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Abstract

The linear arboricity la(G) of a graph G is the minimum number of linear
forests that partition the edges of G. In 1981, Akiyama, Exoo and Harary

conjectured that
⌈∆(G)

2

⌉
≤ la(G) ≤

⌈∆(G)+1
2

⌉
for any simple graph G. A

graph G is 1-planar if it can be drawn in the plane so that each edge has
at most one crossing. In this paper, we confirm the conjecture for 1-planar
graphs G with ∆(G) ≥ 13.
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1. Introduction

All graphs considered in this paper are simple unless otherwise stated. For a
graph G, we use V (G), E(G), δ(G), and ∆(G) (for short, ∆) to denote the set of
vertices, the set of edges, the minimum degree, and the maximum degree of G,
respectively. A linear forest is a graph in which each component is a path. A
mapping φ : E(G) → {1, 2, . . . , k} is called a linear k-coloring if each color class
induces a linear forest. The linear arboricity, denoted by la(G), of a graph G is
the minimum number k for which G has a linear k-coloring. This concept is due
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to Harary [11]. In 1981, Akiyama, Exoo and Harary [1] proposed the following
famous Linear Arboricity Conjecture.

Conjecture 1. For any graph G,
⌈

∆
2

⌉
≤ la(G) ≤

⌈
∆+1

2

⌉
.

Conjecture 1 has been confirmed for graphs with ∆ ∈ {3, 4} in [1, 2], for
graphs with ∆ ∈ {5, 6, 8} in [7], and for graphs with ∆ = 10 in [10]. Suppose
that G is a planar graph. Wu [15] first proved that G satisfies Conjecture 1 if
∆ 6= 7. The remaining case where ∆ = 7 was later settled in [16]. Furthermore,
Cygan et al. [6] proved that if ∆ ≥ 9, then la(G) =

⌈
∆
2

⌉
, and conjectured that

this is also true for the case of 5 ≤ ∆ ≤ 8. For a general graph G, Alon [3]
proved that, for each ε > 0, there exists a constant C(ε) such that every graph
G with ∆ ≥ C(ε) has la(G) ≤ (1

2 + ε)∆. Recently, Ferber, Fox, and Jain [9]
showed that there exist absolute constants η, C > 0 such that every graph G has
la(G) ≤ ∆

2 + C∆
2
3
−η.

A 1-planar graph is a graph that can be drawn in the Euclidean plane
such that each edge crosses at most one edge. A number of interesting re-
sults about structures and parameters of 1-planar graphs have been obtained
in recent years. Fabrici and Madaras [8] proved that every 1-planar graph G
has |E(G)| ≤ 4|V (G)| − 8, which implies that δ(G) ≤ 7, and constructed a 7-
regular 1-planar graph. Borodin [4] showed that every 1-planar graph is vertex
6-colorable. Zhang and Wu [19] showed that every 1-planar graph G with ∆ ≥ 10
is of Class One. A proper vertex coloring of a graph G is acyclic if G contains no
bicolored cycle. Borodin et al. [5] proved that every 1-planar graph is acyclically
20-colorable. Yang, Wang and Wang [17] improved this result by reducing 20
to 18.

The linear 2-arboricity la2(G) of a graph G is the least integer k such that G
can be partitioned into k edge-disjoint forests, whose component trees are paths of
length at most 2. Liu et al. [13] proved that every 1-planar graph G has la2(G) ≤⌈

∆+1
2

⌉
+ 14. This result was recently improved to that la2(G) ≤

⌈
∆+1

2

⌉
+ 7 by

Liu et al. [14]. In 2011, Zhang, Liu and Wu [18] considered the linear arboricity
of 1-planar graphs and showed that if G is a 1-planar graph with ∆ ≥ 33, then
la(G) =

⌈
∆
2

⌉
.

In this paper, we will show the following result.

Theorem 1. If G is a 1-planar graph with ∆ ≥ 13, then la(G) ≤
⌈

∆+1
2

⌉
.

The proof of Theorem 1 is based on the following key Theorem 2. Actually
this theorem is of some interest itself.

Theorem 2. Let G be a 1-planar graph with δ(G) ≥ 3. Then at least one of the
following statements holds.

(1) There is an edge uv such that dG(u) + dG(v) ≤ 15.
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(2) There is a 3-cycle uvwu such that dG(u) + dG(v) ≤ 16.

(3) There is a 4-cycle v1v2v3v4v1 with dG(v1) = dG(v3) = 3.

The organization of this paper is as follows. In Section 2, we will establish the
proof of Theorem 1 by considering three cases. The proof of structural lemma,
Theorem 2, will be postponed to Section 3. In the final Section 4, we give some
remarks on the results obtained in the paper and put forward an open problem.

2. Proof of Theorem 1

Suppose that G is a graph. For v ∈ V (G), we use E(v) to denote the set of edges
incident to v in G. Given a linear k-coloring φ with a color set C = {1, 2, . . . , k},
let C(v) denote the set of colors that φ uses in E(v). For 0 ≤ i ≤ 2, let

Ii(v) = {c ∈ C | c appears exactly i times in E(v)}.

A path P = v1v2 · · · vn is called a (v1, vn)c-path in G if all edges of P are colored
with same color c.

Instead of showing Theorem 1, we only need to prove the following equivalent
statement.

Theorem 1∗. If G is a 1-planar graph and k = max
{

7,
⌈

∆+1
2

⌉}
, then la(G) ≤ k.

Proof. The proof is processed by induction on the edge number |E(G)|. If
|E(G)| ≤ 7, then the result holds trivially since we may color all edges of G with
distinct colors. Suppose that G is a 1-planar graph with |E(G)| ≥ 8. If G contains
an edge xy such that dG(x) ≤ dG(y) and dG(x) ≤ 2, then let H = G − xy. By
the induction hypothesis, H admits a linear k-coloring φ using the color set C =
{1, 2, . . . , k}. Let S = I2(y)∪ (I1(x)∩ I1(y)). Then |S| = |I2(y)∪ (I1(x)∩ I1(y))|
≤
⌊

1
2(dH(x) + dH(y))

⌋
=
⌊

1
2(dG(x) + dG(y))

⌋
− 1 ≤

⌊
1
2(2 + ∆)

⌋
− 1 =

⌊
1
2∆
⌋
.

Since |C| ≥ d∆+1
2 e, there exists a color a ∈ C \ S. Based on φ, we color xy with

a to extend φ to the graph G.
Now assume that δ(G) ≥ 3. By Theorem 2, our proof can be split into the

following three cases.

Case 1. G contains an edge uv such that dG(u) + dG(v) ≤ 15. Consider the
graph H = G − uv, which admits a linear k-coloring φ using the color set C by
the induction hypothesis. Let S = I2(u) ∪ I2(v) ∪ (I1(u) ∩ I1(v)). Then |S| =
|I2(u)∪I2(v)∪(I1(u)∩I1(v))| ≤

⌊
1
2(dH(u) + dH(v))

⌋
=
⌊

1
2(dG(u) + dG(v))

⌋
−1 ≤⌊

15
2

⌋
− 1 = 6. Noting that |C| ≥ 7, we can color uv with some color in C \ S to

extend φ to G.

Case 2. G contains a 3-cycle uvwu such that dG(u) +dG(v) ≤ 16. If dG(u) +
dG(v) ≤ 15, the proof is given in Case 1. So assume that dG(u) + dG(v) = 16.
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Consider the graph H = G − uv, which admits a linear k-coloring φ using the
color set C by the induction hypothesis. Let S = I2(u) ∪ I2(v) ∪ (I1(u) ∩ I1(v)).
Then, with a similar analysis, |S| ≤ |I2(u)∪I2(v)∪(I1(u)∩I1(v))| ≤ 7. If |S| ≤ 6,
then we can color uv with some color in C \ S to extend φ to G. If ∆ ≥ 14, then
it is easy to derive that |C| ≥ 8 and hence uv can be colored with some color in
C \S. Otherwise, assume that ∆ ≤ 13 and |S| = 7. This implies that |C| = 7 and
every color in C appears exactly twice in E(u) ∪ E(v). To complete the proof,
we consider two subcases as follows by symmetry.

Case 2.1. φ(uw) = 1 and φ(vw) = 2. By symmetry, we discuss two possibil-
ities as follows.

Case 2.1.1. 1 ∈ I2(u) and 2 ∈ I2(v). We exchange the colors of uw and vw
and then color uv with 1.

Case 2.1.2. 1 ∈ I2(u) and 2 ∈ I1(u) ∩ I1(v). We claim that there exists
a (u, v)2-path in H, for otherwise we may color uv with 2. This implies that
2 ∈ I2(w). If 1 ∈ I1(w), then we color uv with 2 and recolor vw with 1. Otherwise,
1 ∈ I2(w). So there exists a ∈ {3, 4, . . . , 7} ∩ I1(w), say a = 3, by the assumption
that dG(w) ≤ 13. If 3 ∈ I2(u), then we color uv with 2 and recolor vw with
3. If 3 ∈ I2(v), then we color uv with 1 and recolor uw with 3. Assume that
3 ∈ I2(u) ∩ I1(v). If there does not exist a (u,w)3-path, then we color uv with 1
and recolor uw with 3. Otherwise, no (v, w)3-path may exist in H. It suffices to
color uv with 2 and recolor vw with 3.

Case 2.1.3. 1, 2 ∈ I1(u) ∩ I1(v). Suppose that there exist both (u, v)1-path
and (u, v)2 in H, otherwise the proof can be given easily. This implies that
1, 2 ∈ I2(w) and so there exists some color a ∈ {3, 4, . . . , 7} ∩ I1(w), say a = 3.
With a similar analysis as in Case 2.1.2, we can extend φ to the graph G.

Case 2.2. φ(uw) = φ(vw) = 1. Since dH(w) ≤ 13, there exists a ∈ {2, 3,
. . . , 7} ∩ (I0(w) ∪ I1(w)), say a = 2. If 2 /∈ C(u), then we recolor uw with 2 and
reduce the proof to Case 2.1. If 2 /∈ C(v), we have a similar proof. Otherwise,
2 ∈ I1(u)∩ I1(v). Since at most one of (u,w)2-path and (v, w)2-path exists in H,
we recolor uw or vw with 2 and reduce the proof to Case 2.1.1.

Case 3. G contains a 4-cycle B = v1v2v3v4v1 such that dG(v1) = dG(v3) = 3.
By Case 2, we may assume that v1v2 /∈ E(G). For i = 1, 3, let v′i denote the
neighbor of vi other than v2 and v4. Let H = G − E(B). By the induction
hypothesis, H admits a linear k-coloring φ with the color set C. Suppose that
φ(v1v

′
1) = a and φ(v3v

′
3) = b. By symmetry, we have three subcases as follows.

Case 3.1. |I0(v2)| = |I0(v4)| = 0. For = 2, 4, since |C| ≥
⌈

∆+1
2

⌉
and dH(vi) =

dG(vi)−2 ≤ ∆−2, it follows easily that |I1(v2)| ≥ 3 and |I1(v4)| ≥ 3. Define a list
assignment L for E(B) as follows: L(v1v2) = I2(v2) \ {a}, L(v2v3) = I2(v2) \ {b},
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L(v1v4) = I2(v4) \ {a}, and L(v3v4) = I2(v4) \ {b}. Then |L(e)| ≥ 2 for each edge
e ∈ E(B). So, E(B) is L-colorable, and therefore φ is extended to G.

Case 3.2. |I0(v2)| ≥ 1 and |I0(v4)| = 0. Then |I1(v4)| ≥ 3. If a 6= b, then we
color {v1v2, v2v3} with a color c ∈ I0(v2), v1v4 with a color d ∈ I1(v4) \ {a, c},
and v3v4 with some color in I1(v4) \ {b, c}. Otherwise, suppose that a = b = 1.
If there exists c ∈ I0(v2) \ {1}, then we color {v1v2, v2v3} with c, v1v4 with a
color d ∈ I1(v4) \ {1, c} and v3v4 with a color in I1(v4) \ {1, d}. Otherwise,
I0(v2) = {1}. If there does not exist a (v1, v3)1-path in H, then we can define a
similar coloring. Otherwise, it follows that 1 ∈ I2(v′1) ∩ I2(v′3), and hence there
exists a color c ∈ I0(v′3)∪ I1(v′3). Recolor v3v

′
3 with c and the proof is reduced to

the previous case.

Case 3.3. |I0(v2)| ≥ 1 and |I0(v4)| ≥ 1. First assume that there exist c ∈
I0(v2) and d ∈ I0(v4) such that c 6= d. Color {v1v2, v2v3} with c and {v1v4, v3v4}
with d. If a 6= b, or a = b and a /∈ {c, d}, then the current coloring is available.
Otherwise, suppose that a = b = c = 1 and d = 2. If there does not exist a
(v1, v3)1-path in H, we are done. Otherwise, it follows easily that 1 ∈ I2(v′3) and
so there is j ∈ I0(v′3) ∪ I1(v′3) with j 6= 1. Recoloring v3v

′
3 with j, we reduce the

proof to the previous case.
Next assume that I0(v2) = I0(v4) = {1}. In this case, it is easy to verify

that |I1(v2)| ≥ 1 and |I1(v4)| ≥ 1. Let p ∈ I1(v2) and q ∈ I1(v4). Then p 6= 1
and q 6= 1. If a 6= b, assuming q 6= a, then we color {v1v2, v2v3, v3v4} with 1
and v1v4 with q. Otherwise, a = b. If a = 1, then we color v1v2 with p, v3v4

with q, and {v2v3, v1v4} with 1. Otherwise, suppose that a = 2. If q 6= 2, then
we color {v1v2, v2v3, v3v4} with 1 and v1v4 with q. Otherwise, q = 2. At most
one of (v1, v4)2-path and (v3, v4)2-path exists in H. A similar coloring can be
established.

3. Proof of Theorem 2

To complete the proof of Theorem 2, we need to introduce a few concepts and
known results. Suppose that G is a plane graph with the face set F (G). For f ∈
F (G), we use ∂(f) to denote the boundary walk of f and write f = [u1u2 · · ·un]
if u1, u2, . . . , un are the vertices of ∂(f) in a cyclic order. Let V (f) = V (∂(f))
and E(f) = E(∂(f)). A vertex of degree k (at most k, at least k, respectively)
is called a k-vertex (k−-vertex, k+-vertex, respectively). Similarly, we can define
k-face, k−-face and k+-face. A cycle C in a plane graph G is called separating if
both its interior and exterior contain at least one vertex of G. Let Vint(C) denote
the set of vertices in G that lie interior to C.

Suppose that G is a 1-planar graph which is drawn in the plane such that
each edge has at most one crossing and the number of crossings are as few as
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possible. Let X(G) denote the set of crossings in G. For each x ∈ X(G), there is
a pair of crossing edges y1y2, z1z2 ∈ E(G) with x as crossing. Define an associated
plane graph G× as follows:

V (G×) = V (G) ∪X(G),

E(G×) = E0(G) ∪ E1(G),

where E0(G) is the set of non-crossed edges in G and

E1(G) = {yx, xz | yz ∈ E(G) \ E0(G) and x is a crossing on yz}.
The vertices in V (G) are called true vertices of G×, and the vertices in X(G)
are called false vertices of G×. Observe that dG×(v) = dG(v) if v ∈ V (G), and
dG×(v) = 4 if v ∈ X(G). A 3-face f of G× is said to be false if V (f) contains a
false vertex, and otherwise it is true.

Zhang and Wu [19] gave the following useful properties for the associated
plane graph of a 1-planar graph.

Lemma 3. Let G× be the associated plane graph of a 1-planar graph G. Then
the following assertions hold.

(1) No two false vertices are adjacent in G×.

(2) If uv ∈ E(G×) such that dG×(u) = 3 and v ∈ X(G), then uv is incident to
at most one 3-face in G×.

(3) If a 3-vertex v is incident to two 3-faces and adjacent to two false vertices,
then v is incident to a 5+-face.

Proof of Theorem 2. Suppose that the theorem is false. Let G be a connected
counterexample such that every edge is crossed by at most one other edge and
crossings are as few as possible. The proof is divided into four parts as follows.
In Part 1, we construct a plane graph H from the initial graph G by a series
of operations. In Part 2, we investigate the structural properties of H by sum-
marizing several claims. To derive a contradiction on H, we need to employ the
Euler’s formula and discharging method. Both Part 3 and Part 4 are contributed
to deal with this long part.

Part 1. Forming plane graph H

Let G× denote the associated plane graph of G. If G× has a 4+-face f with
x, y ∈ V (f) and xy /∈ E(f) such that dG×(x) + dG×(y) ≥ 15, then we carry out
the following operation.

(?) Add an edge xy to the interior of f

Let (G×)1 denote the resultant graph, which is a plane graph obviously. If
(G×)1 contains a 4+-face f which is incident to two non-adjacent vertices x1 and
y1 in ∂(f) satisfying similar property, then we carry out (?) for x1 and y1 in



Linear Arboricity of 1-Planar Graphs 441

(G×)1. Let (G×)2 denote the new resultant graph. Repeat this process until the
final graph, denoted G′, has no 4+-face satisfying the requirement.

From Lemma 3(1) and the definition of G′, Observation 1 below holds evi-
dently.

Observation 1. Let f = [u1u2 · · ·uk] be a k-face of G′.

(1) If k ≥ 5, then dG′(ui) ≤ 11 for all i = 1, 2, . . . , k.

(2) If k = 4 and u1, u3 are true, then dG′(u1) + dG′(u3) ≤ 14.

It is easy to see that G′ is the associated plane graph of some 1-planar graph
which is obtained from G by adding some edges according to Operation (?). Note
that, if xy ∈ E(G′) with x, y being true, or xz, zy ∈ E(G′) where z is a crossing
in G, then the following statements (P1) and (P2) hold automatically.

(P1) dG′(x) + dG′(y) ≥ 16;

(P2) If xywx is a 3-cycle of G′, then dG′(x) + dG′(y) ≥ 17.

Moreover, we have the following.

(P3) There is no 4-cycle with two nonadjacent 3-vertices in G′.

Observe that G′ may contain multi-edges, but have no 2-faces. Thus, every
2-cycle of G′ is separating. To obtain a contradiction by applying discharging
method, we need to define a new graph H from G′ in such a way: if there is
no separating 2-cycle in G′, let H = G′; otherwise, choose a separating 2-cycle
C such that |Vint(C)| is as small as possible, and let H = G′[Vint(C) ∪ V (C)].
We call the vertices in V (C) external vertices of H and the vertices in Vint(C)
internal vertices of H and write V 0(H) = Vint(C). Let f0 denote the outer face of
H, and let F 0(H) = F (H) \ {f0}. Sometimes, the faces in F 0(H) are also called
internal faces of H. For v ∈ V 0(H), it holds obviously that dH(v) = dG′(v). By
the choice of C, H contains no 2-cycles other than C.

Let v ∈ V (H) be a true vertex. If vv′ ∈ E(H) and v′ is true, then we call v′

a direct-neighbor of v in H. If vw ∈ E(H) and w is false such that wv′ ∈ E(H)
and vv′ ∈ E(G), then we call v′ an indirect-neighbor of v in H. A true vertex
v ∈ V 0(H) is small if dH(v) ≤ 7 and big otherwise. A vertex v is fat if v ∈ V (C)
or v ∈ V 0(H) is big. For a vertex v ∈ V (H) and an integer i ≥ 1, we use
mi(v),m+

i (v),m∗3(v) to denote the number of i-faces, i+-faces, and false 3-faces
which are incident to v, respectively.

A 6-face f = [x1x2 · · ·x5x6] is special if x2, x4, x6 are small such that dH(x2) =
3 and m∗3(x2) = 2. By (P3) and Lemma 3(1), at most one of x2, x4, x6 is a 3-
vertex which is incident to two false 3-faces. An internal 4-vertex v is good if
m∗3(v) ≤ 1, or m∗3(v) = 2 and m+

5 (v) ≥ 1.

An internal 3-vertex u is rich if one of the following holds:

(1) m∗3(u) = 0;
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(2) m∗3(u) = 1 and m+
5 (u) ≥ 1;

(3) m∗3(u) = 2 and u is incident to a face f such that

(3.1) dH(f) ≥ 6; or

(3.2) dH(f) = 5, and f is incident to only one small vertex, i.e., u.

Otherwise, u is called a poor 3-vertex.

Part 2. Structural properties

For a k-vertex v ∈ V 0(H), let v0, v1, . . . , vk−1 denote the neighbors of v in H in
a cyclic order, and let f0, f1, . . . , fk−1 denote the faces of H incident to v with
vvi, vvi+1 ∈ ∂(fi) for i = 0, 1, . . . , k− 1, where the indices are taken as modulo k.
If vi is false, then we assume that vi is a crossing of the edges vui and xiyi of G.

Claims 1–3 below have been established in [13].

Claim 1. If v is incident to three consecutively adjacent 3-faces fi−1, fi, fi+1,
then at least one of vi−1, vi, vi+1, vi+2 is fat.

Claim 2. If u is a small vertex with dH(u) ∈ {3, 4, 5, 7}, then u is incident to at
most dH(u)− 1 false 3-faces.

Claim 3. If an edge vvi lies on two false 3-faces [vvi−1vi] and [vvivi+1] such
that v is fat, vi−1, vi+1 are false, ui−1, ui+1 are small and 4 ≤ dH(vi) ≤ 6, then
m∗3(vi) ≤ dH(vi)− 2.

Claim 4. Assume that vi is a false vertex which is crossed by the edges vui and
xiyi in G. If 8 ≤ dH(v) ≤ 11, then xi or yi is fat so that [vxivi] or [vyivi] is a
3-face. If dH(v) ≥ 12, then fi−1, fi are 3-faces.

Proof. If 8 ≤ dH(v) ≤ 11, then xi or yi is fat by (P1), say xi. So, by the
definition of H, we derive that vxi ∈ E(H) and hence [vxivi] is a 3-face. If
dH(v) ≥ 12, then both fi−1 and fi must be 3-faces by Observation 1. �

Claim 5. If vi is a small t-vertex and dH(v) = 16 − t, then vvi is not incident
to any 3-face.

Proof. Suppose that vvi is incident to a 3-face, say fi = [vvivi+1]. By (P2), fi is
false, so vi+1 is a false vertex which is a crossing of the edges vui+1 and zvi in G.
By (P1), dG′(z) ≥ 16−t, which implies that dG′(v)+dG′(z) ≥ (16−t)+(16−t) =
32 − 2t ≥ 18 as t ≤ 7. Thus, zv ∈ E(H) by the structure of H. Now, a 3-cycle
vvizv with vvi as an edge is obtained, which contradicts (P2). �

Part 3. Discharging rules

To derive a contradiction, we make use of the discharging method. Since G′ is
connected, so is H. First, by Euler’s formula |V (H)| − |E(H)|+ |F (H)| = 2, we
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can derive the following identity:

(1)
∑

v∈V (H)

(dH(v)− 4) +
∑

f∈F (H)

(dH(f)− 4) = −8.

Define an initial weight function c on H by c(x) = dH(x) − 4 for each x ∈
V (H)∪F (H). Redistribute the weight between vertices and faces in H and keep
the sum of all weights unchanged so that the resultant weight function c′ satisfies

(I) c′(x) ≥ 0 for all x ∈ V 0(H) ∪ F 0(H); and

(II) c′(f0) +
∑

x∈V (C) c
′(x) ≥ −7.

Hence we obtain a contradiction

(2) −7 ≤
∑

x∈V (H)∪F (H)

c′(x) =
∑

x∈V (H)∪F (H)

c(x) = −8

and the proof is completed.

For a k-vertex v ∈ V 0(H), let v0, v1, . . . , vk−1 denote the neighbors of v in H
in a cyclic order, and let f0, f1, . . . , fk−1 denote the faces of H incident to v with
vvi, vvi+1 ∈ ∂(fi) for i = 0, 1, . . . , k− 1, where the indices are taken as modulo k.
If vi is false, then we assume that vi is a crossing of the edges vui and xiyi of G.

We first design several discharging rules as follows.

(R0) Let v ∈ V (C). Then v sends 1
2 to each internal (direct or indirect) neighbor

and to each incident internal face. Then we carry out the following additional
subrules (if any).

(AR0.1) If vi ∈ V 0(H) with 3 ≤ dH(vi) ≤ 4 such that fi = [vvivi+1] is a 3-face,
vi+1 is false, ui+1 is an external vertex or an internal 6+-vertex, then ui+1 sends
1
3 to vi through ui+1vi+1 and vivi+1.

(AR0.2) If vi ∈ V 0(H) is a poor 3-vertex, and fi = [vviwvi+1] is a 4-face such
that w is false, then fi sends 1

2 to vi.

(R1) Let f = [x1x2x3] ∈ F 0(H) be a 3-face of H.

(R1.1) Suppose that |V (f) ∩ V (C)| = 1, say x1 ∈ V (C). If f is false, say x2 is
false, then f gets 1

2 from x3. Otherwise, f gets 1
2 from each of its incident fat

vertices.

(R1.2) Suppose that |V (f) ∩ V (C)| = 0. If f is false, then f gets 1
2 from each

of its incident true vertices. Otherwise, f gets 1
2 from each of its incident big

vertices.

(R2) Let f be a 5+-face. If f = [x1x2 · · ·x5x6] is a special 6-face, say x2 is an
internal 3-vertex with m∗3(x2) = 2 and x4, x6 are small vertices, then f gives 1
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to x2, and 1
2 to each of x4 and x6. Otherwise, f divides equally dH(f)− 4 to its

incident small vertices.

Given a small vertex v ∈ V 0(H), we use α(v) to denote the sum of weights
that v gets from all incident 5+-faces according to (R2).

(R3) Let v ∈ V 0(H) be a 3-vertex.

(R3.1) If v is rich and b1 = 1 + 1
2m
∗
3(v) − α(v) > 0, then v gets b1

3 from each
internal (direct or indirect) neighbor in V 0(H).

(R3.2) Assume that v is poor.

(R3.2.1) Suppose that m∗3(v) = 1. Let f1 be a false 3-face with v1 being false,
let f0 = [vv0xv1] be a 4-face, and 3 ≤ dH(f2) ≤ 4.

(R3.2.1.1) If v0 is true, then v gets 10
21 from v2, 2

3 from v0, and 5
14 from u1.

Remark. If some of v0, u1, v2 in (R3.2.1) are external vertices, then we need to
carry out (R0), whereas the discharging operation here for them will be ignored.
The similar convention is valid for other cases below.

(R3.2.1.2) If v0 is false, then v gets 11
14 from v2, and 5

14 from each of u0 and u1.

(R3.2.2) Suppose that m∗3(v) = 2, say, f0, f2 are false 3-faces. Then v1, v2 are
false and f1 = [vv1wyv2] is a 5-face. In this case, both w and y are external
vertices or internal 6+-vertices. Then v gets 5

6 from v0, and 1
3 from each of u1

and u2.

(R4) Let v ∈ V 0(H) be a true 4-vertex.

(R4.1) If v is good and b2 = 1
2m
∗
3(v)−α(v) > 0, then v gets b2

4 from each (direct
or indirect) neighbor in V 0(H).

(R4.2) Assume that m∗3(v) = 2 and m+
5 (v) = 0.

(R4.2.1) Suppose that f1 and f2 are false 3-faces. If v2 is false, then v gets 1
2

from each of v1 and v3. If v2 is true (it follows that v0 is true), then v gets 1
2

from v0, and 1
6 from each of u1, v2 and u3.

(R4.2.2) Suppose that f0 and f2 are false 3-faces. If v0 and v2 are false, then v
gets 1

3 from each of v1 and v3, 1
6 from each of u0 and u2. If v0 and v3 are false,

then v gets 1
3 from each of v1 and v2, 1

6 from each of u0 and u3.

(R4.3) Assume that m∗3(v) = 3, say f0, f1, f2 are false 3-faces and v0, v2 are false.
Now it is easy to derive that dH(f3) = 4. Then v gets 2

3 from v3, 5
13 from u2, 1

3
from v1, and 3

26 from u0.

(R5) If v is an internal 5-vertex such that b3 = 1
2m
∗
3(v) − 1 − α(v) > 0, then v

gets b3
5 from each (direct or indirect) neighbor in V 0(H).

(R6) If v is an internal 6-vertex such that b4 = 1
2m
∗
3(v) − 2 − α(v) > 0, then v

gets b4
6 from each (direct or indirect) neighbor in V 0(H).
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Figure 1. Rules (R3) and (R4).
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In Figure 1, vertices marked • have no edges of G incident to them other
than those shown, vertices marked ◦ may have edges connected to other vertices
of H not in the configuration, and vertices marked ⊗ are false vertices of H.

Observation 2. b2 ≤ 1
2 ; bi ≤ 1 for i = 1, 3, 4.

Proof. (1) To show that b1 ≤ 1, we need to carry out (R3.1) for a rich 3-
vertex v. First notice that α(v) ≥ 0 by its definition. If m∗3(v) = 0, then
b1 = 1− α(v) ≤ 1. If m∗3(v) = 1, then m+

5 (v) ≥ 1. By (R2), α(v) ≥ 1
2 , and hence

b1 = 1 + 1
2m
∗
3(v) − α(v) ≤ 1. If m∗3(v) = 2, then m+

5 (v) = 1, and it is easy to
check that α(v) ≥ 1 by (R2). Consequently, b1 = 1 + 1

2 × 2− α(v) ≤ 1.
(2) To show that b2 ≤ 1

2 , we need to carry out (R4.1) for a good 4-vertex
v. By the definition, m∗3(v) ≤ 2. If m∗3(v) ≤ 1, then b2 = 1

2m
∗
3(v) − α(v) ≤

1
2m
∗
3(v) ≤ 1

2 . If m∗3(v) = 2, then m+
5 (v) ≥ 1. By (R2), α(v) ≥ 1

2 , and therefore
b2 = 1

2m
∗
3(v)− α(v) ≤ 1

2 × 2− 1
2 = 1

2 .
(3) To show that b3 ≤ 1, it suffices to note that m∗3(v) ≤ 4 by Claim 2. Thus,

b3 = 1
2m
∗
3(v)− 1− α(v) ≤ 1

2 × 4− 1 ≤ 1.
(4) Because m∗3(v) ≤ 6, it is immediate to deduce that b4 = 1

2m
∗
3(v) − 2 −

α(v) ≤ 1
2 × 6− 2 ≤ 1. �

Part 4. Computation of weights

Let c′ denote the resultant weight function after (R0)–(R6) are carried out on H.
Let us first show that c′(x) ≥ 0 for all x ∈ V 0(H) ∪ F 0(H).

Suppose that f ∈ F 0(H). Then dH(f) ≥ 3. If dH(f) = 3, then c(f) = −1.
If f is false, then f is incident to two true vertices by Lemma 3(1). By (R0) and
(R1), c′(f) = −1 + 1

2 × 2 = 0. Assume that f is true. If |V (f)∩ V (C)| = 2, then
c′(f) ≥ −1+ 1

2×2 = 0 by (R0). If |V (f)∩V (C)| = 1, then c′(f) ≥ −1+ 1
2 + 1

2 = 0
by (R0) and (R1.1). If |V (f)∩V (C)| = 0, then c′(f) ≥ −1+ 1

2 ×2 = 0 by (R1.2).
If dH(f) = 4, then c′(f) = c(f) = 0. If dH(f) ≥ 5, then (R2) implies that
c′(f) ≥ 0.

Suppose that v ∈ V 0(H) is a k-vertex. Then k ≥ 3. Let v0, v1, . . . , vk−1 be
the neighbors of v in cyclic order, and f0, f1, . . . , fk−1 be the faces of H incident
to v with vvi, vvi+1 ∈ ∂(fi) for i = 0, 1, . . . , k−1, where indices are taken modulo
k. Moreover, if vi is a false vertex, then we assume that vi is a crossing of G lying
on the edge vui.

According to the size of k, we consider several cases as follows.

Case 1. k = 3. Then c(v) = k − 4 = −1, and every (direct or indirect)
neighbor of v is fat by (P1).

First assume that v is rich. Then v gets min
{

1
2 ,

b1
3

}
from each (direct or

indirect) neighbor by (R0) and (R3.1), where b1 = 1 + 1
2m
∗
3(v) − α(v) > 0, and

receives α(v) by (R2). Since b1 ≤ 1 by Observation 2, it follows that min
{

1
2 ,

b1
3

}
≥

b1
3 . Thus, by (R1), c′(v) ≥ −1− 1

2m
∗
3(v) + b1

3 × 3 + α(v) = 0.
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Next assume that v is poor. There are two possibilities to be discussed.

(1.1) m∗3(v) = 1 and m+
5 (v) = 0. Let f1 be a false 3-face such that v1 is false,

f0 = [vv0xv1] is a 4-face, and 3 ≤ dH(f2) ≤ 4. By (R1), v needs to send 1
2 to

f1. If v0 is true, then v gets 10
21 from v2, 2

3 from v0, and 5
14 from u1 by (R0)

and (R3.2.1.1). Hence, c′(v) ≥ −1 − 1
2 + 10

21 + 2
3 + 5

14 = 0. If v0 is false, then v
gets 11

14 from v2, and 5
14 from each of u0 and u1 by (R0) and (R3.2.1.2). Hence,

c′(v) ≥ −1− 1
2 + 11

14 + 5
14 × 2 = 0.

(1.2) m∗3(v) = 2, say f0, f2 are false 3-faces. It follows that v1 and v2 are
false vertices, and f1 is a 5-face, say f1 = [vv1wyv2], where both w and y are
external vertices or internal 6+-vertices by (P1), (P2) and Observation 1. By
(R1), v sends 1

2 to each of f0 and f2. By (R0) and (R3.2.2), v gets 5
6 from

v0, and 1
3 from each of u1 and u2. By (R2), f1 gives 1

2 to v. Consequently,
c′(v) ≥ −1− 1

2 × 2 + 5
6 + 1

2 + 1
3 × 2 = 0.

Case 2. k = 4. Then c(v) = 0. By Claim 2, m∗3(v) ≤ 3. If v is good, then v
gets min{1

2 ,
b2
4 } from each (direct or indirect) neighbor in H by (R0) and (R4.1).

Hence, c′(v) ≥ b2
4 × 4 + α(v)− 1

2m
∗
3(v) = 0 by (R2). Otherwise, v is not good. If

m∗3(v) = 3, then c′(v) ≥ 2
3 + 5

13 + 1
3 + 3

26 −
1
2 ×3 = 0 by (R0) and (R4.3). Suppose

that m∗3(v) = 2. We have to consider two subcases by symmetry. If f0, f2 are false
3-faces, then c′(v) ≥ 1

3 × 2 + 1
6 × 2− 1

2 × 2 = 0 by (R0) and (R4.2.2). Otherwise,
assume that f1, f2 are false 3-faces. If v2 is true, then c′(v) ≥ 1

2 + 1
6×3− 1

2×2 = 0
by (R0) and (R4.2.1). If v2 is false, then c′(v) ≥ 1

2 × 2− 1
2 × 2 = 0 by (R0) and

(R4.2.1).

Case 3. k = 5. Then c(v) = 1. By Claim 3, m∗3(v) ≤ 4. By Observation
2, b3 = 1

2m
∗
3(v) − 1 − α(v) ≤ 1 and so b3

5 ≤
1
5 . By (R5) and (R0), v gets at

least b3
5 from each (direct or indirect) neighbor in H and α(v) by (R2). Hence,

c′(v) ≥ 1 + α(v) + b3
5 × 5− 1

2m
∗
3(v) = 0.

Case 4. k = 6. Then c(v) = 2. By (R6), v gets at least b4
6 from each (direct

or indirect) neighbor in H and α(v) by (R2). Hence, c′(v) ≥ 2 + α(v) + b4
6 × 6−

1
2m
∗
3(v) = 0.

Case 5. 7 ≤ k ≤ 9. If k = 7, then m∗3(v) ≤ 6 by Claim 2, so that c′(v) ≥
3− 1

2 × 6 = 0 by (R1). If 8 ≤ k ≤ 9, then the neighbors of v are external vertices
or internal 7+-vertices by (P1). Hence, c′(v) ≥ k − 4− 1

2k ≥ 0.

Case 6. k = 10. Then c(v) = 6. By (P1), the (direct or indirect) neighbors
of v are external vertices or internal 6+-vertices. Let i ∈ {0, 1, . . . , k − 1}. If vi
or ui is an external vertex or an internal 7+-vertex, then v gives nothing to vi or
ui by our rules. Otherwise, there are two possibilities below. If vi is an internal
6-vertex, then fi−1 and fi are 4+-faces by Claim 5, and hence m∗3(vi) ≤ 4. So,
b4 = 1

2m
∗
3(vi)−2−α(vi) ≤ 0, and v gives nothing to vi by (R6). If ui is an internal
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6-vertex, then by Claim 4, at least one of fi−1 and fi is a 3-face. This implies
that m∗3(ui) ≤ 5 by (P2). Now b4 = 1

2m
∗
3(ui)−2−α(ui) ≤ 1

2 and hence v gives ui
at most 1

12 by (R6). In a word, v gives at most 1
12 to each of (direct or indirect)

neighbors in every possible situation. Consequently, c′(v) ≥ 6− 1
2×10− 1

12×10 = 0
by (R1).

Case 7. k = 11. Then c(v) = 7. By (P1), the (direct or indirect) neighbors of
v are external vertices or internal 5+-vertices. Let i ∈ {0, 1, . . . , k − 1}. Assume
that vi or ui is small. If vi or ui is an internal 6+-vertex, then v gives at most 1

6
to vi or ui by (R6). Otherwise, we consider two possibilities. If vi is an internal
5-vertex, then fi−1 and fi are 4+-faces by Claim 5, which implies that m∗3(vi) ≤ 3.
So, b3 = 1

2m
∗
3(vi)−1−α(vi) ≤ 1

2 , and henceforth v gives at most 1
10 to vi by (R5).

If ui is an internal 5-vertex, then Claim 4 asserts that at least one of fi−1 and
fi is a 3-face, say fi−1 = [vvi−1vi]. If fi is also a 3-face, then it is easy to derive
that m∗3(ui) ≤ 3 by (P2). Otherwise, fi is a 4+-face. Let vi be the crossing of two
edges vui and vi−1x in G. Since xv /∈ E(H), it follows that x is a small vertex
of G by the structure of H. Thus, xui /∈ E(H) by (P1). Again, we obtain that
m∗3(ui) ≤ 3. Thus we always have that b3 = 1

2m
∗
3(ui)−1−α(ui) ≤ 1

2 and hence v
gives ui at most 1

10 by (R5). If m3(v) ≤ 10, then c′(v) ≥ 7− 1
2 × 10− 1

6 × 11 = 1
6

by (R1). If m3(v) = 11, then v is adjacent to at least two fat vertices by Claim
1, and therefore c′(v) ≥ 7− 1

2 × 11− 1
6 × 9 = 0 by (R1).

Now suppose that dH(v) ≥ 12. By Observation 1, every face incident to v is of
degree at most 4. Moreover, if fi = [vvizvi+1] is a 4-face incident to v, then z must
be a false vertex. For the sake of convenience, we relabel the neighbors of v in H
in a cyclic order as y0;x1

0, x
2
0, . . . , x

m0
0 ; y1;x1

1, x
2
1, . . . , x

m1
1 ; y2, . . . , yt−1;x1

t−1, x
2
t−1,

. . . , x
mt−1

t−1 , where y0, y1, . . . , yt−1 are fat vertices, and other vertices are false or
small. Set

Y = {y0, y1, . . . , yt−1},
Xs = {x1

s, x
2
s, . . . , x

ms
s } for s = 0, 1, . . . , t− 1.

Without loss of generality, we assume that y0 = v0, x
1
0 = v1, . . . , x

m0
0 =

vp−1, y1 = vp, where p = m0 + 1 ≥ 1. In particular, when |Y | = 1, we have that
y0 = y1 = v0 and p = k. It is easy to check that (m0 + 1) + (m1 + 1) + · · · +
(mt−1 + 1) = m0 +m1 + · · ·+mt−1 + t = m0 +m1 + · · ·+mt−1 + |Y | = dH(v).

Claim 6.

(1) There is no index i with 2 ≤ i ≤ p− 3 such that dH(fi) = 3;

(2) There is no index i with 1 ≤ i ≤ p− 2 such that dH(fi) = 3 and dH(fi−1) =
dH(fi+1) = 4.

Proof. (1) Suppose that fi = [vvivi+1] is a 3-face where 2 ≤ i ≤ p− 3. Without
loss of generality, assume that vi is small. If fi is true, then vi+1 is fat by (P2),
which contradicts the choice of i. Otherwise, vi+1 is false and so fi is false. By
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the structure of H, fi+1 is a false 3-face with vi+2 being fat by Claim 4. Thus,
vi+2 is just vp and i = p− 2, contradicting the assumption.

(2) The proof is analogous to that of the conclusion (1). �

By Claim 6, we may define the following three subsets of faces incident to v
which lie between edges vv0 and vvp.

T0 = {fi | dH(fi) = 3 for i = 0, 1, . . . , q − 1},
Q = {fi | dH(fi) = 4 for i = q, q + 1, . . . , r − 1},
Tp = {fi | dH(fi) = 3 for i = r, r + 1, . . . , p− 1}.
Note that some of T0, Q, Tp may be empty. Let σ0 denote the sum of

weights that v sends to the elements in {f0, f1, . . . , fp−1, v1 (or u1), v2 (or u2), . . . ,
vp−1 (or up−1)} according to our rules (R0)–(R6). For x, y ∈ V (H) ∪ F (H), we
use τ(x→ y) to denote the amount of weight that x sends to y according to our
rules. Let

θ(f0) = τ(v → f0) + τ(v → v1),

θ(fp−1) = τ(v → fp−1) + τ(v → vp−1),

θ(f0, f1) = τ(v → f0) + τ(v → u1) + τ(v → f1) + τ(v → v2),

θ(fp−1, fp−2) = τ(v → fp−1) + τ(v → up−1) + τ(v → fp−2) + τ(v → vp−2).

Case 8. k = 12. Then c(v) = 8. By (P1), each of (direct or indirect) internal
neighbors of v is of degree at least 4.

Assume that |Y | = 0. We claim that m3(v) = 0. Suppose to the contrary
that fi = [vvivi+1] is a 3-face. If fi is true, then at least one of vi and vi+1 is
fat by (P2), contradicting the fact that |Y | = 0. So, fi is false, say, vi is a false
vertex and vi+1 is small. By Claim 4, fi−1 must be a 3-face. This implies that
vi−1 is fat by (P1), also a contradiction. Now, by (R4)–(R6), v gives at most 1

2
to each of its (direct or indirect) neighbors. Thus, c′(v) ≥ 8− 1

2 × 12 = 2.

Assume that |Y | ≥ 1. We first establish the following result.

Claim 7. σ0 ≤ 2
3(m0 + 1).

Proof. Note that m0 + 1 = p. The proof is split into some cases by symmetry,
depending on the size of |T0|, |Q|, |Tp|.

Case I. |T0| = |Tp| = 0. All f0, f1, . . . fp−1 are 4-faces. By (R4)–(R6), v gives
at most 1

2 to vi for each i = 1, 2, . . . , p− 1. Thus, σ0 ≤ 1
2p <

2
3p.

Case II. |Q| = 0. Note that p ≥ 1. By Claims 1 and 6, p ≤ 4. If p = 1, then
σ0 ≤ 1

2 <
2
3p.

Assume that p = 2. If v1 is small, then dH(v1) ≥ 5 by (P2), and v gives
at most 1

5 to v1 by (R5) and (R6). Assume that v1 is false. If u1 is a 4-vertex,
then it is easy to derive that m∗3(u1) ≤ 2 by (P2), then v gives at most 1

6 to u1

by (R4). Thus, v gives at most 1
5 to u1 by (R4)–(R6). By (R1), we get that

σ0 ≤ 1
5 + 2× 1

2 = 6
5 <

4
3 = 2

3p.



450 W. Wang, J. Liu and Y. Wang

Assume that p = 3. Suppose, without loss of generality, that v1 is false and
v2 is small. Similarly, we can show that v gives at most 1

5 to each of u1 and v2.
Consequently, σ0 ≤ 3× 1

2 + 2× 1
5 = 19

10 < 2 = 2
3p.

Assume that p = 4. Then v2 is small and v1, v3 are false. Similarly, v sends
at most 1

5 to each of u1, v2, u3, and hence σ0 ≤ 4× 1
2 + 3× 1

5 = 13
5 < 8

3 = 2
3p.

Case III. |Tp| = 0 and |T0|, |Q| ≥ 1. Since Q 6= ∅, it is easy to deduce that
|T0| ≤ 2. First assume that |T0| = 1, then p ≥ 2. Namely, only f0 is a 3-face and
v1 is small. By (P2), dH(v1) ≥ 5. By (R5) and (R6), v gives at most 1

5 to v1. By
(R4)–(R6), v gives at most 1

2 to each of v2, v3, . . . , vp−1. So, by (R1), we get that
σ0 ≤ 1

2 + 1
5 + 1

2(p − 2) = 1
2p + 3

10 <
2
3p. Next assume that |T0| = 2, then p ≥ 3.

Only f0, f1 are 3-faces. It is immediate to derive that v1 is false and v2 is small.
Similarly, by (R4)–(R5), v gives at most 1

5 to each of u1 and v2. Hence, by (R1),
σ0 ≤ 2× 1

2 + 2× 1
5 + 1

2(p− 3) = 2
5 + 1

2(p− 1) ≤ 2
3p.

Case IV. |T0|, |Q|, |Tp| ≥ 1. By virtue of the above discussion, we have three
possibilities by symmetry.

If |T0| = |Tp| = 1, then p ≥ 3, θ(f0) ≤ 1
2 + 1

5 = 7
10 , θ(fp−1) ≤ 1

2 + 1
5 = 7

10 , and
hence σ0 ≤ θ(f0) + θ(fp−1) + 1

2(p− 3) = 2× 7
10 + 1

2(p− 3) ≤ 2
3p.

If |T0| = 1 and |Tp| = 2, then p ≥ 4, θ(fp−2, fp−1) ≤ 2× 1
2 + 2× 1

5 = 7
5 , and

hence σ0 ≤ θ(f0) + θ(fp−1, fp−2) + 1
2(p− 4) ≤ 7

10 + 7
5 + 1

2(p− 4) = 1
2p+ 1

10 ≤
2
3p.

If |T0| = |Tp| = 2, then p ≥ 5 and σ0 ≤ θ(f0, f1) + θ(fp−1, fp−2) + 1
2(p− 5) ≤

7
5 + 7

5 + 1
2(p− 5) ≤ 2

3p. �

For i = 0, 1, . . . , t − 1, we can similarly define the symbol σi on the set Xi,
where indices are taken modulo t. Analogous to Claim 7, we can prove that
σi ≤ 2

3(mi + 1). So, the following inequalities hold:

c′(v) ≥ 8−
∑

0≤i≤t−1

σi ≥ 8− 2

3

∑
0≤i≤t−1

(mi + 1) ≥ 8− 2

3
× 12 ≥ 0.

Case 9. k = 13. Then c(v) = 9. Every (direct or indirect) internal neighbor
of v is a 3+-vertex.

If |Y | = 0, then it can be similarly shown that m3(v) = 0. By (R3)–(R6),
v gives at most 1

2 to each of its (direct or indirect) neighbors. Consequently,
c′(v) ≥ 9− 1

2 × 13 = 5
2 .

Assume that |Y | ≥ 1. We have the following useful result.

Claim 8. σ0 ≤ 9
13(m0 + 1).

Proof. Similarly to the proof of Claim 7, we consider four cases as follows.

Case I. |T0| = |Tp| = 0. All f0, f1, . . . fp−1 are 4-faces. By (R3)–(R6), v gives
at most 1

2 to vi for each i = 1, 2, . . . , p− 1. Thus, σ0 ≤ 1
2p <

9
13p.
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Case II. |Q| = 0. Note that p ≥ 1. By Claims 1 and 6, p ≤ 4. If p = 1, then
σ0 ≤ 1

2 <
9
13p by (R1).

Assume that p = 2. If v1 is small, then dH(v1) ≥ 4 by (P2). Thus, (R4)–(R6)
asserts that v gives at most 1

3 to v1. If v1 is false, then v gives at most 5
13 to u1.

Consequently, σ0 ≤ 5
13 + 2× 1

2 = 18
13 = 9

13p by (R1).

Assume that p = 3. Suppose, without loss of generality, that v1 is false and
v2 is small. By (P2), dH(v2) ≥ 4. Let β denote the sum of weights that v sends
to u1 and v2 according to our rules. Let us compute the value of β. If u1 is fat,
then v gives at most 1

2 to v2 by (R4)–(R6) and hence β ≤ 1
2 . Otherwise, assume

that u1 is small. If v2 is a 5+-vertex, or a good 4-vertex, then v gives at most 1
5

to v2, and at most 5
14 to u1 by (R3)–(R6), therefore β ≤ 1

5 + 5
14 = 39

70 . Suppose
that v2 is a 4-vertex that is not good. Let f1, f2, g1, g2 denote the incident faces
of v2 in a cyclic order. Since v2u1 /∈ E(H) by (P1) and by the definition of a
good 4-vertex, it follows that g1 = [v2v3z] is a false 3-face and g2 = [u1v1v2z] is
a 4-face, where z is a false vertex. On the one hand, since m∗3(v2) = 2, v gives at
most 1

3 to v2 by (R4.2). On the other hand, vv3u1v forms a 3-cycle of G, which
implies that dH(u1) ≥ 4 by (P2). By (R4)–(R6), v gives at most 1

5 to u1 so that
β ≤ 1

3 + 1
5 = 8

15 . Hence, σ0 ≤ 3× 1
2 + β ≤ 3

2 + 39
70 = 72

35 <
9
13p.

Assume that p = 4. Then v2 is small and v1, v3 are false. By (P2), dH(v2) ≥ 4.
By (R4)–(R6), v gives at most 1

3 to v2. Let η denote the sum of weights that
v sends to u1, v2, u3 according to our rules. It suffices to show that η ≤ 10

13 and
henceforth σ0 ≤ 4× 1

2 + 10
13 = 9

13p. In fact, if u1 or u3 is fat, then η ≤ 1
3 + 5

14 = 29
42

by (R3.2). Otherwise, assume that both u1 and u3 are small. Then u1v2, u3v2 /∈
E(H) by (P1). If 6 ≤ dH(v2) ≤ 7, then v gives noting to v2 and hence η ≤ 2× 5

14
by (R3)–(R6). In fact, this is evident if dH(v2) = 7. When dH(v2) = 6, it is
easy to check that m∗3(v2) ≤ 4 and the conclusion follows from (R6). Otherwise,
4 ≤ dH(v2) ≤ 5. Then v0 is a 12+-vertex in G by (P2), implying u1v0 ∈ E(H).
By (P2), dH(u1) ≥ 4, and v gives at most 1

5 to u1. Similarly, v gives at most 1
5

to u3. It follows consequently that η ≤ 2× 1
5 + 1

3 = 11
15 .

Case III. |Tp| = 0 and |T0|, |Q| ≥ 1. Since Q 6= ∅, it is easy to deduce that
|T0| ≤ 2. First assume that |T0| = 1. So f0 is only one 3-face with v1 as small
vertex. By (P2), dH(v1) ≥ 4. Obviously, if dH(v1) = 4, then v1 is a good 4-
vertex. By (R4)–(R6) and Observation 2, v gives at most 1

5 to v1. Therefore,
θ(f0) ≤ 1

5 + 1
2 = 7

10 . It yields that σ0 ≤ θ(f0) + 1
2(p− 2) ≤ 7

10 + 1
2(p− 2) < 9

13p.

Next assume that |T0| = 2. Only f0, f1 are 3-faces, v1 is false and v2 is
small. By (P2), dH(v2) ≥ 4. If we can show that θ(f0, f1) ≤ 71

42 , then σ0 ≤
θ(f0, f1) + 1

2(p− 3) ≤ 71
42 + 1

2(p− 3) < 9
13p. In fact, by (R3)–(R6), v gives at most

5
14 to u2. If τ(v → v2) ≤ 1

3 , then θ(f0, f1) ≤ 2 × 1
2 + 5

14 + 1
3 = 71

42 . Otherwise, it
is easy to see that dH(v2) = 4 and τ(v → v2) ∈

{
1
2 ,

2
3

}
by (R4.2.3). However, in

this case, u2v2 ∈ E(H) and hence u2 is fat by (P1). Thus, v gives nothing to u2,
and θ(f0, f1) ≤ 2

3 + 2× 1
2 = 5

3 <
71
42 .
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Case IV. |T0|, |Q|, |Tp| ≥ 1. By the above discussion, we have three possibili-
ties by symmetry.

If |T0| = |Tp| = 1, then σ0 ≤ θ(f0)+θ(fp−1)+ 1
2(p−3) ≤ 7

10 + 7
10 + 1

2(p−3) =
1
2p−

1
10 <

9
13p.

If |T0| = 1 and |Tp| = 2, then p ≥ 4 and σ0 ≤ θ(f0)+θ(fp−1, fp−2)+ 1
2(p−4) ≤

7
10 + 71

42 + 1
2(p− 4) < 9

13p.
If |T0| = |Tp| = 2, then p ≥ 5 and σ0 ≤ θ(f0, f1) + θ(fp−1, fp−2) + 1

2(p− 5) ≤
71
42 + 71

42 + 1
2(p− 5) = 1

2p+ 37
42 ≤

9
13p. �

Similarly we define σi on Xi for i = 1, 2, . . . , t − 1, and prove that σi ≤
9
13(mi + 1). Therefore,

c′(v) ≥ 9−
∑

0≤i≤t−1

σi ≥ 9− 9

13

∑
0≤i≤t−1

(mi + 1) ≥ 9− 9

13
× 13 ≥ 0.

Case 9. k ≥ 14. Then c(v) = k − 4. Every (direct or indirect) internal
neighbor of v is 3+-vertex.

If |Y | = 0, then m3(v) = 0. In view of the structure of v, no poor 3-vertex
gets 2

3 or 11
14 from v according to (R3.2.1). Thus, the amount of weight that v

sends to each (direct or indirect) internal neighbor is at most 1
2 by (R3)–(R6). It

follows that c′(v) ≥ k − 4− 1
2k > 0.

Assume that |Y | ≥ 1. To complete the proof, we first establish the following
claim.

Claim 9. σ0 ≤ 5
7(m0 + 1).

Proof. Similarly to the proofs of Claims 7 and 8, we consider four cases as
follows.

Case I. |T0| = |Tp| = 0. All f0, f1, . . . fp−1 are 4-faces. Analogous to the
foregoing discussion, v gives at most 1

2 to vi for each i = 1, 2, . . . , p − 1. Thus,
σ0 ≤ 1

2(p− 1) < 5
7p.

Case II. |Q| = 0. Note that p ≥ 1. By Claims 1 and 6, p ≤ 4. If p = 1, then
σ0 ≤ 1

2 <
5
7p by (R0) and (R1).

Assume that p = 2. If v1 is small, then (R3)–(R6) asserts that v gives
at most 1

3 to v1. If v1 is false, then v gives at most 5
13 to u1. Consequently,

σ0 ≤ 5
13 + 2× 1

2 = 18
13 <

5
7p.

Assume that p = 3. By symmetry, suppose that v1 is false and v2 is small.
Let ε = τ(v → u1) + τ(v → v2). It suffices to show that ε ≤ 9

14 , and so we
have that σ0 ≤ 3 × 1

2 + 9
14 = 5

7p. Note that v gives at most 5
14 to u1 by (R3)–

(R6) and since v2 is small. If τ(v → u1) = 0, then it is easy to check that
ε = τ(v → v2) ≤ 1

2 <
9
14 . Otherwise, assume that τ(v → u1) > 0, which implies

that u1 is small. If dH(v2) ≥ 5 or v2 is a good 4-vertex, then τ(v → v2) ≤ 1
5 and

therefore ε ≤ 5
14 + 1

5 = 39
70 . Otherwise, we have to handle two subcases as follows.
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• dH(v2) = 3. Then [v3v2v1u1] is a 4-face. By (R3.2.1.1), v gives at most 10
21

to v2. By (P3), dH(u1) ≥ 4. If dH(u1) ≥ 6, then τ(v → u1) ≤ 1
6 by (R6). If

dH(u1) = 5, then it is easy to check that m∗3(u1) ≤ 3 and hence τ(v → u1) ≤ 1
10

by (R5). If dH(u1) = 4, then τ(v → u1) ≤ 1
6 by (R4). Hence ε ≤ 1

6 + 10
21 = 9

14 .

• dH(v2) = 4 and v is not good. Let f1, f2, g1, g2 denote the incident faces of
v2 in a cyclic order. It is easy to derive that g1 = [v2v3z] is a false 3-face and
g2 = [u1v1v2z] is a 4-face, where z is a false vertex. Let z be the crossing of
the edges u1v3 and v2y in G. Since v2 is small, it follows that y is fat. By the
structure of H, we have that u1v0, u1y ∈ E(H), which implies that dH(u1) ≥ 4.
By (R4)–(R6), τ(v → u1) ≤ 1

5 , and τ(v → v2) ≤ 1
3 . Hence ε ≤ 1

5 + 1
3 = 8

15 .

Assume that p = 4. Then v2 is small and v1, v3 are false. It is easy to observe
that each of u1 and u3 gets at most 5

14 from v. Let ξ = τ(v → u1) + τ(v → v2) +
τ(v → u3). It suffices to show that ξ ≤ 6

7 , and so we get that σ0 ≤ 4× 1
2 + 6

7 = 5
7p.

• Assume that dH(v2) = 3. By the definition of H, v0u1, v4u3 ∈ E(H), and
each of u1 and u3 is an external vertex or an internal 4+-vertex. By (R4)–(R6),
τ(v → ui) ≤ 1

5 for i = 1, 3. Let f ′ be the third incident face of v2 other than
f1, f2. Then dH(f ′) ≥ 5. If dH(f ′) ≥ 6, then v2 is a rich vertex. By (R3.1), v
gives at most 1

3 to v2. It yields that ξ ≤ 2× 1
5 + 1

3 = 11
15 . Assume that dH(f ′) = 5.

Then at least one of u1 and u3 is fat, say u1. If u3 is an external vertex or an
internal 6+-vertex, then τ(v → u3) = 0. This is because if u3 is an internal 6-
vertex, then it is easy to compute that b4 ≤ 0. Now, since v gives at most 5

6 to v2

and hence ξ ≤ 5
6 . Otherwise, dH(u3) ≤ 5. By the structure of H, u1v2 ∈ E(H),

deriving a contradiction.

• Assume that dH(v2) ≥ 4. If u1 or u3 is fat, then ξ ≤ 1
2 + 5

14 = 6
7 . Otherwise, if

v2 is a 5+-vertex or a good 4-vertex, then ξ ≤ 1
8 + 5

14 × 2 = 47
56 . Otherwise, v2 is a

4-vertex that is not good. Let f1, f2, g1, g2 be the incident faces of v2 in a cyclic
order. Then both g1 and g2 are 4-faces by the definition of a good 4-vertex. Let
g1 = [u1v1v2z] and g2 = [zv2v3u3] where z must be a true vertex. By (R4.2.1), v
gives at most 1

6 to v2. By (P3), at least one of u1 and u3 is a 4+-vertex, say u1.
So, τ(v → u1) ≤ 1

5 , and therefore ξ ≤ 1
5 + 5

14 + 1
6 = 76

105 .

Case III. |Tp| = 0 and |T0|, |Q| ≥ 1. Since Q 6= ∅, it is easy to deduce that
|T0| ≤ 2. First assume that |T0| = 1, namely, only f0 is a 3-face with v1 as small
vertex. By (R3)–(R6), v gives at most 2

3 to v1. Therefore, θ(f0) ≤ 2
3 + 1

2 = 7
6 . It

turns out that σ0 ≤ θ(f0) + 1
2(p− 2) ≤ 7

6 + 1
2(p− 2) < 5

7p.

Next assume that |T0| = 2. Only f0, f1 are 3-faces, v1 is false and v2 is
small. It suffices to show that θ(f0, f1) ≤ 25

14 and so σ0 ≤ θ(f0, f1) + 1
2(p − 3) ≤

25
14 + 1

2(p − 3) ≤ 5
7p. By (R3)–(R6), τ(v → u1) ≤ 5

14 . If τ(v → u1) = 0, then
since τ(v → v2) ≤ 11

14 , we obtain that θ(f0, f1) ≤ 2 × 1
2 + 11

14 = 25
14 . Otherwise,

τ(v → u1) > 0, which implies that u1 is small. If v2 is a 4+-vertex or a rich
3-vertex, then v gives at most 1

3 to v2 by (R3)–(R6). It follows that θ(f0, f1) ≤
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2× 1
2 + 1

3 + 5
14 = 71

42 . Otherwise, v2 is a poor 3-vertex. Let f1, f2, g be the incident
faces of v2 in a cyclic order. Then both f2 and g are 4-faces. Let f2 = [vv2zv3]
and g = [v1u1zv2], where z is a false vertex. If dH(u1) ≤ 5, then (P2) implies
that v3 is fat and hence v2v3 ∈ E(H) by the definition of H, which contradicts
the fact that f2 is a 4-face. Otherwise, dH(u1) ≥ 6. When dH(u1) = 6, it is easy
to inspect that m∗3(u1) ≤ 4. In this case, v gives noting to u1, contradicting the
assumption that τ(v → u1) > 0.

Case IV. |T0|, |Q|, |Tp| ≥ 1. The proof is split into three subcases below by
symmetry.

• |T0| = |Tp| = 1. Note that p ≥ 3. If p ≥ 4, then σ0 ≤ θ(f0)+θ(fp−1)+ 1
2(p−3) ≤

7
6 + 7

6 + 1
2(p−3) = 1

2p+ 5
6 <

5
7p by the previous proof. Otherwise, p = 3. If both v1

and v2 are poor 3-vertices, then it is easy to find a 4-cycle with two nonadjacent
3-vertices in H, contradicting (P3). Otherwise, at least one of v1 and v2, say v1,
is a 4+-vertex or a rich 3-vertex. Then v gives at most 1

3 to v1 by (R3)–(R6) and
hence θ(f0) ≤ 1

2 + 1
3 = 5

6 . Consequently, σ0 ≤ θ(f0) + θ(fp−1) ≤ 5
6 + 7

6 = 2 < 5
7p.

• |T0| = 1 and |Tp| = 2. Then p ≥ 4. If p ≥ 5, then σ0 ≤ θ(f0) + θ(fp−1, fp−2) +
1
2(p − 4) ≤ 7

6 + 25
14 + 1

2(p − 4) = 1
2p + 20

21 < 5
7p. Otherwise, p = 4. Similarly to

the previous discussion, at least one of v1 and v2 is not a poor 3-vertex. If v1

is not, then σ0 ≤ θ(f0) + θ(fp−1, fp−2) ≤ 5
6 + 25

14 = 55
21 < 5

7p. If v2 is not, then
θ(fp−1, fp−2) ≤ 1

2 ×2+ 1
3 + 5

14 = 71
42 , so that σ0 ≤ θ(f0)+θ(fp−1, fp−2) ≤ 7

6 + 71
42 =

20
7 = 5

7p.

• |T0| = |Tp| = 2. Then p ≥ 5. It yields that σ0 ≤ θ(f0, f1) + θ(fp−1, fp−2) +
1
2(p− 5) ≤ 25

14 + 25
14 + 1

2(p− 5) = 1
2p+ 15

14 ≤
5
7p. �

Similarly, we can define σi on Xi for i = 1, 2, . . . , t − 1, and establish σi ≤
5
7(mi + 1). Thus,

c′(v) ≥ k − 4−
∑

0≤i≤t−1

σi ≥ k − 4− 5

7

∑
0≤i≤t−1

(mi + 1) ≥ k − 4− 5

7
k ≥ 0.

Up to now, the statement (I) has been proved. To show the statement (II),
we first observe that c′(f0) = dH(f0)− 4 = 2− 4 = −2. Let v ∈ V (C). By (R0),
v needs to send the weight to dH(v) − 1 incident internal faces and dH(v) − 2
internal neighbors, so c′(v) ≥ dH(v) − 4 − 1

2(dH(v) − 1) − 1
2(dH(v) − 2) = −5

2 .
Consequently, ∑

v∈V (C)

c′(v) + c′(f0) ≥ −2− 5

2
× 2 = −7.

This completes the proof of the theorem.
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4. Concluding Remarks

In this paper, we show that every 1-planar graph G with ∆ ≥ 13 has la(G) ≤⌈
∆+1

2

⌉
. This fact together with some known results stated previously implies

immediately the following.

Corollary 4.1. Conjecture 1 holds for 1-planar graphs with ∆ 6∈ {7, 9, 11, 12}.

It should be pointed out that, in a separate paper, we have further proved
that Conjecture 1 holds for 1-planar graphs with ∆ = 11 or 12. However, it
remains open for a 1-planar graph G with ∆ = 7 or 9 to have la(G) ≤

⌈
∆+1

2

⌉
.

Suppose that G is a graph and e = xy ∈ E(G). We say that e is an (i, j)-edge
if dG(x) = i and dG(y) = j, and an L-light-edge if dG(x)+dG(y) ≤ L, where L is a
constant. An even cycle C = v0v1 · · · v2m−1v0 of G is called a k-alternating-cycle
if dG(vi) = k for i = 0, 2, 4, . . . , 2m− 2. A 3-alternating-cycle of length 4 is said
to be a 3-alternating 4-cycle.

It was shown in [13] that every 1-planar graph G with δ(G) ≥ 2 contains a
29-light-edge or a 2-alternating-cycle. Our Theorem 2 shows that every 1-planar
graph G with δ(G) ≥ 3 contains a 15-light-edge, or a 3-cycle with a 16-light-
edge, or a 3-alternating 4-cycle. From this fact, the following two corollaries hold
trivially.

Corollary 4.2. Every 1-planar graph G with δ(G) ≥ 3 contains a 16-light-edge
or a 3-alternating 4-cycle.

Corollary 4.3. Every 1-planar graph G with δ(G) ≥ 4 or without 4-cycles
contains a 16-light-edge.

It is unknown if the value 16 in Corollary 4.2 is best possible. Recall that
Fabrici and Madaras [8] presented a 7-regular 1-planar graph. Hudák and S̆ugerek
[12] constructed a 1-planar graph with only (6, 8)-edges and (8, 8)-edges, and
a 1-planar graph with only (5, 9)-edges, (5, 10)-edges and (9, 10)-edges. These
examples assert that there exist 1-planar graphs G without 3-alternating 4-cycles
contain a 14-light-edge and no edge xy ∈ E(G) satisfies dG(x) + dG(y) < 14.

We conclude this paper by raising the following problem.

Problem 1. What is the least integer L such that every 1-planar graph G
without 3-alternating 4-cycles contains an L-light-edge?

The above related discussion tells us that 14 ≤ L ≤ 16.
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