1 and e2 in T−(E1∪{e}), or not.

Subcase A. v is contained in the path P from e1 to e2. Let us first assume
that v is contained in P . Since no edge from E1 is contained in P , we can pick an
uncolored edge e′ incident to v that is not adjacent to any edge from E1, but is
contained in P ; since v is the only vertex of degree 3, and ϕ /∈ C1∪C2∪C3, there
exists such an edge e′. Then, in this case, the restriction of ϕ to T − (E1 ∪ {e′})
does not satisfy (C4). By coloring e′ by color 1, and applying the induction
hypothesis to T − (E1 ∪ {e′}), we obtain an extension of ϕ.

Subcase B. v is not contained in the path P from e1 to e2. Let us now assume
that v is not contained in P . Since the restriction of ϕ to T − (E1 ∪{e}) satisfies
(C4), we pick an uncolored edge e′ that is not adjacent to any edge from E1∪{e},
and which is contained in P ; since e1, e2 /∈ E1 and v is not contained in P , there
is such an edge e′. Finally, we may color the edges e and e′ by the color 1, and
apply the induction hypothesis to T − (E1 ∪ {e, e′}) to obtain an extension of ϕ.

Case 1.2. T contains two vertices u and v of degree 3. We shall consider
some different subcases.

Case 1.2.1. E1 covers both u and v. Suppose first that E1 covers both u and
v. If the restriction of ϕ to T − E1 does not satisfy (C4), then by the induction
hypothesis, the restriction of ϕ to T −E1 is extendable to a proper edge coloring
using colors 2, 3; hence ϕ is extendable. If the restriction of ϕ to T −E1 satisfies
(C4), then there are two precolored edges e1 and e2, at even distance if they have
the same color, or at odd distance if they have different colors. As before, our
strategy is to pick an uncolored edge e that is not adjacent to any edge from E1,
and which is contained in the path P from e1 and e2; we will prove that since
ϕ /∈ R, there is such an edge e.

If e1 and e2 are at distance at least 5, then we can certainly pick such an
edge e, and if they are at distance 4, then there is such an edge unless ϕ ∈ R3;
on the other hand if e1 and e2 are at distance 3, then there is such an edge unless
ϕ ∈ R3 ∪R4. Moreover, if e1 and e2 are at distance 1 or 2, then there is such an
edge unless ϕ ∈ C1 or ϕ ∈ C2 ∪ R2, respectively. In conclusion, in all cases we
can pick a required edge e contained in the path P and thus the restriction of
ϕ to T − (E1 ∪ {e}) does not satisfy (C4). We color e with the color 1, and are
done by the induction hypothesis.

Case 1.2.2. E1 covers only one of u and v. Suppose now that only one
of the vertices u or v is incident with an edge from E1, say u. Then we pick
an uncolored edge e incident to v that is not adjacent to any edge from E1;
since ϕ /∈ C1 ∪ C2 ∪ C3, there is such an edge e. Now, if the restriction of ϕ to
T−(E1∪{e}) does not satisfy (C4), then color e with the color 1, and by applying
the induction hypothesis to the restriction of ϕ to T − (E1 ∪ {e}), we obtain an
extension of ϕ; otherwise, if the restriction of ϕ to T − (E1 ∪ {e}) satisfies (C4),
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then as before, there are two precolored edges e1 and e2 joined by a path P . In
this case, we need to consider two different subcases depending on whether v is
contained in P , or not.

Subcase A. v is contained in the path P from e1 to e2. Let v be contained
in P and let us first assume that u and v are adjacent. If v is not incident with
e1 or e2, since all the edges in P are uncolored, then we can pick an uncolored
edge e′ incident to v that is not adjacent to any edge from E1, but is contained
in P ; since ϕ /∈ C1∪C2∪C3, there is such an edge e′. In this case, the restriction
of ϕ to T − (E1 ∪ {e′}) does not satisfy (C4), and we are done by applying the
induction hypothesis to T − (E1 ∪ {e′}).

Suppose now that v is incident with e1 or e2. If uv ∈ E(P ), then we can
pick an uncolored edge e′′ that is not adjacent to any edge from E1 ∪ {e′}, but
is contained in P ; since ϕ /∈ C2, there is such an edge e′′. Thus, in this case
the restriction of ϕ to T − (E1 ∪ {e, e′′}) does not satisfy (C4). Now, we may
color the edges e and e′′ by the color 1, and apply the induction hypothesis to
T − (E1 ∪ {e, e′′}) to obtain an extension of ϕ; otherwise, if uv /∈ E(P ), then e
must be contained in P , which is a contradiction; we conclude that this is not
possible.

Finally, let us consider the case when u and v are nonadjacent. Since all the
edges of P are uncolored, we can pick an uncolored edge e′ incident to v that is
not adjacent to any edge from E1, but is contained in P ; since ϕ /∈ C, there is
such an edge e′. In this case, the restriction of ϕ to T − (E1 ∪ {e′}) does not
satisfy (C4). By coloring e′ by the color 1, and applying the induction hypothesis
to the restriction of ϕ to T − (E1 ∪ {e′}), we obtain an extension of ϕ.

Subcase B. v is not contained in the path P from e1 to e2. Let us now assume
that v is not contained in P . Since all the edges of P are uncolored, then we pick
uncolored edge e′ not adjacent to any edge from E1∪{e}, and which is contained
in a path from e1 to e2; since v is not contained in P and by our assumption
E1 covers only u, there is such an edge e′ provided that ϕ /∈ C. Now, we may
color the edges e and e′ by the color 1, and apply the induction hypothesis to
T − (E1 ∪ {e, e′}) to obtain an extension of ϕ.

Case 1.2.3. no edge from E1 covers u or v. Finally, let us consider the case
when no edge from E1 is incident with a vertex of maximum degree. In this case,
we consider two different subcases depending on whether u and v are adjacent or
not.

Subcase A. u and v are adjacent. Assume u is adjacent to v and let us first
assume that uv is not precolored. Then the edge e = uv is not adjacent to any
edge from E1. If the restriction of ϕ to T − (E1 ∪ {e}) does not satisfy (C4),
then color e by the color 1, and by induction hypothesis the restriction of ϕ to
T − (E1 ∪ {e}) is extendable using the colors 2, 3; otherwise, if the restriction
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of ϕ to T − (E1 ∪ {e}) satisfies (C4), then as before there are two precolored
edges e1 and e2 joined by a path P . In this case, we need to consider different
cases depending on whether u or v is contained in P , or not. Note that since
the restriction of ϕ to T − (E1 ∪ {e}) satisfies (C4), at most one of u and v is
contained in P .

Suppose first that exactly one of u or v is contained in P , by symmetry
say u. If every neighbor of v distinct from u is incident with an edge from E1,
then we can pick an uncolored edge e′ contained in P that is neither adjacent
to any edge from E1 ∪ {e} nor incident to u or v; since ϕ /∈ R4, there is such
an edge e′. Now, we may color the edges e and e′ by the color 1, and apply the
induction hypothesis to T − (E1∪{e, e′}) to obtain an extension of ϕ. Otherwise,
if some neighbor x 6= u of v is not incident with any edge from E1, then we pick
another uncolored edge e′′ 6= e incident to u that is not adjacent to any edge from
E1 ∪ {xv}, and which is contained in P ; since E1 does not cover u, there is such
an edge e′′. Now, we may color the edges xv and e′′ by the color 1, and apply
the induction hypothesis to T − (E1 ∪ {xv, e′′}) to obtain an extension of ϕ.

On the other hand, if none of u and v are contained in P , since u and v are
the only vertices of degree 3, then we can pick an uncolored edge e′ contained in
P that is not adjacent to any edge from E1 ∪ {e}. By coloring e and e′ by the
color 1, the restriction of ϕ to T − (E1 ∪ {e, e′}) is extendable by the induction
hypothesis using colors 2 and 3.

Suppose now that uv is precolored by some color distinct from 1. In this
case, we can pick uncolored edges e and e′ incident to u and v respectively that
are not adjacent to any edge from E1; since ϕ /∈ C2, there are such edges e and
e′. Now, if the restriction of ϕ to T − (E1∪{e, e′}) does not satisfy (C4), then we
are done; otherwise, if the restriction of ϕ to T − (E1∪{e, e′}) satisfies (C4), then
as before there are two precolored edges e1 and e2 joined by a path P . Moreover,
e1 = uv or e2 = uv, so exactly one of u and v is contained in P , by symmetry say
v. Then we can pick an uncolored edge e′′ incident to v that is not adjacent to
any edge from E1∪{e}, and which is contained in P ; since v is in P , and u and v
are the only vertices of degree 3, there is such an edge e′′. The restriction of ϕ to
E1 ∪ {e, e′′} does not satisfy (C4), and we are done by the induction hypothesis.

Subcase B. u and v are nonadjacent. Let us now consider the case when u is
not adjacent to v. We first pick an uncolored edge e incident to one of the vertices
u or v, say u, that is not adjacent to any edge from E1; since ϕ /∈ C1 ∪ C2 ∪ C3,
there is such an edge e. Next we can pick another uncolored edge e′ incident to
v that is not adjacent to any edge from E1 ∪ {e}; otherwise, if such an edge e′

does not exist, since ϕ /∈ C1 ∪ C2 ∪ C3, and u and v are nonadjacent, then this
implies that u and v must be at distance 2 from each other. In this case, first
we pick an uncolored edge e incident to u or v (say u) that is neither adjacent
to any edge from E1 nor contained in the path from u to v; since ϕ /∈ R3, there
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is such an edge e. Next we pick another uncolored edge e′ incident to v that is
not adjacent to any edge from E1 ∪ {e}; by our choice of e, there is such an edge
e′ provided that ϕ /∈ C. In any case, if the restriction of ϕ to T − (E1 ∪ {e, e′})
does not satisfy (C4), then we color the edges e and e′ with color 1, and apply
the induction hypothesis to E1 ∪ {e, e′}.

Otherwise, if the restriction of ϕ to T − (E1 ∪ {e, e′}) satisfies (C4), then
there are precolored edges e1 and e2 joined by a path P in T − (E1 ∪ {e, e′}).
As before, either we pick new edge(s) incident to u and/or v contained in P , or
choose an additional edge contained P (the latter applies if none of u and v is
contained in P ). Since the arguments are similar to the ones used above, the
details are omitted.

Case 2. ∆(T ) ≥ 4. Suppose now that ∆(T ) ≥ 4; and let v be the unique
vertex of maximum degree. We distinguish between two different cases based on
the number of colors appearing on the edges of T under ϕ.

Case 2.1. some color c 6= 1 appears on at least two edges under the precoloring
ϕ. If there is some color c 6= 1 that appears on at least two edges in T , then at
most ∆(T )−1 colors appear on the edges of T . If some edge of E1 is incident with
v and the restriction of ϕ to T −E1 does not satisfy (C2), then by the induction
hypothesis, the restriction of ϕ to T −E1 is extendable to a proper edge coloring;
thus ϕ is extendable. Otherwise, if the restriction of ϕ to T − E1 satisfies (C2),
then since color 1 appear on at least as many edges as any other color, there is
a vertex u of degree ∆(T )− 1 in T −E1 that is incident with edges of ∆(T )− 3
distinct colors c1, . . . , c∆(T )−3, and two vertices v1, v2 such that uvi is uncolored
but vi is incident with an edge colored by a fixed color c /∈ {c1, . . . , c∆(T )−3}.
Since ϕ /∈ R2, there is an uncolored edge e incident to u that is not adjacent
to any edge from E1. By coloring e by the color 1, and applying the induction
hypothesis to the restriction of ϕ to T − (E1 ∪ {e}), we obtain an extension of ϕ.

Assume now that no edge from E1 is incident with v. Then we can pick an
uncolored edge e incident to v that is not adjacent to any edge from E1; since
ϕ /∈ C2∪C3, there is such an edge e. Now, if the restriction of ϕ to T − (E1∪{e})
does not satisfy (C2), then color e with the color 1, and apply the induction
hypothesis to the restriction of ϕ to T − (E1 ∪ {e}) to obtain an extension of ϕ.

On the other hand, if the restriction of ϕ to T − (E1 ∪ {e}) satisfies (C2),
then as before there is a vertex u of degree ∆(T ) − 1 in T − (E1 ∪ {e}) that is
incident with edges of ∆(T ) − 3 distinct colors c1, . . . , c∆(T )−3, and two vertices
v1, v2, such that uvi is uncolored but vi is incident with an edge colored by a fixed
color c /∈ {c1, . . . , c∆(T )−3}. If e is incident to u, then since v is the unique vertex
of degree ∆(T ), this implies that u = v. Then instead of e, we pick another
uncolored edge e′ incident to v that is not adjacent to any edge from E1; since
ϕ /∈ R2, there is such an edge e′. By coloring e′ by the color 1, and applying
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the induction hypothesis to the restriction of ϕ to T − (E1 ∪ {e′}), we obtain an
extension of ϕ.

Otherwise, if e is not incident to u, then we can select an uncolored edge e′

incident with u but not adjacent to any edge from E1; since ϕ /∈ R2, there is such
an edge e′. Now, if e is not adjacent to e′, then we may color the edges e and e′

by the color 1, and apply the induction hypothesis to T − (E1 ∪{e, e′}) to obtain
an extension of ϕ; otherwise, if e is adjacent to e′, since v has maximum degree,
there is another uncolored edge e′′ 6= e incident to v that is not adjacent to any
edge from E1 ∪ {e′}. Finally, we may color the edges e′ and e′′ by the color 1,
and apply the induction hypothesis to T − (E1 ∪ {e′, e′′}) to obtain an extension
of ϕ.

Case 2.2. all the colors 1, 2, . . . ,∆(T ) appears on edges under the precoloring
ϕ. Suppose now that every color distinct from color 1 appears on exactly one
edge in T . If some edge of E1 is incident with v and the restriction of ϕ to T −E1

does not satisfy (C1), then by the induction hypothesis, the restriction of ϕ to
T −E1 is extendable to a proper edge coloring using colors 2, 3, . . . ,∆(T ); hence
ϕ is extendable.

If the restriction of ϕ to T − E1 satisfies (C1), then this implies that there
is an uncolored edge e in T − E1 such that e is adjacent to the edges precolored
by the colors 2, 3, . . . ,∆(T ). Since v is the unique vertex of degree ∆(T ), it is
not incident with e; otherwise e together with the edges precolored by the colors
2, 3, . . . ,∆(T ) satisfy (C1), a contradiction to our assumption. By coloring e
by the color 1, and applying the induction hypothesis to the restriction of ϕ to
T − (E1 ∪ {e}), we obtain an extension of ϕ.

Assume now that no edge from E1 is incident with v. Then we can pick an
uncolored edge e incident to v that is not adjacent to any edge from E1; since
ϕ /∈ C1∪C2, there is such an edge e. Now, if the restriction of ϕ to T − (E1∪{e})
does not satisfy (C1), then color e with the color 1, and we are done; otherwise,
if the restriction of ϕ to T − (E1∪{e}) satisfies (C1), then this implies that there
is an uncolored edge e′ in T − (E1 ∪ {e}) such that e′ is adjacent to the edges
precolored by the colors 2, 3, . . . ,∆(T ). Now, if e′ is incident to v, then we pick
e′ instead of e, since ϕ /∈ C1, e′ is not adjacent to any edge from E1, and we can
apply the induction hypothesis to T − (E1 ∪ {e′}).

On the other hand, if e′ is not incident to v, then since ϕ /∈ C1, e′ is not
adjacent to any edge from E1. Now, if e′ is not adjacent to e, then we may
color the edges e and e′ by the color 1, and apply the induction hypothesis to
T − (E1 ∪ {e, e′}) to obtain an extension of ϕ; otherwise, if e′ is adjacent to e,
since v has maximum degree, there is another uncolored edge e′′ 6= e incident to
v that is not adjacent to any edge from E1 ∪ {e′}. Now, we may color the edges
e′ and e′′ by the color 1, and apply the induction hypothesis to T − (E1∪{e′, e′′})
to obtain an extension of ϕ. This completes the proof of Theorem 2.3.
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3. Avoiding and Extending Edge Precolorings Simultaneously

Let ϕ be a proper precoloring of ∆(T )+1−r edges of T , where 1 ≤ r ≤ ∆(T )+1,
and ψ be an arbitrary (i.e., not necessarily proper) coloring of r edges in T . We
shall prove that there is a proper ∆(T )-edge coloring of T that extends ϕ and
which avoids ψ unless the colorings ϕ and ψ satisfy any of the following conditions.

(T1) exactly one edge is ψ-colored, and ϕ satisfies any of the conditions (C1)–
(C4);

(T2) there is a vertex v of degree ∆(T ) such that every edge incident with v
is either ψ-colored c, ϕ-colored by a color distinct from c, or not ϕ-colored or
ψ-colored, but adjacent to an edge ϕ-colored c;

(T3) there is an edge uv that is ψ-colored c and for every i ∈ {1, 2, . . . ,∆(T )}\{c}
there is an edge incident with u or v that is ϕ-colored i;

(T4) there is a vertex u incident with ∆(T ) − 3 edges ϕ-colored by c1, c2, . . . ,
c∆(T )−3, respectively, and there are two colors c, c′ /∈ {c1, c2, . . . , c∆(T )−3} and
edges uv, uw such that either

• both uv and uw are ψ-colored c and adjacent to an edge ϕ-colored c′, or

• uv is ψ-colored c and adjacent to an edge ϕ-colored c′, and uw is ψ-colored
c′ and adjacent to an edge ϕ-colored c, or

• uv is ψ-colored c and adjacent to an edge ϕ-colored c′, and uw is uncolored
but w is incident with two edges ϕ-colored by colors c and c′;

(T5) ∆(T ) = 3 and there are two uncolored adjacent edges uv and uw with
d(v) = d(w) = 3 in T and a color c such that every edge incident with v or w
except uv and uw, is either ψ-colored c, ϕ-colored by some color distinct from c,
or uncolored but adjacent to an edge ϕ-colored c;

(T6) ∆(T ) = 3 and there is an uncolored edge uv with d(u) = d(v) = 3 in T
and two colors c and c′ such that every edge incident with u except uv is either
ψ-colored c, ϕ-colored by some color distinct from c, or uncolored but adjacent to
an edge ϕ-colored c, and every edge incident with v except uv is either ψ-colored
c′, ϕ-colored by some color distinct from c′, or uncolored but adjacent to an edge
ϕ-colored c′;

(T7) ∆(T ) = 3 and there is a vertex v of degree d(v) = 3 that is adjacent to a
vertex u in T such that every edge incident with v except uv is either ψ-colored
c, ϕ-colored by a color distinct from c, or uncolored but adjacent to an edge ϕ-
colored c, and uv is uncolored but u is incident with an edge ux that is ψ-colored
c′ 6= c and x is incident with another edge ϕ-colored c′′ /∈ {c, c′};

(T8) ∆(T ) = 2 and there are two precolored edges e1 and e2 in T such that
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(i) they are at odd distance and either both are colored under ϕ or ψ by different
colors, or one edge is colored under ϕ and the other edge is under ψ, and they
are colored by the same color;

(ii) they are at even distance and either both are colored by the same color under
ϕ or ψ, or one edge is colored under ϕ and the other edge is colored under ψ,
and they are colored differently.

For i = 1, . . . , 8, we denote by Ti the set of all ordered pairs (ϕ,ψ) of partial
colorings of a tree T satisfying the corresponding condition above, and we set
T =

⋃
Ti. It is readily verified that if (ϕ,ψ) satisifes one of the conditions above,

then there is no extension of ϕ that avoids ψ.
We shall use the following result from [6] on extending an edge precoloring

where the precolored edges induce several connected subtrees.

Theorem 3.1. Let T be a tree with maximum degree ∆(T ) = k ≥ 3. If at most
k − 1 connected subgraphs of T are properly edge-colored using k colors, and the
distance between any two vertices in two different precolored subgraphs is at least
3, then this partial edge coloring is extendable to a proper k-edge coloring of T .

We shall also need the following lemma.

Lemma 3.2. Let ϕ′ be a proper ∆(T )-edge precoloring of T with ∆(T ) ≥ 3.
Suppose that the precolored edges induce two connected subgraphs TH1 and TH2 of
T , where |E(TH1)| = 1; then ϕ′ is extendable unless there is exactly one uncolored
edge uv between TH1 and TH2 with u ∈ V (TH1) and v ∈ V (TH2) such that u is
incident to an edge colored c, and v is incident to ∆(T ) − 1 edges with distinct
colors from {1, 2, . . . ,∆(T )} \ {c}.

Proof. Without loss of generality we assume that E(TH1) is colored with 1. If
|E(TH1)|+ |E(TH2)| ≤ ∆(T )− 1, then since at most ∆(T )− 1 edges are colored,
by Corollary 2.2, ϕ′ is extendable.

So we now assume that at least ∆(T ) edges are colored under ϕ′. Suppose
first exactly one uncolored edge uv with u ∈ V (TH1) and v ∈ V (TH2) is contained
in a path from TH1 to TH2 . If v is incident to edges colored by every color from
{2, . . . ,∆(T )}, then these edges together with the edge in TH1 form C1, which is
not extendable; otherwise, if v is incident with edges of at most ∆(T )−2 distinct
colors from {2, . . . ,∆(T )}, then there is some color c ∈ {2, . . . ,∆(T )} that does
not appear at v. Thus, we may color uv by the color c, to obtain a connected
colored subgraph, and we are done by Theorem 3.1.

Suppose now at least two uncolored edges are contained in a shortest path
from a vertex of TH1 to a vertex of TH2 . Since ∆(T ) ≥ 3, we can color the edges
in this path greedily; so again we obtain a connected colored subgraph, and we
are done by Theorem 3.1.
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Theorem 3.3. Let ϕ be a proper ∆(T )-edge coloring of ∆(T ) + 1 − r edges of
the tree T and ψ be a partial coloring of r edges in T such that no edge has the
same color under ϕ and ψ, where 1 ≤ r ≤ ∆(T ) + 1. If (ϕ,ψ) /∈ T, then there is
an extension of ϕ that avoids ψ.

Proof. Let Eϕ,ψ be the set of edges in E(T ) that are colored under ϕ or ψ.
Without loss of generality we assume that no edge is colored under both ϕ and
ψ. First we shall show that if (ϕ,ψ) /∈ T, then we can define a new proper coloring
ϕ′ of Eϕ,ψ from ϕ by coloring every ψ-colored edge that is not colored under ϕ
in such a way that the resulting precoloring avoids ψ.

If all ψ-colored edges are pairwise non-adjacent, then we can trivially define
the coloring ϕ′ by assigning some color from {1, 2, . . . ,∆(T )}\{ψ(e)} to any edge
e that is colored under ψ so that ϕ′ is proper and avoids ψ unless (T3) holds.
Moreover, if every ψ-colored edge is adjacent to at most ∆(T ) − 2 edges from
Eϕ,ψ, then we can define the coloring ϕ′ of Eϕ,ψ from ϕ by greedily assigning
some color from {1, 2, . . . ,∆(T )} \ {ψ(e)} to any edge e that is colored under
ψ so that ϕ′ is proper and avoids ψ. Thus we may assume that at least one
ψ-colored edge e1 is adjacent to at least ∆(T ) − 1 edges from Eϕ,ψ. If e1 is the
only edge with this property, then since (ϕ,ψ) /∈ T, at most ∆(T ) − 2 colors
distinct from ψ(e1) appear on ϕ-colored edges that are adjacent to e1; hence, we
can define the required coloring ϕ′ by first coloring e1, and then greedily coloring
all other ψ-colored edges in T .

Suppose now that two ψ-colored edges e and e′ are both adjacent to ∆(T )−1
edges from Eϕ,ψ. Then e and e′ have a common vertex u that is incident with

(a) ∆(T )− 1 edges from Eϕ,ψ, or

(b) ∆(T ) edges from Eϕ,ψ.

If (a) holds, then e and e′ are both adjacent to one additional edge each from
Eϕ,ψ that is not incident with u. It is straightforward to check that unless (ϕ,ψ)
satisfies (T4), we can define the required coloring ϕ′.

Suppose now that (b) holds, and let us first consider the case when all ψ-
colored edges incident with u have the same color. Then (T2) holds unless there
is some ϕ-colored edge e′′ incident with u such that ϕ(e′′) = ψ(e). Since by
assumption (T2) does not hold, this means that we can greedily color the ψ-
colored edges incident with u, starting with the edge that is adjacent to most
edges from Eϕ,ψ.

Suppose now that at least two colors appear on the ψ-colored edges incident
with u. Assume ψ(e) = c, ψ(e′) = c′ and that e is adjacent to the largest number
of edges from Eϕ,ψ. If e is adjacent to ∆(T ) − 1 edges from Eϕ,ψ, then since
ψ(e) 6= ψ(e′), we can define the coloring ϕ′ by first coloring e by the color c′

if no edge incident with u is ϕ-colored c′; alternatively, if there is such an edge
incident with u, then we first color e by the color in {1, . . . ,∆(T )} not appearing
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on an edge incident with u under ϕ. On the other hand, if e is adjacent to ∆(T )
edges from Eϕ,ψ, then we can similarly define the required coloring ϕ′ unless (T2)
holds.

In conclusion, since (ϕ,ψ) /∈ T, we can define the coloring ϕ′ from ϕ by recol-
oring every ψ-colored edge so that ϕ′ is proper and avoids ψ. In the following we
shall, using Theorem 2.3, establish Theorem 3.3 by proving that ϕ′ is extendable
to a proper ∆(T )-edge coloring. The case when ∆(T ) ≤ 2 is trivial, so assume
that ∆(T ) ≥ 3. We first consider the case when ∆(T ) = 3.

Case 1. ∆(T ) = 3. Since at most ∆ + 1 edges are colored under ϕ′, by
Theorem 2.3 there is an extension of ϕ that avoids ψ unless ϕ′ ∈ C1 ∪C2 ∪C3 ∪
R3 ∪ R4 because when ∆(T ) = 3, R2 is a special case of R3. Our strategy is to
define a new proper edge coloring from ϕ′ that avoids ψ and is extendable. We
shall prove that this is possible unless (ϕ,ψ) ∈ T. Throughout Case 1, we shall
denote three arbitrary colors from {1, 2, 3} by c, c′ and c′′, respectively.

Case 1.1. ϕ′ ∈ C1. If ϕ′ ∈ C1, then there is an uncolored edge uv in T such
that u is incident with edges of k < ∆(T ) = 3 distinct colors and v is incident
to 3− k edges colored with 3− k other distinct colors under ϕ′. In this case we
distinguish between two different cases, whether uv is adjacent to three, or four
ϕ′-colored edges.

Let us first assume that three ϕ′-colored edges are adjacent to uv. Suppose
without loss of generality that one edge e ϕ′-colored c is incident with u and the
remaining two edges ϕ′-colored c′ and c′′ are incident with v. Now, if we can
define a new coloring ϕ′′ of Eϕ,ψ from ϕ′ that avoids ψ by recoloring the edge e
incident with u by one of the colors c′ or c′′, say c′, then color uv by the color c,
and we are done by Lemma 3.2; otherwise, if this is not possible then either

(a) e is ϕ-colored c, or

(b) e is ψ-colored and adjacent to an edge ϕ-colored by the color in {1, 2, 3} \
{ϕ′(e), ψ(e)}.

If (a) holds, then since ϕ /∈ C1, one or both ϕ′-colored edges incident with
v are colored under ψ. If both are ψ-colored c, or if one edge is ψ-colored c and
the other edge is ψ-colored by a color distinct from c and adjacent to an edge
ϕ-colored c, then (T2) holds. Moreover, if one edge is ϕ-colored and the other
edge is ψ-colored by a color distinct from c and adjacent to an edge ϕ-colored c,
then (C2) holds. Since (ϕ,ψ) /∈ T, we can recolor one of the edges incident with
v by the color c to obtain a new proper edge coloring ϕ′′ of Eϕ,ψ from ϕ′ that
avoids ψ; then color uv by some color not appearing at u or v, and we are done
by Lemma 3.2.

Suppose now that (b) holds. If every edge incident with v is ψ-colored c, or
ϕ-colored by a color distinct from c, then (T7) holds. Since again (ϕ,ψ) /∈ T, we
may assume that at least one edge incident with v is ψ-colored by a color distinct
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from c. We can recolor this edge by the color c, then color uv by the color not
appearing at u or v, and thereafter apply Lemma 3.2.

Suppose now that four ϕ′-colored edges are adjacent to uv. Without loss
of generality we assume that there are two ϕ′-colored edges e1 and e2 that are
incident with u and v, respectively, such that ϕ′(e1) = ϕ′(e2) = c. Then there are
two ϕ′-colored edges e and e′ that are incident with u and v, respectively, such
that ϕ′(e) = c′ and ϕ′(e′) = c′′. Note that if ψ(e) = c, then we can recolor e by
the color c′′, and then uv by the color c′, or if ψ(e′) = c, then we recolor e′ by the
color c′, and then uv by the color c′′ to obtain an extendable coloring that avoids
ψ and extends ϕ. Thus it suffices to consider the following three different cases.

(a) e and e′ are both ϕ-colored c′ and c′′ respectively;

(b) one of them, say e′, is ϕ-colored c′′ and e is ψ-colored c′′;

(c) e is ψ-colored c′′ and e′ is ψ-colored c′.

If (a) holds, then since ϕ /∈ C1, no edge ϕ′-colored c is colored under ϕ.
Moreover, if e1 is ψ-colored c′′, or e2 is ψ-colored c′, then (T2) holds. Thus we
may recolor e1 and e2 by colors c′′ and c′, respectively, and then uv by color c to
obtain a properly colored connected subgraph. The resulting coloring avoids ψ
and agrees with ϕ, and we are done by Theorem 3.1.

Suppose now that (b) holds. If ϕ(e1) = c or ψ(e1) = c′′, then (T2) holds;
since by assumption (ϕ,ψ) /∈ T, we may assume that ψ(e1) = c′. Thus we can
recolor e1 by c′′ and e by color c, and then uv by c′ to obtain a proper coloring
that avoids ψ and agrees with ϕ. Again we may now invoke Theorem 3.1 to
deduce that there an extension of ϕ that avoids ψ.

Let us now consider the case when (c) holds. If ϕ(e1) = ϕ(e2) = c, then (T6)
holds. Moreover, if ψ(e1) = c′′ and ϕ(e2) = c, or ϕ(e1) = c and ψ(e2) = c′, then
again (T6) holds. By symmetry, we may assume that ψ(e1) = c′. We can define a
new coloring from ϕ′ by recoloring e1 by c′′ and e by color c, and finally coloring
uv by color c′ to obtain a properly colored connected subgraph that agrees with
ϕ and avoids ψ.

Case 1.2. ϕ′ ∈ C2 and ϕ′ /∈ C1. The condition implies that there is a vertex x
of degree 3 that is incident with an edge ϕ′-colored c ∈ {1, 2, 3}, and two vertices
v1, v2, such that for i = 1, 2, xvi is uncolored but vi is incident with an edge
colored by a fixed color c′ 6= c.

Let e, e1, e2 be the edges incident with x, v1, v2, respectively, with ϕ′(e) = c
and ϕ′(e1) = ϕ′(e2) = c′. If we can define a new coloring ϕ′′ of Eϕ,ψ from ϕ′ that
avoids ψ by recoloring e by the color c′, then we may color xv1 and xv2 greedily,
and we are done by Lemma 3.2; otherwise, if we cannot recolor e in such a way,
then either

(a) e is ϕ-colored c, or
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(b) e is ψ-colored c′, or

(c) e is ψ-colored c′′ and adjacent to an edge ϕ′-colored c′.

If (a) holds, then since ϕ /∈ C2, one or both of e1 and e2 are colored under ψ.
If both e1 and e2 are colored under ψ, then at least one of them is not adjacent
to any other edge from Eϕ,ψ. Thus we can define a new edge coloring ϕ′′ of
Eϕ,ψ from ϕ′ that avoids ψ by recoloring this edge by some color from {1, 2, 3}.
Thereafter, color xv1 and xv2 greedily, and by Lemma 3.2, ϕ′′ is extendable to a
proper 3-coloring. Hence, there is an extension of ϕ that avoids ψ.

Suppose now that one of them, say e2, is colored under ϕ and e1 is colored
under ψ. If e1 is not adjacent to any other edge from Eϕ,ψ, then recolor e1 by
some color from {1, 2, 3} and proceed as above; otherwise, if ψ(e1) = c and e1 is
adjacent to an edge ϕ-colored c′′ (or if ψ(e1) = c′′ and e1 is adjacent to an edge
ϕ-colored c), then (T6) or (T7) holds. Moreover, if ψ(e1) = c and v1 is incident
with another edge ψ-colored c, then (T6) holds. Since by assumption (ϕ,ψ) /∈ T,
we can recolor e1 (and possibly one additional ψ-colored edge adjacent to e1 if
any) by some color from {1, 2, 3} to obtain a new proper edge coloring ϕ′′ of Eϕ,ψ
from ϕ′ that avoids ψ, color xv1 and xv2 greedily, and finally we apply Lemma
3.2 to complete the coloring.

Suppose now that (b) holds. If ϕ(e1) = ϕ(e2) = c′, then (T2) holds. More-
over, if one edge, say e2, is ϕ-colored c′, ψ(e1) = c and e1 is adjacent to an edge
ϕ-colored c′′ (or if ϕ(e2) = c′, ψ(e1) = c′′ and e1 is adjacent to an edge ϕ-colored
c), then (T6) or (T7) holds. Moreover, if ϕ(e2) = c′, ψ(e1) = c and v1 is incident
with another edge ψ-colored c, then (T6) holds. Since by assumption (ϕ,ψ) /∈ T,
we can define a new edge coloring from ϕ′ that avoids ψ by recoloring e1 (and
possibly also one additional ψ-colored edge adjacent to e1) by some color from
{1, 2, 3}. Thereafter, color xv1 and xv2 greedily, and finally we apply Lemma 3.2
to complete the coloring.

Let us now consider the case when (c) holds. If ϕ(e1) = ϕ(e2) = c′, then
(T7) holds. Since again (ϕ,ψ) /∈ T, we may assume that e1 or e2 is colored
under ψ. Then we can define a new edge coloring of Eϕ,ψ from ϕ′ that avoids
ψ by recoloring e1 or e2 by some color from {1, 2, 3}. The obtained coloring is
extendable and avoids ψ.

Case 1.3. ϕ′ ∈ C3. Then there is a vertex y of degree 3 and three vertices
v1, v2, v3, such that for i = 1, 2, 3, yvi is uncolored but vi is incident with an
edge colored by a fixed color c under ϕ′. For i = 1, 2, 3, let ei be the edges
incident with vi that are colored c under ϕ′. Note that since ϕ /∈ C3, at least
one of the ei is colored under ψ. If there is some ei from {e1, e2, e3} that is ψ-
colored and not adjacent to any other edge from Eϕ,ψ, then we can define a new
edge coloring of Eϕ,ψ from ϕ′ that avoids ψ by coloring this edge by the color in
{1, 2, 3} \ {c, ψ(ei)}, and then by coloring the edge yv1 by the color c; otherwise,
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we may assume that exactly one ei, say e1, is ψ-colored and adjacent to an edge
from Eϕ,ψ. If ψ(e1) = c′ and e1 is adjacent to an edge ϕ-colored c′′, then (T6)
or (T7) holds. Moreover, if ψ(e1) = c′ and v1 is incident with another edge ψ-
colored c′, then (T6) holds. Since by assumption (ϕ,ψ) /∈ T, we can define a new
edge coloring ϕ′′ of Eϕ,ψ from ϕ′ that avoids ψ by recoloring e1 (and possibly one
additional ψ-colored edge adjacent to e1 if any) by some color from {1, 2, 3}, and
thereafter color yv1 by the color c. Next, we color the edges yv2 and yv3 greedily,
and apply Lemma 3.2 to find an extension of ϕ that avoids ψ.

Case 1.4. ϕ′ ∈ R3. If ϕ′ ∈ R3, then there are two uncolored adjacent edges
uv and uw with d(v) = d(w) = 3 in T such that every edge incident with v or
w except uv and uw, is either uncolored but adjacent to an edge colored c, or
colored by a color distinct from c under ϕ′. Now, if there is some ψ-colored edge
that is not incident with v or w, then we can define a new proper edge coloring ϕ′′

of Eϕ,ψ from ϕ′ that avoids ψ by recoloring this edge by some color from {1, 2, 3};
since the resulting coloring is not in R3, it is extendable.

Let us now assume that every ψ-colored edge is incident with v or w. If
every ϕ′-colored edge incident with v or w is ψ-colored c, or ϕ-colored by a color
distinct from c, then (T6) holds. Since by assumption (ϕ,ψ) /∈ T and at least one
edge is ψ-colored, we may assume that there is some edge ψ-colored c′ 6= c that is
incident with v or w. We can recolor this edge by the color c, and thereafter color
every uncolored edge incident with v and w greedily; Theorem 3.1 then yields
that there is an extension of this precoloring, and, consequently, an extension of
ϕ that avoids ψ.

Case 1.5. ϕ′ ∈ R4. Finally, let us consider the case when ϕ′ ∈ R4 and
ϕ′ /∈ C1∪C2. Then there is an uncolored edge pq with d(p) = d(q) = 3, and there
are two colors c and c′ such that every edge incident with p except pq is either
uncolored but adjacent to an edge colored c under ϕ′ or colored by some color
distinct from c, and every edge incident with q except pq is either uncolored but
adjacent to an edge colored c′ or colored by some color distinct from c′ under ϕ′.
Now, if there is some ψ-colored edge that is not incident with p or q, then we
can recolor this edge by some color from {1, 2, 3} to obtain a new partial edge
coloring ϕ′′ of Eϕ,ψ from ϕ′ that avoids ψ; since this coloring is not in R4, it is
extendable.

Now assume that every ψ-colored edge is incident with p or q. If every ϕ′-
colored edge incident with p is ψ-colored c, or ϕ-colored by a color distinct from
c, and if every ϕ′-colored edge incident with q is ψ-colored c′, or ϕ-colored by
a color distinct from c′, then (T6) holds. Since again (ϕ,ψ) /∈ T and at least
one edge is ψ-colored, we may assume that there is some edge ψ-colored c′′ 6= c
incident with p, and we can recolor this edge by the color c. Thereafter we color
every uncolored edge incident with p and q greedily and invoke Theorem 3.1 to
complete the argument.
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Case 2. ∆(T ) ≥ 4. Let us now consider the case when ∆(T ) ≥ 4. Since
altogether at most ∆(T ) + 1 edges are colored under ϕ′, it follows from Theorem
2.3 that there is an extension of ϕ that avoids ψ unless ϕ′ ∈ C1 ∪ C2 ∪ C3 ∪R2.

Case 2.1. ϕ′ ∈ C1. If ϕ′ ∈ C1, then there is an uncolored edge uv in T
such that u is incident with edges of k < ∆(T ) distinct colors and v is incident
to ∆(T ) − k edges colored with ∆(T ) − k other distinct colors under ϕ′. We
distinguish between two subcases: whether uv is adjacent to ∆(T ) or ∆(T ) + 1
ϕ′-colored edges.

Subcase A. uv is adjacent to ∆(T ) ϕ′-colored edges. Note that since ϕ /∈ C1,
at least one ψ-colored edge e is incident with u or v, say u. We shall consider
some different cases.

Suppose first that at least three ϕ′-colored edges are incident with v. Thus
at least three colors c1, c2, c3 do not appear on edges incident with u. Since uv
is adjacent to ∆(T ) ϕ′-colored edges, there exists some color c ∈ {c1, c2, c3} such
that neither is e ψ-colored c nor is an edge adjacent to e ϕ′-colored c. Then
we can define a new proper edge coloring ϕ′′ of Eϕ,ψ from ϕ′ that avoids ψ by
recoloring e by the color c. This implies that the color ϕ′(e) does not appear at
u or v; color uv by this color to obtain a colored connected subgraph, and we are
done by Lemma 3.2.

Suppose now that exactly two ϕ′-colored edges e1 and e2 are incident with v,
where ϕ′(ei) = ci. Then we can similarly define a coloring ϕ′′ from ϕ′ that avoids
ψ by recoloring some ψ-colored edge incident with u by one of the colors c1 or c2

unless e is the only ψ-colored edge incident with u, ψ(e) = c1, and e is adjacent
to an edge e′ ϕ′-colored c2 (or ψ(e) = c2 and ϕ′(e′) = c1). Now, if e′ is ψ-colored
and ϕ′(e′) = c2, then we first recolor e′ by some color distinct from c2 and ψ(e′),
and then recolor e by the color c2; the obtained coloring ϕ′′ avoids ψ. Next, we
color uv by the color ϕ′(e) and deduce that there is an extension from Lemma
3.2. Otherwise, if e′ is ϕ-colored, then (T4) holds unless e1 or e2 is ψ-colored, say
e1. Since (ϕ,ψ) /∈ T and ∆(T ) ≥ 4, we can recolor e1 by some color that appears
at u to obtain a coloring that avoids ψ; then color uv by the color c1, and we are
done by Lemma 3.2.

It remains to consider the case when exactly one ϕ′-colored edge, colored c, is
incident with v. If we can define a coloring ϕ′′ from ϕ′ that avoids ψ by recoloring
a ψ-colored edge incident to u by the color c, then, as before, the desired result
follows. Otherwise, every edge incident with u is either ψ-colored c, ϕ-colored
by a color distinct from c, or ψ-colored and adjacent to an edge ϕ′-colored c.
If there is some ψ-colored edge e′ = ux, x 6= v, such that ψ(ux) 6= c and x is
incident to another ψ-colored edge e′′ such that ϕ′(e′′) = c, then we can first
recolor e′′ by some color distinct from c and ψ(e′′), and then recolor e′ by the
color c; otherwise, if there are no such edges e′ and e′′, then (T2) or (C2) holds
unless the edge at v is ψ-colored. Since (ϕ,ψ) /∈ T, we may recolor this edge by
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some color that appears at u, and then recolor uv by the color c to obtain an
extendable precoloring that avoids ψ and agrees with ϕ.

Subcase B. uv is adjacent to ∆(T ) + 1 ϕ′-colored edges. Suppose now that
uv is adjacent to ∆(T ) + 1 edges that are colored under ϕ′. Since (ϕ,ψ) /∈ T, at
least one ψ-colored edge e is incident with u or v, say u.

Suppose first that at least three ϕ′-colored edges are incident with v. Thus
at least three colors c1, c2, c3 appear on some edges incident with v. Suppose first
that there is a ψ-colored edge e′ incident with u such that ϕ′(e′) appears once
under ϕ′. Then there is some color c′ ∈ {c1, c2, c3} such that e′ is not ψ-colored
c′ and no other edge incident with u is ϕ′-colored c′. Hence, we can define a new
proper edge coloring ϕ′′ of Eϕ,ψ from ϕ′ that avoids ψ by recoloring e′ by the
color c′; since the color ϕ′(e′) now does not appear at u or v, we can color uv by
this color and invoke Theorem 3.1 to complete the argument.

On the other hand, if there is no such ψ-colored edge e′, then e is the only
ψ-colored edge incident with u and the color ϕ′(e) = c appears at v on some edge
vw under ϕ′. We now consider the two different cases that vw is ψ-colored and
that vw is ϕ-colored c.

Suppose first that vw is ψ-colored; if three ϕ′-colored edges are incident with
u, then we can define a new proper edge coloring ϕ′′ of Eϕ,ψ from ϕ′ that avoids
ψ by recoloring vw and e by some color distinct from c that appears at u and v,
respectively. Since the color c does not appear at u or v, we can recolor uv by c,
and we are done as before. Otherwise, if it is not possible to recolor vw by some
color distinct from c that appears at u, then vw is ψ-colored by some color c′′

and only two ϕ′-colored edges colored c and c′′ are incident with u; that is, the
only ϕ′-colored edges incident with u are e and one additional edge ϕ-colored c′′.
Now, if every edge incident with v except vw is ψ-colored c′′, or ϕ-colored, then
(T2) holds. Since (ϕ,ψ) /∈ T, we may assume that there exists some ψ-colored
edge f 6= vw incident with v such that ψ(f) 6= c′′. We can recolor f by the color
c′′, and then color uv by the color ϕ′(f) to obtain an extendable coloring that
avoids ψ and agrees with φ.

Suppose now that vw is ϕ-colored c and assume that three ϕ′-colored edges
are incident with u. Since ϕ /∈ C1, there must exist some ψ-colored edge f
incident with v. Then we can define a coloring ϕ′′ from ϕ that avoids ψ by
recoloring f by some color distinct from c that appears at u; otherwise, if only
two ϕ′-colored edges colored c and c′′ are incident with u (e and only one ϕ-
colored edge colored c′′ are incident with u), then since (ϕ,ψ) /∈ C1 ∪ T2, there
must exist some ψ-colored edge f ′ incident with v such that ψ(f ′) 6= c′′. We can
recolor f ′ by the color c′′, and then recolor uv by the color ϕ′(f ′), and, again, we
are done by Theorem 3.1.

Suppose now that exactly two ϕ′-colored edges e1 and e2, colored ϕ′(ei) = ci,
are incident with v. Since the number of ϕ′-colored edges adjacent to uv exceeds
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∆(T ) and ϕ′ ∈ C1, exactly one of c1 or c2, say c1, appears at u on some edge
ux under ϕ′. If e2 is ψ-colored, then recolor e2 by some color that appears at u.
This implies that c2 does not appear at u or v; color uv by this color, and we are
done by Theorem 3.1.

Suppose now that e2 is ϕ-colored c2; then

(a) ux is ϕ-colored c1, or

(b) ux is ψ-colored.

We first consider the case when (a) holds; if every edge incident with u is
ψ-colored c2, or ϕ-colored, then (T2) or (C1) holds. Since (ϕ,ψ) /∈ T, there must
exist some ψ-colored edge f incident with u such that ψ(f) 6= c2. We can recolor
f by the color c2, and then recolor uv by the color ϕ′(f); the resulting precoloring
is extendable.

Suppose now that (b) holds. If ψ(ux) = c2, then we proceed as in the
preceding paragraph; so we assume that ux is ψ-colored by a color distinct from
c2. Then every other edge incident with u is either ϕ-colored, or ψ-colored c2,
otherwise we can again proceed as in the preceding paragraph. We can now
recolor ux by the color c2; if there exists some additional ψ-colored edge f incident
with u, then recolor f by the color c1. This implies that the color ϕ′(f) does
not appear at u or v; recolor uv by this color, and we are by Theorem 3.1.
Otherwise, if ux is the only ψ-colored edge incident with u, then since ϕ /∈ C1

and e2 is colored under ϕ, e1 must be colored under ψ. Thus we can recolor e1 by
some color that appears at u from {1, . . . ,∆(T )} \ {ψ(e1), c1, c2} since ∆(T ) ≥ 4.
Finally, color uv by the color c1 and the desired result follows.

Case 2.2. ϕ′ ∈ C2 and ϕ′ /∈ C1. The condition implies that there is a
vertex x of degree ∆(T ) that is incident with edges of ∆(T ) − k distinct colors
c1, . . . , c∆(T )−k, and k vertices v1, . . . , vk, where 2 ≤ k < ∆(T ), such that for
i = 1, . . . , k, xvi is uncolored but vi is incident with an edge colored by a fixed
color c /∈ {c1, . . . , c∆(T )−k}. Since ϕ does not satisfy (C2), at least one of these
edges is colored under ψ. We shall distinguish between the two different cases
that every such ψ-colored edge is incident with x and that this does not hold.
Suppose first that the latter holds, i.e., some ψ-colored edge e is incident with
some vi, say v1, and ϕ′(e) = c. Note that e can be adjacent to at most one other
edge from Eϕ,ψ. Thus we can define a new proper edge coloring ϕ′′ of Eϕ,ψ from
ϕ′ that avoids ψ by recoloring e by some color from {1, 2, . . . ,∆(T )} so that the
resulting coloring is proper, avoids ψ and does not satisfy (C2). Thereafter, color
the edge xv1 by the color c, and then color the remaining xvi greedily to obtain
a precolored connected subgraph, and we are done by invoking Lemma 3.2.

Suppose now that every ψ-colored edge is incident with x. Note that since
ϕ′ /∈ C1 and ∆(T ) + 1 edges are precolored in T , such a ψ-colored edge e′ is
adjacent to at most ∆(T ) − 2 other edges from Eϕ,ψ. Thus we can define a
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coloring ϕ′′ that avoids ψ by recoloring a ψ-colored edge incident to x by the
color c, unless every edge incident with x is either ψ-colored c, ϕ-colored by a
color distinct from c, or adjacent to an edge ϕ-colored c, that is, (T2) holds.
Thereafter, color the edges xvi greedily as in the preceding paragraph.

Case 2.3. ϕ′ ∈ C3. The condition implies that there is a vertex y of degree
∆(T ) and vertices v1, v2, . . . , v∆(T ) such that, for i = 1, 2, . . . ,∆(T ), yvi is un-
colored but vi is incident with an edge colored by a fixed color c under ϕ′. For
i = 1, 2, . . . ,∆(T ), let ei be the edge incident with vi that is colored c under ϕ′.
Now, since ϕ /∈ C3, at least one of the ei, say e1, is colored under ψ. Then e1 is
adjacent to at most one edge from Eϕ,ψ, so we can recolor e1 by some color from
{1, 2, . . . ,∆(T )} to obtain a proper coloring ϕ′′ of Eϕ,ψ that avoids ψ. Thereafter,
color yv1 by the color c, color the other yvi greedily, and then apply Lemma 3.2.

Case 2.4. ϕ′ ∈ R2. The condition implies that there are two uncolored
adjacent edges uv and uw in T such that u is incident with edges of ∆(T ) − 3
distinct colors c1, . . . , c∆(T )−3, and both v and w are incident to 2 edges colored
with 2 other distinct colors c∆(T )−2, c∆(T )−1. If there is some ψ-colored edge e
that is incident with u, then e is adjacent to exactly ∆(T )− 4 edges from Eϕ,ψ.
Thus we can define a new edge coloring ϕ′′ of Eϕ,ψ from ϕ′, which avoids ψ, by
recoloring e by some color that appears at v. The resulting coloring is not in
R2, so we can color every uncolored edge incident with u greedily to obtain an
edge-colored connected subgraph; the result now follows by invoking Theorem
3.1.

Suppose now that no ψ-colored edge is incident with u. Without loss of
generality, we assume that some ψ-colored edge e′ is incident with v. Since e′ is
adjacent to exactly one edge from Eϕ,ψ, we can define a coloring ϕ′′ by recoloring
e′ by some color from {1, 2, . . . ,∆(T )} so that the resulting coloring is proper
and avoids ψ. Thereafter, color uv by the color ϕ′(e′), and proceed as in the
preceding paragraph.

This completes the proof of Theorem 3.3.

4. Restricted Extension of Precolored Matchings

In [6], we considered the problem of extending an edge coloring of a matching in

a tree, as well as the problem of avoiding a not necessarily proper partial edge
coloring and proved the following two theorems.

Theorem 4.1. Let T be a tree with maximum degree ∆(T ) ≥ 3, and M a pre-
colored distance-2 matching of T . If no vertex v satisfies that ∆(T )−1 uncolored
edges incident with v are all adjacent to edges precolored by a fixed color c, then
the precoloring can be extended to a proper ∆(T )-edge coloring of T .
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The condition that at most ∆(T ) − 2 edges incident to a given vertex can
be adjacent to edges that are precolored by a fixed color c is necessary, that is,
Theorem 4.1 becomes false if we replace ∆(T ) − 2 by ∆(T ) − 1. Furthermore,
Theorem 4.1 directly implies the following.

Corollary 4.2. Let T be a tree with maximum degree ∆(T ) ≥ 3. Every precolor-
ing of a distance-3 matching in T can be extended to a proper ∆(T )-edge coloring
of T .

Theorem 4.3. Let T be a tree with maximum degree ∆(T ) ≥ 3. If ϕ is a partial
∆(T )-edge coloring of T where every vertex is incident with at most ∆(T ) − 2
edges colored by the same color, then ϕ is avoidable.

Here, we state a result generalizing these two theorems; we omit the proof
since one may proceed exactly as in the proofs of the preceeding theorems [6].

Theorem 4.4. Let T be a tree with maximim degree ∆(T ) ≥ 3, ϕ a precoloring
of a distance-2 matching of T , and ψ a partial edge coloring of T . If no vertex v
satisfies that

• m edges incident with v are ψ-colored by a fixed color c, 0 ≤ m ≤ ∆(T ) − 1,
and ∆(T ) − 1 −m edges incident with v are uncolored but adjacent to edges
ϕ-colored c, or

• ∆(T ) − 2 edges incident with v are ψ-colored c and one edge incident with v
is ϕ-colored by a color distinct from c,

then ϕ can be extended to a proper ∆(T )-edge coloring of T that avoids ψ.

The graph in Figure 1 shows that the conditions in the preceding theorem
are sharp.

Figure 1. A representative T of a class of trees with a precoloring ϕ of a distance-2
matching and a precoloring ψ, such that ϕ is not extendable to an edge coloring avoiding
ψ. Dashed edges indicate edges precolored under ϕ.
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