DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

W. Wang

Weifan Wang

Department of Mathematics
Zhejiang Normal University
Jinhua 321004, China

email: wwf@zjnu.cn

J. Liu

Juan Liu

Zhejiang Normal University

email: liujuan940401@163.com

Y. Wang

Yiqiao Wang

email: yqwang@bucm.edu.cn

Title:

Linear arboricity of 1-planar graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(2) (2024) 435-457

Received: 2021-01-31 , Revised: 2022-03-24 , Accepted: 2022-03-29 , Available online: 2022-04-27 , https://doi.org/10.7151/dmgt.2453

Abstract:

The linear arboricity $\textrm{la}(G)$ of a graph $G$ is the minimum number of linear forests that partition the edges of $G$. In 1981, Akiyama, Exoo and Harary conjectured that $\big\lceil\frac{\Delta(G)}{2}\big\rceil\leq \textrm{la}(G)\leq\big\lceil\frac{\Delta(G)+1}{2}\big\rceil$ for any simple graph $G$. A graph $G$ is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we confirm the conjecture for 1-planar graphs $G$ with $\Delta(G)\geq13$.

Keywords:

linear arboricity, 1-planar graph, linear coloring, 3-alternating cycle

References:

  1. J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) 405–417.
  2. J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69–72.
    https://doi.org/10.1002/net.3230110108
  3. N. Alon, The linear arboricity of graphs, Israel J. Math. 62 (1988) 311–325.
    https://doi.org/10.1007/BF02783300
  4. O.V. Borodin, A new proof of the $6$ color theorem, J. Graph Theory 19 (1995) 507–521.
    https://doi.org/10.1002/jgt.3190190406
  5. O.V. Borodin, A.V. Kostochka, A. Raspaud and E. Sopena, Acyclic colouring of $1$-planar graphs, Discrete Appl. Math 114 (2001) 29–41.
    https://doi.org/10.1016/S0166-218X(00)00359-0
  6. M. Cygan, J.-F. Hou, Ł. Kowalik, B. Lužar and J.-L Wu, A planar linear arboricity conjecture, J. Graph Theory 69 (2012) 403–425.
    https://doi.org/10.1002/jgt.20592
  7. H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309–324.
    https://doi.org/10.1002/jgt.3190080211
  8. I. Fabrici and T. Madaras, The structure of $1$-planar graphs, Discrete Math. 307 (2007) 854–865.
    https://doi.org/10.1016/j.disc.2005.11.056
  9. A. Ferber, J. Fox and V. Jain, Towards the linear arboricity conjecture, J. Combin. Theory Ser. B 142 (2020) 56–79.
    https://doi.org/10.1016/j.jctb.2019.08.009
  10. F. Guldan, Some results on linear arboricity, J. Graph Theory 10 (1986) 505–509.
    https://doi.org/10.1002/jgt.3190100408
  11. F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198–205.
    https://doi.org/10.1111/j.1749-6632.1970.tb56470.x
  12. D. Hudák and P. Šugerek, Light edges in $1$-planar graphs with prescribed minimum degree, Discuss. Math. Graph Theory 32 (2012) 545–556.
    https://doi.org/10.7151/dmgt.1625
  13. J. Liu, X. Hu, W. Wang and Y. Wang, Light structures in $1$-planar graphs with an application to linear $2$-arboricity, Discrete Appl. Math. 267 (2019) 120–130.
    https://doi.org/10.1016/j.dam.2019.05.001
  14. J. Liu, Y. Wang, P. Wang, L. Zhang and W. Wang, An improved upper bound on the linear $2$-arboricity of $1$-planar graphs, Acta Math. Sin. (Engl. Ser.) 37 (2021) 262–278.
    https://doi.org/10.1007/s10114-020-9488-9
  15. J.-L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129–134.
    https://doi.org/10.1002/(SICI)1097-0118(199906)31:2<129::AID-JGT5>3.0.CO;2-A
  16. J.-L. Wu and Y.-W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory 58 (2008) 210–220.
    https://doi.org/10.1002/jgt.20305
  17. W. Yang, W. Wang and Y. Wang, An improved upper bound for the acyclic chromatic number of $1$-planar graphs, Discrete Appl. Math. 283 (2020) 275–291.
    https://doi.org/10.1016/j.dam.2020.01.010
  18. X. Zhang, G. Liu and J. Wu, On the linear arboricity of $1$-planar graphs, Oper. Res. Trans. 3 (2011) 38–44.
  19. X. Zhang and J.-L. Wu, On edge colorings of $1$-planar graphs, Inform. Process. Lett. 111 (2011) 124–128.
    https://doi.org/10.1016/j.ipl.2010.11.001

Close