Discussiones Mathematicae
Graph Theory 44 (2024) 435-457
https://doi.org/10.7151/dmgt. 2453

LINEAR ARBORICITY OF 1-PLANAR GRAPHS

Weifan Wang, Juan Liu
Department of Mathematics
Zhejiang Normal University
Jinhua 321004, China
e-mail: liujuan940401@163.com
AND
Yiqiao Wang
School of Management
Beijing University of Chinese Medicine
Beijing 100029, China

Abstract

The linear arboricity $\operatorname{la}(G)$ of a graph G is the minimum number of linear forests that partition the edges of G. In 1981, Akiyama, Exoo and Harary conjectured that $\left\lceil\frac{\Delta(G)}{2}\right\rceil \leq \operatorname{la}(G) \leq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ for any simple graph G. A graph G is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we confirm the conjecture for 1-planar graphs G with $\Delta(G) \geq 13$.

Keywords: linear arboricity, 1-planar graph, linear coloring, 3-alternating cycle.
2020 Mathematics Subject Classification: 05C15.

1. Introduction

All graphs considered in this paper are simple unless otherwise stated. For a graph G, we use $V(G), E(G), \delta(G)$, and $\Delta(G)$ (for short, Δ) to denote the set of vertices, the set of edges, the minimum degree, and the maximum degree of G, respectively. A linear forest is a graph in which each component is a path. A mapping $\phi: E(G) \rightarrow\{1,2, \ldots, k\}$ is called a linear k-coloring if each color class induces a linear forest. The linear arboricity, denoted by la (G), of a graph G is the minimum number k for which G has a linear k-coloring. This concept is due
to Harary [11]. In 1981, Akiyama, Exoo and Harary [1] proposed the following famous Linear Arboricity Conjecture.
Conjecture 1. For any graph G, $\left\lceil\frac{\Delta}{2}\right\rceil \leq \operatorname{la}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil$.
Conjecture 1 has been confirmed for graphs with $\Delta \in\{3,4\}$ in [1, 2], for graphs with $\Delta \in\{5,6,8\}$ in [7], and for graphs with $\Delta=10$ in [10]. Suppose that G is a planar graph. Wu [15] first proved that G satisfies Conjecture 1 if $\Delta \neq 7$. The remaining case where $\Delta=7$ was later settled in [16]. Furthermore, Cygan et al. [6] proved that if $\Delta \geq 9$, then $\operatorname{la}(G)=\left\lceil\frac{\Delta}{2}\right\rceil$, and conjectured that this is also true for the case of $5 \leq \Delta \leq 8$. For a general graph G, Alon [3] proved that, for each $\varepsilon>0$, there exists a constant $C(\epsilon)$ such that every graph G with $\Delta \geq C(\varepsilon)$ has $\operatorname{la}(G) \leq\left(\frac{1}{2}+\varepsilon\right) \Delta$. Recently, Ferber, Fox, and Jain [9] showed that there exist absolute constants $\eta, C>0$ such that every graph G has $\operatorname{la}(G) \leq \frac{\Delta}{2}+C \Delta^{\frac{2}{3}-\eta}$.

A 1-planar graph is a graph that can be drawn in the Euclidean plane such that each edge crosses at most one edge. A number of interesting results about structures and parameters of 1-planar graphs have been obtained in recent years. Fabrici and Madaras [8] proved that every 1-planar graph G has $|E(G)| \leq 4|V(G)|-8$, which implies that $\delta(G) \leq 7$, and constructed a 7 regular 1-planar graph. Borodin [4] showed that every 1-planar graph is vertex 6 -colorable. Zhang and Wu [19] showed that every 1-planar graph G with $\Delta \geq 10$ is of Class One. A proper vertex coloring of a graph G is acyclic if G contains no bicolored cycle. Borodin et al. [5] proved that every 1-planar graph is acyclically 20-colorable. Yang, Wang and Wang [17] improved this result by reducing 20 to 18 .

The linear 2-arboricity $\operatorname{la}_{2}(G)$ of a graph G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. Liu et al. [13] proved that every 1-planar graph G has $\operatorname{la}_{2}(G) \leq$ $\left\lceil\frac{\Delta+1}{2}\right\rceil+14$. This result was recently improved to that $\operatorname{la}_{2}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil+7$ by Liu et al. [14]. In 2011, Zhang, Liu and Wu [18] considered the linear arboricity of 1-planar graphs and showed that if G is a 1-planar graph with $\Delta \geq 33$, then $\mathrm{la}(G)=\left\lceil\frac{\Delta}{2}\right\rceil$.

In this paper, we will show the following result.
Theorem 1. If G is a 1 -planar graph with $\Delta \geq 13$, then $\operatorname{la}(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil$.
The proof of Theorem 1 is based on the following key Theorem 2. Actually this theorem is of some interest itself.

Theorem 2. Let G be a 1-planar graph with $\delta(G) \geq 3$. Then at least one of the following statements holds.
(1) There is an edge uv such that $d_{G}(u)+d_{G}(v) \leq 15$.
(2) There is a 3 -cycle uvwu such that $d_{G}(u)+d_{G}(v) \leq 16$.
(3) There is a 4 -cycle $v_{1} v_{2} v_{3} v_{4} v_{1}$ with $d_{G}\left(v_{1}\right)=d_{G}\left(v_{3}\right)=3$.

The organization of this paper is as follows. In Section 2, we will establish the proof of Theorem 1 by considering three cases. The proof of structural lemma, Theorem 2, will be postponed to Section 3. In the final Section 4, we give some remarks on the results obtained in the paper and put forward an open problem.

2. Proof of Theorem 1

Suppose that G is a graph. For $v \in V(G)$, we use $E(v)$ to denote the set of edges incident to v in G. Given a linear k-coloring ϕ with a color set $C=\{1,2, \ldots, k\}$, let $C(v)$ denote the set of colors that ϕ uses in $E(v)$. For $0 \leq i \leq 2$, let

$$
I_{i}(v)=\{c \in C \mid c \text { appears exactly } i \text { times in } E(v)\} .
$$

A path $P=v_{1} v_{2} \cdots v_{n}$ is called a $\left(v_{1}, v_{n}\right)_{c}$-path in G if all edges of P are colored with same color c.

Instead of showing Theorem 1, we only need to prove the following equivalent statement.
Theorem 1*. If G is a 1-planar graph and $k=\max \left\{7,\left\lceil\frac{\Delta+1}{2}\right\rceil\right\}$, then $\operatorname{la}(G) \leq k$.
Proof. The proof is processed by induction on the edge number $|E(G)|$. If $|E(G)| \leq 7$, then the result holds trivially since we may color all edges of G with distinct colors. Suppose that G is a 1-planar graph with $|E(G)| \geq 8$. If G contains an edge $x y$ such that $d_{G}(x) \leq d_{G}(y)$ and $d_{G}(x) \leq 2$, then let $H=G-x y$. By the induction hypothesis, H admits a linear k-coloring ϕ using the color set $C=$ $\{1,2, \ldots, k\}$. Let $S=I_{2}(y) \cup\left(I_{1}(x) \cap I_{1}(y)\right)$. Then $|S|=\left|I_{2}(y) \cup\left(I_{1}(x) \cap I_{1}(y)\right)\right|$ $\leq\left\lfloor\frac{1}{2}\left(d_{H}(x)+d_{H}(y)\right)\right\rfloor=\left\lfloor\frac{1}{2}\left(d_{G}(x)+d_{G}(y)\right)\right\rfloor-1 \leq\left\lfloor\frac{1}{2}(2+\Delta)\right\rfloor-1=\left\lfloor\frac{1}{2} \Delta\right\rfloor$. Since $|C| \geq\left\lceil\frac{\Delta+1}{2}\right\rceil$, there exists a color $a \in C \backslash S$. Based on ϕ, we color $x y$ with a to extend ϕ to the graph G.

Now assume that $\delta(G) \geq 3$. By Theorem 2 , our proof can be split into the following three cases.

Case 1. G contains an edge $u v$ such that $d_{G}(u)+d_{G}(v) \leq 15$. Consider the graph $H=G-u v$, which admits a linear k-coloring ϕ using the color set C by the induction hypothesis. Let $S=I_{2}(u) \cup I_{2}(v) \cup\left(I_{1}(u) \cap I_{1}(v)\right)$. Then $|S|=$ $\left|I_{2}(u) \cup I_{2}(v) \cup\left(I_{1}(u) \cap I_{1}(v)\right)\right| \leq\left\lfloor\frac{1}{2}\left(d_{H}(u)+d_{H}(v)\right)\right\rfloor=\left\lfloor\frac{1}{2}\left(d_{G}(u)+d_{G}(v)\right)\right\rfloor-1 \leq$ $\left\lfloor\frac{15}{2}\right\rfloor-1=6$. Noting that $|C| \geq 7$, we can color $u v$ with some color in $C \backslash S$ to extend ϕ to G.

Case 2. G contains a 3 -cycle $u v w u$ such that $d_{G}(u)+d_{G}(v) \leq 16$. If $d_{G}(u)+$ $d_{G}(v) \leq 15$, the proof is given in Case 1. So assume that $d_{G}(u)+d_{G}(v)=16$.

Consider the graph $H=G-u v$, which admits a linear k-coloring ϕ using the color set C by the induction hypothesis. Let $S=I_{2}(u) \cup I_{2}(v) \cup\left(I_{1}(u) \cap I_{1}(v)\right)$. Then, with a similar analysis, $|S| \leq\left|I_{2}(u) \cup I_{2}(v) \cup\left(I_{1}(u) \cap I_{1}(v)\right)\right| \leq 7$. If $|S| \leq 6$, then we can color $u v$ with some color in $C \backslash S$ to extend ϕ to G. If $\Delta \geq 14$, then it is easy to derive that $|C| \geq 8$ and hence $u v$ can be colored with some color in $C \backslash S$. Otherwise, assume that $\Delta \leq 13$ and $|S|=7$. This implies that $|C|=7$ and every color in C appears exactly twice in $E(u) \cup E(v)$. To complete the proof, we consider two subcases as follows by symmetry.

Case 2.1. $\phi(u w)=1$ and $\phi(v w)=2$. By symmetry, we discuss two possibilities as follows.

Case 2.1.1. $1 \in I_{2}(u)$ and $2 \in I_{2}(v)$. We exchange the colors of $u w$ and $v w$ and then color $u v$ with 1 .

Case 2.1.2. $1 \in I_{2}(u)$ and $2 \in I_{1}(u) \cap I_{1}(v)$. We claim that there exists a $(u, v)_{2}$-path in H, for otherwise we may color $u v$ with 2 . This implies that $2 \in I_{2}(w)$. If $1 \in I_{1}(w)$, then we color $u v$ with 2 and recolor $v w$ with 1 . Otherwise, $1 \in I_{2}(w)$. So there exists $a \in\{3,4, \ldots, 7\} \cap I_{1}(w)$, say $a=3$, by the assumption that $d_{G}(w) \leq 13$. If $3 \in I_{2}(u)$, then we color $u v$ with 2 and recolor $v w$ with 3. If $3 \in I_{2}(v)$, then we color $u v$ with 1 and recolor $u w$ with 3 . Assume that $3 \in I_{2}(u) \cap I_{1}(v)$. If there does not exist a $(u, w)_{3}$-path, then we color $u v$ with 1 and recolor $u w$ with 3 . Otherwise, no $(v, w)_{3}$-path may exist in H. It suffices to color $u v$ with 2 and recolor $v w$ with 3.

Case 2.1.3. $1,2 \in I_{1}(u) \cap I_{1}(v)$. Suppose that there exist both $(u, v)_{1}$-path and $(u, v)_{2}$ in H, otherwise the proof can be given easily. This implies that $1,2 \in I_{2}(w)$ and so there exists some color $a \in\{3,4, \ldots, 7\} \cap I_{1}(w)$, say $a=3$. With a similar analysis as in Case 2.1.2, we can extend ϕ to the graph G.

Case 2.2. $\phi(u w)=\phi(v w)=1$. Since $d_{H}(w) \leq 13$, there exists $a \in\{2,3$, $\ldots, 7\} \cap\left(I_{0}(w) \cup I_{1}(w)\right)$, say $a=2$. If $2 \notin C(u)$, then we recolor $u w$ with 2 and reduce the proof to Case 2.1. If $2 \notin C(v)$, we have a similar proof. Otherwise, $2 \in I_{1}(u) \cap I_{1}(v)$. Since at most one of $(u, w)_{2}$-path and $(v, w)_{2}$-path exists in H, we recolor $u w$ or $v w$ with 2 and reduce the proof to Case 2.1.1.

Case 3. G contains a 4 -cycle $B=v_{1} v_{2} v_{3} v_{4} v_{1}$ such that $d_{G}\left(v_{1}\right)=d_{G}\left(v_{3}\right)=3$. By Case 2, we may assume that $v_{1} v_{2} \notin E(G)$. For $i=1,3$, let v_{i}^{\prime} denote the neighbor of v_{i} other than v_{2} and v_{4}. Let $H=G-E(B)$. By the induction hypothesis, H admits a linear k-coloring ϕ with the color set C. Suppose that $\phi\left(v_{1} v_{1}^{\prime}\right)=a$ and $\phi\left(v_{3} v_{3}^{\prime}\right)=b$. By symmetry, we have three subcases as follows.

Case 3.1. $\left|I_{0}\left(v_{2}\right)\right|=\left|I_{0}\left(v_{4}\right)\right|=0$. For $=2,4$, since $|C| \geq\left\lceil\frac{\Delta+1}{2}\right\rceil$ and $d_{H}\left(v_{i}\right)=$ $d_{G}\left(v_{i}\right)-2 \leq \Delta-2$, it follows easily that $\left|I_{1}\left(v_{2}\right)\right| \geq 3$ and $\left|I_{1}\left(v_{4}\right)\right| \geq 3$. Define a list assignment L for $E(B)$ as follows: $L\left(v_{1} v_{2}\right)=I_{2}\left(v_{2}\right) \backslash\{a\}, L\left(v_{2} v_{3}\right)=I_{2}\left(v_{2}\right) \backslash\{b\}$,
$L\left(v_{1} v_{4}\right)=I_{2}\left(v_{4}\right) \backslash\{a\}$, and $L\left(v_{3} v_{4}\right)=I_{2}\left(v_{4}\right) \backslash\{b\}$. Then $|L(e)| \geq 2$ for each edge $e \in E(B)$. So, $E(B)$ is L-colorable, and therefore ϕ is extended to G.

Case 3.2. $\left|I_{0}\left(v_{2}\right)\right| \geq 1$ and $\left|I_{0}\left(v_{4}\right)\right|=0$. Then $\left|I_{1}\left(v_{4}\right)\right| \geq 3$. If $a \neq b$, then we color $\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$ with a color $c \in I_{0}\left(v_{2}\right), v_{1} v_{4}$ with a color $d \in I_{1}\left(v_{4}\right) \backslash\{a, c\}$, and $v_{3} v_{4}$ with some color in $I_{1}\left(v_{4}\right) \backslash\{b, c\}$. Otherwise, suppose that $a=b=1$. If there exists $c \in I_{0}\left(v_{2}\right) \backslash\{1\}$, then we color $\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$ with c, $v_{1} v_{4}$ with a color $d \in I_{1}\left(v_{4}\right) \backslash\{1, c\}$ and $v_{3} v_{4}$ with a color in $I_{1}\left(v_{4}\right) \backslash\{1, d\}$. Otherwise, $I_{0}\left(v_{2}\right)=\{1\}$. If there does not exist a $\left(v_{1}, v_{3}\right)_{1}$-path in H, then we can define a similar coloring. Otherwise, it follows that $1 \in I_{2}\left(v_{1}^{\prime}\right) \cap I_{2}\left(v_{3}^{\prime}\right)$, and hence there exists a color $c \in I_{0}\left(v_{3}^{\prime}\right) \cup I_{1}\left(v_{3}^{\prime}\right)$. Recolor $v_{3} v_{3}^{\prime}$ with c and the proof is reduced to the previous case.

Case 3.3. $\left|I_{0}\left(v_{2}\right)\right| \geq 1$ and $\left|I_{0}\left(v_{4}\right)\right| \geq 1$. First assume that there exist $c \in$ $I_{0}\left(v_{2}\right)$ and $d \in I_{0}\left(v_{4}\right)$ such that $c \neq d$. Color $\left\{v_{1} v_{2}, v_{2} v_{3}\right\}$ with c and $\left\{v_{1} v_{4}, v_{3} v_{4}\right\}$ with d. If $a \neq b$, or $a=b$ and $a \notin\{c, d\}$, then the current coloring is available. Otherwise, suppose that $a=b=c=1$ and $d=2$. If there does not exist a $\left(v_{1}, v_{3}\right)_{1}$-path in H, we are done. Otherwise, it follows easily that $1 \in I_{2}\left(v_{3}^{\prime}\right)$ and so there is $j \in I_{0}\left(v_{3}^{\prime}\right) \cup I_{1}\left(v_{3}^{\prime}\right)$ with $j \neq 1$. Recoloring $v_{3} v_{3}^{\prime}$ with j, we reduce the proof to the previous case.

Next assume that $I_{0}\left(v_{2}\right)=I_{0}\left(v_{4}\right)=\{1\}$. In this case, it is easy to verify that $\left|I_{1}\left(v_{2}\right)\right| \geq 1$ and $\left|I_{1}\left(v_{4}\right)\right| \geq 1$. Let $p \in I_{1}\left(v_{2}\right)$ and $q \in I_{1}\left(v_{4}\right)$. Then $p \neq 1$ and $q \neq 1$. If $a \neq b$, assuming $q \neq a$, then we color $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}\right\}$ with 1 and $v_{1} v_{4}$ with q. Otherwise, $a=b$. If $a=1$, then we color $v_{1} v_{2}$ with p, $v_{3} v_{4}$ with q, and $\left\{v_{2} v_{3}, v_{1} v_{4}\right\}$ with 1 . Otherwise, suppose that $a=2$. If $q \neq 2$, then we color $\left\{v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}\right\}$ with 1 and $v_{1} v_{4}$ with q. Otherwise, $q=2$. At most one of $\left(v_{1}, v_{4}\right)_{2}$-path and $\left(v_{3}, v_{4}\right)_{2}$-path exists in H. A similar coloring can be established.

3. Proof of Theorem 2

To complete the proof of Theorem 2, we need to introduce a few concepts and known results. Suppose that G is a plane graph with the face set $F(G)$. For $f \in$ $F(G)$, we use $\partial(f)$ to denote the boundary walk of f and write $f=\left[u_{1} u_{2} \cdots u_{n}\right]$ if $u_{1}, u_{2}, \ldots, u_{n}$ are the vertices of $\partial(f)$ in a cyclic order. Let $V(f)=V(\partial(f))$ and $E(f)=E(\partial(f))$. A vertex of degree k (at most k, at least k, respectively) is called a k-vertex (k^{-}-vertex, k^{+}-vertex, respectively). Similarly, we can define k-face, k^{-}-face and k^{+}-face. A cycle C in a plane graph G is called separating if both its interior and exterior contain at least one vertex of G. Let $V_{\text {int }}(C)$ denote the set of vertices in G that lie interior to C.

Suppose that G is a 1-planar graph which is drawn in the plane such that each edge has at most one crossing and the number of crossings are as few as
possible. Let $X(G)$ denote the set of crossings in G. For each $x \in X(G)$, there is a pair of crossing edges $y_{1} y_{2}, z_{1} z_{2} \in E(G)$ with x as crossing. Define an associated plane graph G^{\times}as follows:

$$
\begin{aligned}
& V\left(G^{\times}\right)=V(G) \cup X(G), \\
& E\left(G^{\times}\right)=E_{0}(G) \cup E_{1}(G),
\end{aligned}
$$

where $E_{0}(G)$ is the set of non-crossed edges in G and

$$
E_{1}(G)=\left\{y x, x z \mid y z \in E(G) \backslash E_{0}(G) \text { and } x \text { is a crossing on } y z\right\} .
$$

The vertices in $V(G)$ are called true vertices of G^{\times}, and the vertices in $X(G)$ are called false vertices of G^{\times}. Observe that $d_{G^{\times}}(v)=d_{G}(v)$ if $v \in V(G)$, and $d_{G} \times(v)=4$ if $v \in X(G)$. A 3-face f of G^{\times}is said to be false if $V(f)$ contains a false vertex, and otherwise it is true.

Zhang and Wu [19] gave the following useful properties for the associated plane graph of a 1-planar graph.

Lemma 3. Let G^{\times}be the associated plane graph of a 1-planar graph G. Then the following assertions hold.
(1) No two false vertices are adjacent in G^{\times}.
(2) If $u v \in E\left(G^{\times}\right)$such that $d_{G^{\times}}(u)=3$ and $v \in X(G)$, then $u v$ is incident to at most one 3 -face in G^{\times}.
(3) If a 3-vertex v is incident to two 3 -faces and adjacent to two false vertices, then v is incident to a 5^{+}-face.

Proof of Theorem 2. Suppose that the theorem is false. Let G be a connected counterexample such that every edge is crossed by at most one other edge and crossings are as few as possible. The proof is divided into four parts as follows. In Part 1, we construct a plane graph H from the initial graph G by a series of operations. In Part 2, we investigate the structural properties of H by summarizing several claims. To derive a contradiction on H, we need to employ the Euler's formula and discharging method. Both Part 3 and Part 4 are contributed to deal with this long part.

Part 1. Forming plane graph \boldsymbol{H}

Let G^{\times}denote the associated plane graph of G. If G^{\times}has a 4^{+}-face f with $x, y \in V(f)$ and $x y \notin E(f)$ such that $d_{G^{\times}}(x)+d_{G^{\times}}(y) \geq 15$, then we carry out the following operation.

(*) Add an edge $x y$ to the interior of f

Let $\left(G^{\times}\right)_{1}$ denote the resultant graph, which is a plane graph obviously. If $\left(G^{\times}\right)_{1}$ contains a 4^{+}-face f which is incident to two non-adjacent vertices x_{1} and y_{1} in $\partial(f)$ satisfying similar property, then we carry out (\star) for x_{1} and y_{1} in
$\left(G^{\times}\right)_{1}$. Let $\left(G^{\times}\right)_{2}$ denote the new resultant graph. Repeat this process until the final graph, denoted G^{\prime}, has no 4^{+}-face satisfying the requirement.

From Lemma 3(1) and the definition of G^{\prime}, Observation 1 below holds evidently.

Observation 1. Let $f=\left[u_{1} u_{2} \cdots u_{k}\right]$ be a k-face of G^{\prime}.
(1) If $k \geq 5$, then $d_{G^{\prime}}\left(u_{i}\right) \leq 11$ for all $i=1,2, \ldots, k$.
(2) If $k=4$ and u_{1}, u_{3} are true, then $d_{G^{\prime}}\left(u_{1}\right)+d_{G^{\prime}}\left(u_{3}\right) \leq 14$.

It is easy to see that G^{\prime} is the associated plane graph of some 1-planar graph which is obtained from G by adding some edges according to Operation ($*$). Note that, if $x y \in E\left(G^{\prime}\right)$ with x, y being true, or $x z, z y \in E\left(G^{\prime}\right)$ where z is a crossing in G, then the following statements (P 1) and (P 2) hold automatically.
(P1) $d_{G^{\prime}}(x)+d_{G^{\prime}}(y) \geq 16$;
(P2) If $x y w x$ is a 3 -cycle of G^{\prime}, then $d_{G^{\prime}}(x)+d_{G^{\prime}}(y) \geq 17$.
Moreover, we have the following.
(P3) There is no 4-cycle with two nonadjacent 3 -vertices in G^{\prime}.
Observe that G^{\prime} may contain multi-edges, but have no 2 -faces. Thus, every 2 -cycle of G^{\prime} is separating. To obtain a contradiction by applying discharging method, we need to define a new graph H from G^{\prime} in such a way: if there is no separating 2-cycle in G^{\prime}, let $H=G^{\prime}$; otherwise, choose a separating 2-cycle C such that $\left|V_{\text {int }}(C)\right|$ is as small as possible, and let $H=G^{\prime}\left[V_{\text {int }}(C) \cup V(C)\right]$. We call the vertices in $V(C)$ external vertices of H and the vertices in $V_{\text {int }}(C)$ internal vertices of H and write $V^{0}(H)=V_{\text {int }}(C)$. Let f_{0} denote the outer face of H, and let $F^{0}(H)=F(H) \backslash\left\{f_{0}\right\}$. Sometimes, the faces in $F^{0}(H)$ are also called internal faces of H. For $v \in V^{0}(H)$, it holds obviously that $d_{H}(v)=d_{G^{\prime}}(v)$. By the choice of C, H contains no 2 -cycles other than C.

Let $v \in V(H)$ be a true vertex. If $v v^{\prime} \in E(H)$ and v^{\prime} is true, then we call v^{\prime} a direct-neighbor of v in H. If $v w \in E(H)$ and w is false such that $w v^{\prime} \in E(H)$ and $v v^{\prime} \in E(G)$, then we call v^{\prime} an indirect-neighbor of v in H. A true vertex $v \in V^{0}(H)$ is small if $d_{H}(v) \leq 7$ and big otherwise. A vertex v is fat if $v \in V(C)$ or $v \in V^{0}(H)$ is big. For a vertex $v \in V(H)$ and an integer $i \geq 1$, we use $m_{i}(v), m_{i}^{+}(v), m_{3}^{*}(v)$ to denote the number of i-faces, i^{+}-faces, and false 3 -faces which are incident to v, respectively.

A 6 -face $f=\left[x_{1} x_{2} \cdots x_{5} x_{6}\right]$ is special if x_{2}, x_{4}, x_{6} are small such that $d_{H}\left(x_{2}\right)=$ 3 and $m_{3}^{*}\left(x_{2}\right)=2$. By (P3) and Lemma 3(1), at most one of x_{2}, x_{4}, x_{6} is a 3vertex which is incident to two false 3 -faces. An internal 4 -vertex v is good if $m_{3}^{*}(v) \leq 1$, or $m_{3}^{*}(v)=2$ and $m_{5}^{+}(v) \geq 1$.

An internal 3 -vertex u is rich if one of the following holds:
(1)

$$
m_{3}^{*}(u)=0 ;
$$

(2) $m_{3}^{*}(u)=1$ and $m_{5}^{+}(u) \geq 1$;
(3) $m_{3}^{*}(u)=2$ and u is incident to a face f such that
(3.1) $d_{H}(f) \geq 6$; or
(3.2) $d_{H}(f)=5$, and f is incident to only one small vertex, i.e., u.

Otherwise, u is called a poor 3 -vertex.

Part 2. Structural properties

For a k-vertex $v \in V^{0}(H)$, let $v_{0}, v_{1}, \ldots, v_{k-1}$ denote the neighbors of v in H in a cyclic order, and let $f_{0}, f_{1}, \ldots, f_{k-1}$ denote the faces of H incident to v with $v v_{i}, v v_{i+1} \in \partial\left(f_{i}\right)$ for $i=0,1, \ldots, k-1$, where the indices are taken as modulo k. If v_{i} is false, then we assume that v_{i} is a crossing of the edges $v u_{i}$ and $x_{i} y_{i}$ of G.

Claims 1-3 below have been established in [13].
Claim 1. If v is incident to three consecutively adjacent 3 -faces f_{i-1}, f_{i}, f_{i+1}, then at least one of $v_{i-1}, v_{i}, v_{i+1}, v_{i+2}$ is fat.

Claim 2. If u is a small vertex with $d_{H}(u) \in\{3,4,5,7\}$, then u is incident to at most $d_{H}(u)-1$ false 3-faces.

Claim 3. If an edge $v v_{i}$ lies on two false 3 -faces $\left[v v_{i-1} v_{i}\right]$ and $\left[v v_{i} v_{i+1}\right]$ such that v is fat, v_{i-1}, v_{i+1} are false, u_{i-1}, u_{i+1} are small and $4 \leq d_{H}\left(v_{i}\right) \leq 6$, then $m_{3}^{*}\left(v_{i}\right) \leq d_{H}\left(v_{i}\right)-2$.

Claim 4. Assume that v_{i} is a false vertex which is crossed by the edges vu u_{i} and $x_{i} y_{i}$ in G. If $8 \leq d_{H}(v) \leq 11$, then x_{i} or y_{i} is fat so that $\left[v x_{i} v_{i}\right]$ or $\left[v y_{i} v_{i}\right]$ is a 3 -face. If $d_{H}(v) \geq 12$, then f_{i-1}, f_{i} are 3-faces.

Proof. If $8 \leq d_{H}(v) \leq 11$, then x_{i} or y_{i} is fat by (P1), say x_{i}. So, by the definition of H, we derive that $v x_{i} \in E(H)$ and hence $\left[v x_{i} v_{i}\right]$ is a 3 -face. If $d_{H}(v) \geq 12$, then both f_{i-1} and f_{i} must be 3 -faces by Observation 1 .

Claim 5. If v_{i} is a small t-vertex and $d_{H}(v)=16-t$, then $v v_{i}$ is not incident to any 3-face.

Proof. Suppose that $v v_{i}$ is incident to a 3-face, say $f_{i}=\left[v v_{i} v_{i+1}\right]$. By (P2), f_{i} is false, so v_{i+1} is a false vertex which is a crossing of the edges $v u_{i+1}$ and $z v_{i}$ in G. By $(\mathrm{P} 1), d_{G^{\prime}}(z) \geq 16-t$, which implies that $d_{G^{\prime}}(v)+d_{G^{\prime}}(z) \geq(16-t)+(16-t)=$ $32-2 t \geq 18$ as $t \leq 7$. Thus, $z v \in E(H)$ by the structure of H. Now, a 3-cycle $v v_{i} z v$ with $v v_{i}$ as an edge is obtained, which contradicts (P 2).

Part 3. Discharging rules

To derive a contradiction, we make use of the discharging method. Since G^{\prime} is connected, so is H. First, by Euler's formula $|V(H)|-|E(H)|+|F(H)|=2$, we
can derive the following identity:

$$
\begin{equation*}
\sum_{v \in V(H)}\left(d_{H}(v)-4\right)+\sum_{f \in F(H)}\left(d_{H}(f)-4\right)=-8 . \tag{1}
\end{equation*}
$$

Define an initial weight function c on H by $c(x)=d_{H}(x)-4$ for each $x \in$ $V(H) \cup F(H)$. Redistribute the weight between vertices and faces in H and keep the sum of all weights unchanged so that the resultant weight function c^{\prime} satisfies
(I) $c^{\prime}(x) \geq 0$ for all $x \in V^{0}(H) \cup F^{0}(H)$; and
(II) $c^{\prime}\left(f_{0}\right)+\sum_{x \in V(C)} c^{\prime}(x) \geq-7$.

Hence we obtain a contradiction

$$
\begin{equation*}
-7 \leq \sum_{x \in V(H) \cup F(H)} c^{\prime}(x)=\sum_{x \in V(H) \cup F(H)} c(x)=-8 \tag{2}
\end{equation*}
$$

and the proof is completed.
For a k-vertex $v \in V^{0}(H)$, let $v_{0}, v_{1}, \ldots, v_{k-1}$ denote the neighbors of v in H in a cyclic order, and let $f_{0}, f_{1}, \ldots, f_{k-1}$ denote the faces of H incident to v with $v v_{i}, v v_{i+1} \in \partial\left(f_{i}\right)$ for $i=0,1, \ldots, k-1$, where the indices are taken as modulo k. If v_{i} is false, then we assume that v_{i} is a crossing of the edges $v u_{i}$ and $x_{i} y_{i}$ of G.

We first design several discharging rules as follows.
(R0) Let $v \in V(C)$. Then v sends $\frac{1}{2}$ to each internal (direct or indirect) neighbor and to each incident internal face. Then we carry out the following additional subrules (if any).
(AR0.1) If $v_{i} \in V^{0}(H)$ with $3 \leq d_{H}\left(v_{i}\right) \leq 4$ such that $f_{i}=\left[v v_{i} v_{i+1}\right]$ is a 3 -face, v_{i+1} is false, u_{i+1} is an external vertex or an internal 6^{+}-vertex, then u_{i+1} sends $\frac{1}{3}$ to v_{i} through $u_{i+1} v_{i+1}$ and $v_{i} v_{i+1}$.
(AR0.2) If $v_{i} \in V^{0}(H)$ is a poor 3 -vertex, and $f_{i}=\left[v v_{i} w v_{i+1}\right]$ is a 4 -face such that w is false, then f_{i} sends $\frac{1}{2}$ to v_{i}.
(R1) Let $f=\left[x_{1} x_{2} x_{3}\right] \in F^{0}(H)$ be a 3 -face of H.
(R1.1) Suppose that $|V(f) \cap V(C)|=1$, say $x_{1} \in V(C)$. If f is false, say x_{2} is false, then f gets $\frac{1}{2}$ from x_{3}. Otherwise, f gets $\frac{1}{2}$ from each of its incident fat vertices.
(R1.2) Suppose that $|V(f) \cap V(C)|=0$. If f is false, then f gets $\frac{1}{2}$ from each of its incident true vertices. Otherwise, f gets $\frac{1}{2}$ from each of its incident big vertices.
(R2) Let f be a 5^{+}-face. If $f=\left[x_{1} x_{2} \cdots x_{5} x_{6}\right]$ is a special 6 -face, say x_{2} is an internal 3 -vertex with $m_{3}^{*}\left(x_{2}\right)=2$ and x_{4}, x_{6} are small vertices, then f gives 1
to x_{2}, and $\frac{1}{2}$ to each of x_{4} and x_{6}. Otherwise, f divides equally $d_{H}(f)-4$ to its incident small vertices.

Given a small vertex $v \in V^{0}(H)$, we use $\alpha(v)$ to denote the sum of weights that v gets from all incident 5^{+}-faces according to (R2).
(R3) Let $v \in V^{0}(H)$ be a 3 -vertex.
(R3.1) If v is rich and $b_{1}=1+\frac{1}{2} m_{3}^{*}(v)-\alpha(v)>0$, then v gets $\frac{b_{1}}{3}$ from each internal (direct or indirect) neighbor in $V^{0}(H)$.
(R3.2) Assume that v is poor.
(R3.2.1) Suppose that $m_{3}^{*}(v)=1$. Let f_{1} be a false 3 -face with v_{1} being false, let $f_{0}=\left[v v_{0} x v_{1}\right]$ be a 4 -face, and $3 \leq d_{H}\left(f_{2}\right) \leq 4$.
(R3.2.1.1) If v_{0} is true, then v gets $\frac{10}{21}$ from $v_{2}, \frac{2}{3}$ from v_{0}, and $\frac{5}{14}$ from u_{1}.
Remark. If some of v_{0}, u_{1}, v_{2} in (R3.2.1) are external vertices, then we need to carry out (R0), whereas the discharging operation here for them will be ignored. The similar convention is valid for other cases below.
(R3.2.1.2) If v_{0} is false, then v gets $\frac{11}{14}$ from v_{2}, and $\frac{5}{14}$ from each of u_{0} and u_{1}. (R3.2.2) Suppose that $m_{3}^{*}(v)=2$, say, f_{0}, f_{2} are false 3 -faces. Then v_{1}, v_{2} are false and $f_{1}=\left[v v_{1} w y v_{2}\right]$ is a 5 -face. In this case, both w and y are external vertices or internal 6^{+}-vertices. Then v gets $\frac{5}{6}$ from v_{0}, and $\frac{1}{3}$ from each of u_{1} and u_{2}.
(R4) Let $v \in V^{0}(H)$ be a true 4 -vertex.
(R4.1) If v is good and $b_{2}=\frac{1}{2} m_{3}^{*}(v)-\alpha(v)>0$, then v gets $\frac{b_{2}}{4}$ from each (direct or indirect) neighbor in $V^{0}(H)$.
(R4.2) Assume that $m_{3}^{*}(v)=2$ and $m_{5}^{+}(v)=0$.
(R4.2.1) Suppose that f_{1} and f_{2} are false 3 -faces. If v_{2} is false, then v gets $\frac{1}{2}$ from each of v_{1} and v_{3}. If v_{2} is true (it follows that v_{0} is true), then v gets $\frac{1}{2}$ from v_{0}, and $\frac{1}{6}$ from each of u_{1}, v_{2} and u_{3}.
(R4.2.2) Suppose that f_{0} and f_{2} are false 3 -faces. If v_{0} and v_{2} are false, then v gets $\frac{1}{3}$ from each of v_{1} and $v_{3}, \frac{1}{6}$ from each of u_{0} and u_{2}. If v_{0} and v_{3} are false, then v gets $\frac{1}{3}$ from each of v_{1} and $v_{2}, \frac{1}{6}$ from each of u_{0} and u_{3}.
(R4.3) Assume that $m_{3}^{*}(v)=3$, say f_{0}, f_{1}, f_{2} are false 3 -faces and v_{0}, v_{2} are false. Now it is easy to derive that $d_{H}\left(f_{3}\right)=4$. Then v gets $\frac{2}{3}$ from $v_{3}, \frac{5}{13}$ from $u_{2}, \frac{1}{3}$ from v_{1}, and $\frac{3}{26}$ from u_{0}.
(R5) If v is an internal 5-vertex such that $b_{3}=\frac{1}{2} m_{3}^{*}(v)-1-\alpha(v)>0$, then v gets $\frac{b_{3}}{5}$ from each (direct or indirect) neighbor in $V^{0}(H)$.
(R6) If v is an internal 6-vertex such that $b_{4}=\frac{1}{2} m_{3}^{*}(v)-2-\alpha(v)>0$, then v gets $\frac{b_{4}}{6}$ from each (direct or indirect) neighbor in $V^{0}(H)$.

R3.2.1.1: v_{0} is true

R3.2.2: f_{1} is a 5 - face

R4.2.1: v_{0}, v_{2} are true

R4.2.2: v_{0}, v_{3} are false

R3.2.1.2: v_{0} is false

$\mathrm{R} 4.2 .1: v_{2}$ is false

R4.2.2: v_{0}, v_{2} are false

R 4.3 : v_{0}, v_{2} are false

Figure 1. Rules (R3) and (R4).

In Figure 1, vertices marked • have no edges of G incident to them other than those shown, vertices marked \circ may have edges connected to other vertices of H not in the configuration, and vertices marked \otimes are false vertices of H.
Observation 2. $b_{2} \leq \frac{1}{2} ; b_{i} \leq 1$ for $i=1,3,4$.
Proof. (1) To show that $b_{1} \leq 1$, we need to carry out (R3.1) for a rich 3vertex v. First notice that $\alpha(v) \geq 0$ by its definition. If $m_{3}^{*}(v)=0$, then $b_{1}=1-\alpha(v) \leq 1$. If $m_{3}^{*}(v)=1$, then $m_{5}^{+}(v) \geq 1$. By (R2), $\alpha(v) \geq \frac{1}{2}$, and hence $b_{1}=1+\frac{1}{2} m_{3}^{*}(v)-\alpha(v) \leq 1$. If $m_{3}^{*}(v)=2$, then $m_{5}^{+}(v)=1$, and it is easy to check that $\alpha(v) \geq 1$ by (R2). Consequently, $b_{1}=1+\frac{1}{2} \times 2-\alpha(v) \leq 1$.
(2) To show that $b_{2} \leq \frac{1}{2}$, we need to carry out (R4.1) for a good 4 -vertex v. By the definition, $m_{3}^{*}(v) \leq 2$. If $m_{3}^{*}(v) \leq 1$, then $b_{2}=\frac{1}{2} m_{3}^{*}(v)-\alpha(v) \leq$ $\frac{1}{2} m_{3}^{*}(v) \leq \frac{1}{2}$. If $m_{3}^{*}(v)=2$, then $m_{5}^{+}(v) \geq 1$. By (R2), $\alpha(v) \geq \frac{1}{2}$, and therefore $b_{2}=\frac{1}{2} m_{3}^{*}(v)-\alpha(v) \leq \frac{1}{2} \times 2-\frac{1}{2}=\frac{1}{2}$.
(3) To show that $b_{3} \leq 1$, it suffices to note that $m_{3}^{*}(v) \leq 4$ by Claim 2. Thus, $b_{3}=\frac{1}{2} m_{3}^{*}(v)-1-\alpha(v) \leq \frac{1}{2} \times 4-1 \leq 1$.
(4) Because $m_{3}^{*}(v) \leq 6$, it is immediate to deduce that $b_{4}=\frac{1}{2} m_{3}^{*}(v)-2-$ $\alpha(v) \leq \frac{1}{2} \times 6-2 \leq 1$.

Part 4. Computation of weights

Let c^{\prime} denote the resultant weight function after (R0)-(R6) are carried out on H. Let us first show that $c^{\prime}(x) \geq 0$ for all $x \in V^{0}(H) \cup F^{0}(H)$.

Suppose that $f \in F^{0}(H)$. Then $d_{H}(f) \geq 3$. If $d_{H}(f)=3$, then $c(f)=-1$. If f is false, then f is incident to two true vertices by Lemma 3(1). By (R0) and (R1), $c^{\prime}(f)=-1+\frac{1}{2} \times 2=0$. Assume that f is true. If $|V(f) \cap V(C)|=2$, then $c^{\prime}(f) \geq-1+\frac{1}{2} \times 2=0$ by (R0). If $|V(f) \cap V(C)|=1$, then $c^{\prime}(f) \geq-1+\frac{1}{2}+\frac{1}{2}=0$ by (R0) and (R1.1). If $|V(f) \cap V(C)|=0$, then $c^{\prime}(f) \geq-1+\frac{1}{2} \times 2=0$ by (R1.2). If $d_{H}(f)=4$, then $c^{\prime}(f)=c(f)=0$. If $d_{H}(f) \geq 5$, then (R2) implies that $c^{\prime}(f) \geq 0$.

Suppose that $v \in V^{0}(H)$ is a k-vertex. Then $k \geq 3$. Let $v_{0}, v_{1}, \ldots, v_{k-1}$ be the neighbors of v in cyclic order, and $f_{0}, f_{1}, \ldots, f_{k-1}$ be the faces of H incident to v with $v v_{i}, v v_{i+1} \in \partial\left(f_{i}\right)$ for $i=0,1, \ldots, k-1$, where indices are taken modulo k. Moreover, if v_{i} is a false vertex, then we assume that v_{i} is a crossing of G lying on the edge $v u_{i}$.

According to the size of k, we consider several cases as follows.
Case 1. $k=3$. Then $c(v)=k-4=-1$, and every (direct or indirect) neighbor of v is fat by (P 1).

First assume that v is rich. Then v gets $\min \left\{\frac{1}{2}, \frac{b_{1}}{3}\right\}$ from each (direct or indirect) neighbor by (R0) and (R3.1), where $b_{1}=1+\frac{1}{2} m_{3}^{*}(v)-\alpha(v)>0$, and receives $\alpha(v)$ by (R2). Since $b_{1} \leq 1$ by Observation 2, it follows that min $\left\{\frac{1}{2}, \frac{b_{1}}{3}\right\} \geq$ $\frac{b_{1}}{3}$. Thus, by (R1), $c^{\prime}(v) \geq-1-\frac{1}{2} m_{3}^{*}(v)+\frac{b_{1}}{3} \times 3+\alpha(v)=0$.

Next assume that v is poor. There are two possibilities to be discussed.
(1.1) $m_{3}^{*}(v)=1$ and $m_{5}^{+}(v)=0$. Let f_{1} be a false 3 -face such that v_{1} is false, $f_{0}=\left[v v_{0} x v_{1}\right]$ is a 4 -face, and $3 \leq d_{H}\left(f_{2}\right) \leq 4$. By (R1), v needs to send $\frac{1}{2}$ to f_{1}. If v_{0} is true, then v gets $\frac{10}{21}$ from $v_{2}, \frac{2}{3}$ from v_{0}, and $\frac{5}{14}$ from u_{1} by (R0) and (R 3.2 .1 .1). Hence, $c^{\prime}(v) \geq-1-\frac{1}{2}+\frac{10}{21}+\frac{2}{3}+\frac{5}{14}=0$. If v_{0} is false, then v gets $\frac{11}{14}$ from v_{2}, and $\frac{5}{14}$ from each of u_{0} and u_{1} by (R0) and (R3.2.1.2). Hence, $c^{\prime}(v) \geq-1-\frac{1}{2}+\frac{11}{14}+\frac{5}{14} \times 2=0$.
(1.2) $m_{3}^{*}(v)=2$, say f_{0}, f_{2} are false 3 -faces. It follows that v_{1} and v_{2} are false vertices, and f_{1} is a 5 -face, say $f_{1}=\left[v v_{1} w y v_{2}\right]$, where both w and y are external vertices or internal 6^{+}-vertices by (P1), (P2) and Observation 1. By (R1), v sends $\frac{1}{2}$ to each of f_{0} and f_{2}. By (R0) and (R3.2.2), v gets $\frac{5}{6}$ from v_{0}, and $\frac{1}{3}$ from each of u_{1} and u_{2}. By (R2), f_{1} gives $\frac{1}{2}$ to v. Consequently, $c^{\prime}(v) \geq-1-\frac{1}{2} \times 2+\frac{5}{6}+\frac{1}{2}+\frac{1}{3} \times 2=0$.

Case 2. $k=4$. Then $c(v)=0$. By Claim 2, $m_{3}^{*}(v) \leq 3$. If v is good, then v gets $\min \left\{\frac{1}{2}, \frac{b_{2}}{4}\right\}$ from each (direct or indirect) neighbor in H by (R0) and (R4.1). Hence, $c^{\prime}(v) \geq \frac{b_{2}}{4} \times 4+\alpha(v)-\frac{1}{2} m_{3}^{*}(v)=0$ by (R2). Otherwise, v is not good. If $m_{3}^{*}(v)=3$, then $c^{\prime}(v) \geq \frac{2}{3}+\frac{5}{13}+\frac{1}{3}+\frac{3}{26}-\frac{1}{2} \times 3=0$ by (R0) and (R4.3). Suppose that $m_{3}^{*}(v)=2$. We have to consider two subcases by symmetry. If f_{0}, f_{2} are false 3 -faces, then $c^{\prime}(v) \geq \frac{1}{3} \times 2+\frac{1}{6} \times 2-\frac{1}{2} \times 2=0$ by (R0) and (R4.2.2). Otherwise, assume that f_{1}, f_{2} are false 3 -faces. If v_{2} is true, then $c^{\prime}(v) \geq \frac{1}{2}+\frac{1}{6} \times 3-\frac{1}{2} \times 2=0$ by (R0) and (R4.2.1). If v_{2} is false, then $c^{\prime}(v) \geq \frac{1}{2} \times 2-\frac{1}{2} \times 2=0$ by (R0) and (R4.2.1).

Case 3. $k=5$. Then $c(v)=1$. By Claim 3, $m_{3}^{*}(v) \leq 4$. By Observation $2, b_{3}=\frac{1}{2} m_{3}^{*}(v)-1-\alpha(v) \leq 1$ and so $\frac{b_{3}}{5} \leq \frac{1}{5}$. By (R5) and (R0), v gets at least $\frac{b_{3}}{5}$ from each (direct or indirect) neighbor in H and $\alpha(v)$ by (R2). Hence, $c^{\prime}(v) \geq 1+\alpha(v)+\frac{b_{3}}{5} \times 5-\frac{1}{2} m_{3}^{*}(v)=0$.

Case 4. $k=6$. Then $c(v)=2$. By (R6), v gets at least $\frac{b_{4}}{6}$ from each (direct or indirect) neighbor in H and $\alpha(v)$ by (R2). Hence, $c^{\prime}(v) \geq 2+\alpha(v)+\frac{b_{4}}{6} \times 6-$ $\frac{1}{2} m_{3}^{*}(v)=0$.

Case 5. $7 \leq k \leq 9$. If $k=7$, then $m_{3}^{*}(v) \leq 6$ by Claim 2 , so that $c^{\prime}(v) \geq$ $3-\frac{1}{2} \times 6=0$ by (R1). If $8 \leq k \leq 9$, then the neighbors of v are external vertices or internal 7^{+}-vertices by (P1). Hence, $c^{\prime}(v) \geq k-4-\frac{1}{2} k \geq 0$.

Case 6. $k=10$. Then $c(v)=6$. By (P1), the (direct or indirect) neighbors of v are external vertices or internal 6^{+}-vertices. Let $i \in\{0,1, \ldots, k-1\}$. If v_{i} or u_{i} is an external vertex or an internal 7^{+}-vertex, then v gives nothing to v_{i} or u_{i} by our rules. Otherwise, there are two possibilities below. If v_{i} is an internal 6 -vertex, then f_{i-1} and f_{i} are 4^{+}-faces by Claim 5 , and hence $m_{3}^{*}\left(v_{i}\right) \leq 4$. So, $b_{4}=\frac{1}{2} m_{3}^{*}\left(v_{i}\right)-2-\alpha\left(v_{i}\right) \leq 0$, and v gives nothing to v_{i} by (R6). If u_{i} is an internal

6 -vertex, then by Claim 4, at least one of f_{i-1} and f_{i} is a 3 -face. This implies that $m_{3}^{*}\left(u_{i}\right) \leq 5$ by (P2). Now $b_{4}=\frac{1}{2} m_{3}^{*}\left(u_{i}\right)-2-\alpha\left(u_{i}\right) \leq \frac{1}{2}$ and hence v gives u_{i} at most $\frac{1}{12}$ by (R6). In a word, v gives at most $\frac{1}{12}$ to each of (direct or indirect) neighbors in every possible situation. Consequently, $c^{\prime}(v) \geq 6-\frac{1}{2} \times 10-\frac{1}{12} \times 10=0$ by (R1).

Case 7. $k=11$. Then $c(v)=7$. By (P1), the (direct or indirect) neighbors of v are external vertices or internal 5^{+}-vertices. Let $i \in\{0,1, \ldots, k-1\}$. Assume that v_{i} or u_{i} is small. If v_{i} or u_{i} is an internal 6^{+}-vertex, then v gives at most $\frac{1}{6}$ to v_{i} or u_{i} by (R6). Otherwise, we consider two possibilities. If v_{i} is an internal 5 -vertex, then f_{i-1} and f_{i} are 4^{+}-faces by Claim 5 , which implies that $m_{3}^{*}\left(v_{i}\right) \leq 3$. So, $b_{3}=\frac{1}{2} m_{3}^{*}\left(v_{i}\right)-1-\alpha\left(v_{i}\right) \leq \frac{1}{2}$, and henceforth v gives at most $\frac{1}{10}$ to v_{i} by (R5). If u_{i} is an internal 5 -vertex, then Claim 4 asserts that at least one of f_{i-1} and f_{i} is a 3 -face, say $f_{i-1}=\left[v v_{i-1} v_{i}\right]$. If f_{i} is also a 3 -face, then it is easy to derive that $m_{3}^{*}\left(u_{i}\right) \leq 3$ by (P2). Otherwise, f_{i} is a 4^{+}-face. Let v_{i} be the crossing of two edges $v u_{i}$ and $v_{i-1} x$ in G. Since $x v \notin E(H)$, it follows that x is a small vertex of G by the structure of H. Thus, $x u_{i} \notin E(H)$ by (P1). Again, we obtain that $m_{3}^{*}\left(u_{i}\right) \leq 3$. Thus we always have that $b_{3}=\frac{1}{2} m_{3}^{*}\left(u_{i}\right)-1-\alpha\left(u_{i}\right) \leq \frac{1}{2}$ and hence v gives u_{i} at most $\frac{1}{10}$ by (R5). If $m_{3}(v) \leq 10$, then $c^{\prime}(v) \geq 7-\frac{1}{2} \times 10-\frac{1}{6} \times 11=\frac{1}{6}$ by (R1). If $m_{3}(v)=11$, then v is adjacent to at least two fat vertices by Claim 1 , and therefore $c^{\prime}(v) \geq 7-\frac{1}{2} \times 11-\frac{1}{6} \times 9=0$ by (R1).

Now suppose that $d_{H}(v) \geq 12$. By Observation 1 , every face incident to v is of degree at most 4. Moreover, if $f_{i}=\left[v v_{i} z v_{i+1}\right]$ is a 4 -face incident to v, then z must be a false vertex. For the sake of convenience, we relabel the neighbors of v in H in a cyclic order as $y_{0} ; x_{0}^{1}, x_{0}^{2}, \ldots, x_{0}^{m_{0}} ; y_{1} ; x_{1}^{1}, x_{1}^{2}, \ldots, x_{1}^{m_{1}} ; y_{2}, \ldots, y_{t-1} ; x_{t-1}^{1}, x_{t-1}^{2}$, $\ldots, x_{t-1}^{m_{t-1}}$, where $y_{0}, y_{1}, \ldots, y_{t-1}$ are fat vertices, and other vertices are false or small. Set

$$
\begin{aligned}
& Y=\left\{y_{0}, y_{1}, \ldots, y_{t-1}\right\}, \\
& X_{s}=\left\{x_{s}^{1}, x_{s}^{2}, \ldots, x_{s}^{m_{s}}\right\} \text { for } s=0,1, \ldots, t-1 .
\end{aligned}
$$

Without loss of generality, we assume that $y_{0}=v_{0}, x_{0}^{1}=v_{1}, \ldots, x_{0}^{m_{0}}=$ $v_{p-1}, y_{1}=v_{p}$, where $p=m_{0}+1 \geq 1$. In particular, when $|Y|=1$, we have that $y_{0}=y_{1}=v_{0}$ and $p=k$. It is easy to check that $\left(m_{0}+1\right)+\left(m_{1}+1\right)+\cdots+$ $\left(m_{t-1}+1\right)=m_{0}+m_{1}+\cdots+m_{t-1}+t=m_{0}+m_{1}+\cdots+m_{t-1}+|Y|=d_{H}(v)$.

Claim 6.

(1) There is no index i with $2 \leq i \leq p-3$ such that $d_{H}\left(f_{i}\right)=3$;
(2) There is no index i with $1 \leq i \leq p-2$ such that $d_{H}\left(f_{i}\right)=3$ and $d_{H}\left(f_{i-1}\right)=$ $d_{H}\left(f_{i+1}\right)=4$.

Proof. (1) Suppose that $f_{i}=\left[v v_{i} v_{i+1}\right]$ is a 3 -face where $2 \leq i \leq p-3$. Without loss of generality, assume that v_{i} is small. If f_{i} is true, then v_{i+1} is fat by (P2), which contradicts the choice of i. Otherwise, v_{i+1} is false and so f_{i} is false. By
the structure of H, f_{i+1} is a false 3 -face with v_{i+2} being fat by Claim 4. Thus, v_{i+2} is just v_{p} and $i=p-2$, contradicting the assumption.
(2) The proof is analogous to that of the conclusion (1).

By Claim 6, we may define the following three subsets of faces incident to v which lie between edges $v v_{0}$ and $v v_{p}$.

$$
\begin{aligned}
& T_{0}=\left\{f_{i} \mid d_{H}\left(f_{i}\right)=3 \text { for } i=0,1, \ldots, q-1\right\}, \\
& Q=\left\{f_{i} \mid d_{H}\left(f_{i}\right)=4 \text { for } i=q, q+1, \ldots, r-1\right\}, \\
& T_{p}=\left\{f_{i} \mid d_{H}\left(f_{i}\right)=3 \text { for } i=r, r+1, \ldots, p-1\right\} .
\end{aligned}
$$

Note that some of T_{0}, Q, T_{p} may be empty. Let σ_{0} denote the sum of weights that v sends to the elements in $\left\{f_{0}, f_{1}, \ldots, f_{p-1}, v_{1}\right.$ (or u_{1}), v_{2} (or u_{2}), \ldots, $v_{p-1}\left(\right.$ or $\left.\left.u_{p-1}\right)\right\}$ according to our rules (R0)-(R6). For $x, y \in V(H) \cup F(H)$, we use $\tau(x \rightarrow y)$ to denote the amount of weight that x sends to y according to our rules. Let

$$
\begin{aligned}
& \theta\left(f_{0}\right)=\tau\left(v \rightarrow f_{0}\right)+\tau\left(v \rightarrow v_{1}\right), \\
& \theta\left(f_{p-1}\right)=\tau\left(v \rightarrow f_{p-1}\right)+\tau\left(v \rightarrow v_{p-1}\right), \\
& \theta\left(f_{0}, f_{1}\right)=\tau\left(v \rightarrow f_{0}\right)+\tau\left(v \rightarrow u_{1}\right)+\tau\left(v \rightarrow f_{1}\right)+\tau\left(v \rightarrow v_{2}\right), \\
& \theta\left(f_{p-1}, f_{p-2}\right)=\tau\left(v \rightarrow f_{p-1}\right)+\tau\left(v \rightarrow u_{p-1}\right)+\tau\left(v \rightarrow f_{p-2}\right)+\tau\left(v \rightarrow v_{p-2}\right) .
\end{aligned}
$$

Case 8. $k=12$. Then $c(v)=8$. By (P1), each of (direct or indirect) internal neighbors of v is of degree at least 4 .

Assume that $|Y|=0$. We claim that $m_{3}(v)=0$. Suppose to the contrary that $f_{i}=\left[v v_{i} v_{i+1}\right]$ is a 3 -face. If f_{i} is true, then at least one of v_{i} and v_{i+1} is fat by (P2), contradicting the fact that $|Y|=0$. So, f_{i} is false, say, v_{i} is a false vertex and v_{i+1} is small. By Claim $4, f_{i-1}$ must be a 3 -face. This implies that v_{i-1} is fat by (P1), also a contradiction. Now, by (R4)-(R6), v gives at most $\frac{1}{2}$ to each of its (direct or indirect) neighbors. Thus, $c^{\prime}(v) \geq 8-\frac{1}{2} \times 12=2$.

Assume that $|Y| \geq 1$. We first establish the following result.
Claim 7. $\sigma_{0} \leq \frac{2}{3}\left(m_{0}+1\right)$.
Proof. Note that $m_{0}+1=p$. The proof is split into some cases by symmetry, depending on the size of $\left|T_{0}\right|,|Q|,\left|T_{p}\right|$.

Case I. $\left|T_{0}\right|=\left|T_{p}\right|=0$. All $f_{0}, f_{1}, \ldots f_{p-1}$ are 4 -faces. By (R4)-(R6), v gives at most $\frac{1}{2}$ to v_{i} for each $i=1,2, \ldots, p-1$. Thus, $\sigma_{0} \leq \frac{1}{2} p<\frac{2}{3} p$.

Case II. $|Q|=0$. Note that $p \geq 1$. By Claims 1 and $6, p \leq 4$. If $p=1$, then $\sigma_{0} \leq \frac{1}{2}<\frac{2}{3} p$.

Assume that $p=2$. If v_{1} is small, then $d_{H}\left(v_{1}\right) \geq 5$ by (P 2), and v gives at most $\frac{1}{5}$ to v_{1} by (R5) and (R6). Assume that v_{1} is false. If u_{1} is a 4 -vertex, then it is easy to derive that $m_{3}^{*}\left(u_{1}\right) \leq 2$ by (P2), then v gives at most $\frac{1}{6}$ to u_{1} by (R4). Thus, v gives at most $\frac{1}{5}$ to u_{1} by (R4)-(R6). By (R1), we get that $\sigma_{0} \leq \frac{1}{5}+2 \times \frac{1}{2}=\frac{6}{5}<\frac{4}{3}=\frac{2}{3} p$.

Assume that $p=3$. Suppose, without loss of generality, that v_{1} is false and v_{2} is small. Similarly, we can show that v gives at most $\frac{1}{5}$ to each of u_{1} and v_{2}. Consequently, $\sigma_{0} \leq 3 \times \frac{1}{2}+2 \times \frac{1}{5}=\frac{19}{10}<2=\frac{2}{3} p$.

Assume that $p=4$. Then v_{2} is small and v_{1}, v_{3} are false. Similarly, v sends at most $\frac{1}{5}$ to each of u_{1}, v_{2}, u_{3}, and hence $\sigma_{0} \leq 4 \times \frac{1}{2}+3 \times \frac{1}{5}=\frac{13}{5}<\frac{8}{3}=\frac{2}{3} p$.

Case III. $\left|T_{p}\right|=0$ and $\left|T_{0}\right|,|Q| \geq 1$. Since $Q \neq \emptyset$, it is easy to deduce that $\left|T_{0}\right| \leq 2$. First assume that $\left|T_{0}\right|=1$, then $p \geq 2$. Namely, only f_{0} is a 3 -face and v_{1} is small. By (P 2), $d_{H}\left(v_{1}\right) \geq 5$. By (R5) and (R6), v gives at most $\frac{1}{5}$ to v_{1}. By (R4)-(R6), v gives at most $\frac{1}{2}$ to each of $v_{2}, v_{3}, \ldots, v_{p-1}$. So, by (R1), we get that $\sigma_{0} \leq \frac{1}{2}+\frac{1}{5}+\frac{1}{2}(p-2)=\frac{1}{2} p+\frac{3}{10}<\frac{2}{3} p$. Next assume that $\left|T_{0}\right|=2$, then $p \geq 3$. Only f_{0}, f_{1} are 3 -faces. It is immediate to derive that v_{1} is false and v_{2} is small. Similarly, by (R4)-(R5), v gives at most $\frac{1}{5}$ to each of u_{1} and v_{2}. Hence, by (R1), $\sigma_{0} \leq 2 \times \frac{1}{2}+2 \times \frac{1}{5}+\frac{1}{2}(p-3)=\frac{2}{5}+\frac{1}{2}(p-1) \leq \frac{2}{3} p$.

Case IV. $\left|T_{0}\right|,|Q|,\left|T_{p}\right| \geq 1$. By virtue of the above discussion, we have three possibilities by symmetry.

If $\left|T_{0}\right|=\left|T_{p}\right|=1$, then $p \geq 3, \theta\left(f_{0}\right) \leq \frac{1}{2}+\frac{1}{5}=\frac{7}{10}, \theta\left(f_{p-1}\right) \leq \frac{1}{2}+\frac{1}{5}=\frac{7}{10}$, and hence $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}\right)+\frac{1}{2}(p-3)=2 \times \frac{7}{10}+\frac{1}{2}(p-3) \leq \frac{2}{3} p$.

If $\left|T_{0}\right|=1$ and $\left|T_{p}\right|=2$, then $p \geq 4, \theta\left(f_{p-2}, f_{p-1}\right) \leq 2 \times \frac{1}{2}+2 \times \frac{1}{5}=\frac{7}{5}$, and hence $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}, f_{p-2}\right)+\frac{1}{2}(p-4) \leq \frac{7}{10}+\frac{7}{5}+\frac{1}{2}(p-4)=\frac{1}{2} p+\frac{1}{10} \leq \frac{2}{3} p$.

If $\left|T_{0}\right|=\left|T_{p}\right|=2$, then $p \geq 5$ and $\sigma_{0} \leq \theta\left(f_{0}, f_{1}\right)+\theta\left(f_{p-1}, f_{p-2}\right)+\frac{1}{2}(p-5) \leq$ $\frac{7}{5}+\frac{7}{5}+\frac{1}{2}(p-5) \leq \frac{2}{3} p$.

For $i=0,1, \ldots, t-1$, we can similarly define the symbol σ_{i} on the set X_{i}, where indices are taken modulo t. Analogous to Claim 7, we can prove that $\sigma_{i} \leq \frac{2}{3}\left(m_{i}+1\right)$. So, the following inequalities hold:

$$
c^{\prime}(v) \geq 8-\sum_{0 \leq i \leq t-1} \sigma_{i} \geq 8-\frac{2}{3} \sum_{0 \leq i \leq t-1}\left(m_{i}+1\right) \geq 8-\frac{2}{3} \times 12 \geq 0
$$

Case 9. $k=13$. Then $c(v)=9$. Every (direct or indirect) internal neighbor of v is a 3^{+}-vertex.

If $|Y|=0$, then it can be similarly shown that $m_{3}(v)=0$. By (R3)-(R6), v gives at most $\frac{1}{2}$ to each of its (direct or indirect) neighbors. Consequently, $c^{\prime}(v) \geq 9-\frac{1}{2} \times 13=\frac{5}{2}$.

Assume that $|Y| \geq 1$. We have the following useful result.
Claim 8. $\sigma_{0} \leq \frac{9}{13}\left(m_{0}+1\right)$.
Proof. Similarly to the proof of Claim 7, we consider four cases as follows.
Case I. $\left|T_{0}\right|=\left|T_{p}\right|=0$. All $f_{0}, f_{1}, \ldots f_{p-1}$ are 4-faces. By (R3)-(R6), v gives at most $\frac{1}{2}$ to v_{i} for each $i=1,2, \ldots, p-1$. Thus, $\sigma_{0} \leq \frac{1}{2} p<\frac{9}{13} p$.

Case II. $|Q|=0$. Note that $p \geq 1$. By Claims 1 and $6, p \leq 4$. If $p=1$, then $\sigma_{0} \leq \frac{1}{2}<\frac{9}{13} p$ by (R1).

Assume that $p=2$. If v_{1} is small, then $d_{H}\left(v_{1}\right) \geq 4$ by (P2). Thus, (R4)-(R6) asserts that v gives at most $\frac{1}{3}$ to v_{1}. If v_{1} is false, then v gives at most $\frac{5}{13}$ to u_{1}. Consequently, $\sigma_{0} \leq \frac{5}{13}+2 \times \frac{1}{2}=\frac{18}{13}=\frac{9}{13} p$ by (R1).

Assume that $p=3$. Suppose, without loss of generality, that v_{1} is false and v_{2} is small. By (P2), $d_{H}\left(v_{2}\right) \geq 4$. Let β denote the sum of weights that v sends to u_{1} and v_{2} according to our rules. Let us compute the value of β. If u_{1} is fat, then v gives at most $\frac{1}{2}$ to v_{2} by (R4)-(R6) and hence $\beta \leq \frac{1}{2}$. Otherwise, assume that u_{1} is small. If v_{2} is a 5^{+}-vertex, or a good 4 -vertex, then v gives at most $\frac{1}{5}$ to v_{2}, and at most $\frac{5}{14}$ to u_{1} by (R3)-(R6), therefore $\beta \leq \frac{1}{5}+\frac{5}{14}=\frac{39}{70}$. Suppose that v_{2} is a 4 -vertex that is not good. Let $f_{1}, f_{2}, g_{1}, g_{2}$ denote the incident faces of v_{2} in a cyclic order. Since $v_{2} u_{1} \notin E(H)$ by (P1) and by the definition of a good 4-vertex, it follows that $g_{1}=\left[v_{2} v_{3} z\right]$ is a false 3 -face and $g_{2}=\left[u_{1} v_{1} v_{2} z\right]$ is a 4 -face, where z is a false vertex. On the one hand, since $m_{3}^{*}\left(v_{2}\right)=2, v$ gives at most $\frac{1}{3}$ to v_{2} by (R4.2). On the other hand, $v v_{3} u_{1} v$ forms a 3 -cycle of G, which implies that $d_{H}\left(u_{1}\right) \geq 4$ by (P2). By (R4)-(R6), v gives at most $\frac{1}{5}$ to u_{1} so that $\beta \leq \frac{1}{3}+\frac{1}{5}=\frac{8}{15}$. Hence, $\sigma_{0} \leq 3 \times \frac{1}{2}+\beta \leq \frac{3}{2}+\frac{39}{70}=\frac{72}{35}<\frac{9}{13} p$.

Assume that $p=4$. Then v_{2} is small and v_{1}, v_{3} are false. By (P2), $d_{H}\left(v_{2}\right) \geq 4$. By (R4)-(R6), v gives at most $\frac{1}{3}$ to v_{2}. Let η denote the sum of weights that v sends to u_{1}, v_{2}, u_{3} according to our rules. It suffices to show that $\eta \leq \frac{10}{13}$ and henceforth $\sigma_{0} \leq 4 \times \frac{1}{2}+\frac{10}{13}=\frac{9}{13} p$. In fact, if u_{1} or u_{3} is fat, then $\eta \leq \frac{1}{3}+\frac{5}{14}=\frac{29}{42}$ by (R3.2). Otherwise, assume that both u_{1} and u_{3} are small. Then $u_{1} v_{2}, u_{3} v_{2} \notin$ $E(H)$ by (P1). If $6 \leq d_{H}\left(v_{2}\right) \leq 7$, then v gives noting to v_{2} and hence $\eta \leq 2 \times \frac{5}{14}$ by (R3)-(R6). In fact, this is evident if $d_{H}\left(v_{2}\right)=7$. When $d_{H}\left(v_{2}\right)=6$, it is easy to check that $m_{3}^{*}\left(v_{2}\right) \leq 4$ and the conclusion follows from (R6). Otherwise, $4 \leq d_{H}\left(v_{2}\right) \leq 5$. Then v_{0} is a 12^{+}-vertex in G by (P2), implying $u_{1} v_{0} \in E(H)$. By (P2), $d_{H}\left(u_{1}\right) \geq 4$, and v gives at most $\frac{1}{5}$ to u_{1}. Similarly, v gives at most $\frac{1}{5}$ to u_{3}. It follows consequently that $\eta \leq 2 \times \frac{1}{5}+\frac{1}{3}=\frac{11}{15}$.

Case III. $\left|T_{p}\right|=0$ and $\left|T_{0}\right|,|Q| \geq 1$. Since $Q \neq \emptyset$, it is easy to deduce that $\left|T_{0}\right| \leq 2$. First assume that $\left|T_{0}\right|=1$. So f_{0} is only one 3 -face with v_{1} as small vertex. By $(\mathrm{P} 2), d_{H}\left(v_{1}\right) \geq 4$. Obviously, if $d_{H}\left(v_{1}\right)=4$, then v_{1} is a good 4 vertex. By (R4)-(R6) and Observation 2, v gives at most $\frac{1}{5}$ to v_{1}. Therefore, $\theta\left(f_{0}\right) \leq \frac{1}{5}+\frac{1}{2}=\frac{7}{10}$. It yields that $\sigma_{0} \leq \theta\left(f_{0}\right)+\frac{1}{2}(p-2) \leq \frac{7}{10}+\frac{1}{2}(p-2)<\frac{9}{13} p$.

Next assume that $\left|T_{0}\right|=2$. Only f_{0}, f_{1} are 3 -faces, v_{1} is false and v_{2} is small. By (P2), $d_{H}\left(v_{2}\right) \geq 4$. If we can show that $\theta\left(f_{0}, f_{1}\right) \leq \frac{71}{42}$, then $\sigma_{0} \leq$ $\theta\left(f_{0}, f_{1}\right)+\frac{1}{2}(p-3) \leq \frac{71}{42}+\frac{1}{2}(p-3)<\frac{9}{13} p$. In fact, by (R3)-(R6), v gives at most $\frac{5}{14}$ to u_{2}. If $\tau\left(v \rightarrow v_{2}\right) \leq \frac{1}{3}$, then $\theta\left(f_{0}, f_{1}\right) \leq 2 \times \frac{1}{2}+\frac{5}{14}+\frac{1}{3}=\frac{71}{42}$. Otherwise, it is easy to see that $d_{H}\left(v_{2}\right)=4$ and $\tau\left(v \rightarrow v_{2}\right) \in\left\{\frac{1}{2}, \frac{2}{3}\right\}$ by (R4.2.3). However, in this case, $u_{2} v_{2} \in E(H)$ and hence u_{2} is fat by (P1). Thus, v gives nothing to u_{2}, and $\theta\left(f_{0}, f_{1}\right) \leq \frac{2}{3}+2 \times \frac{1}{2}=\frac{5}{3}<\frac{71}{42}$.

Case IV. $\left|T_{0}\right|,|Q|,\left|T_{p}\right| \geq 1$. By the above discussion, we have three possibilities by symmetry.

If $\left|T_{0}\right|=\left|T_{p}\right|=1$, then $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}\right)+\frac{1}{2}(p-3) \leq \frac{7}{10}+\frac{7}{10}+\frac{1}{2}(p-3)=$ $\frac{1}{2} p-\frac{1}{10}<\frac{9}{13} p$.

If $\left|T_{0}\right|=1$ and $\left|T_{p}\right|=2$, then $p \geq 4$ and $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}, f_{p-2}\right)+\frac{1}{2}(p-4) \leq$ $\frac{7}{10}+\frac{71}{42}+\frac{1}{2}(p-4)<\frac{9}{13} p$.

If $\left|T_{0}\right|=\left|T_{p}\right|=2$, then $p \geq 5$ and $\sigma_{0} \leq \theta\left(f_{0}, f_{1}\right)+\theta\left(f_{p-1}, f_{p-2}\right)+\frac{1}{2}(p-5) \leq$ $\frac{71}{42}+\frac{71}{42}+\frac{1}{2}(p-5)=\frac{1}{2} p+\frac{37}{42} \leq \frac{9}{13} p$.

Similarly we define σ_{i} on X_{i} for $i=1,2, \ldots, t-1$, and prove that $\sigma_{i} \leq$ $\frac{9}{13}\left(m_{i}+1\right)$. Therefore,

$$
c^{\prime}(v) \geq 9-\sum_{0 \leq i \leq t-1} \sigma_{i} \geq 9-\frac{9}{13} \sum_{0 \leq i \leq t-1}\left(m_{i}+1\right) \geq 9-\frac{9}{13} \times 13 \geq 0
$$

Case 9. $k \geq 14$. Then $c(v)=k-4$. Every (direct or indirect) internal neighbor of v is 3^{+}-vertex.

If $|Y|=0$, then $m_{3}(v)=0$. In view of the structure of v, no poor 3 -vertex gets $\frac{2}{3}$ or $\frac{11}{14}$ from v according to (R3.2.1). Thus, the amount of weight that v sends to each (direct or indirect) internal neighbor is at most $\frac{1}{2}$ by (R3)-(R6). It follows that $c^{\prime}(v) \geq k-4-\frac{1}{2} k>0$.

Assume that $|Y| \geq 1$. To complete the proof, we first establish the following claim.
Claim 9. $\sigma_{0} \leq \frac{5}{7}\left(m_{0}+1\right)$.
Proof. Similarly to the proofs of Claims 7 and 8, we consider four cases as follows.

Case I. $\left|T_{0}\right|=\left|T_{p}\right|=0$. All $f_{0}, f_{1}, \ldots f_{p-1}$ are 4-faces. Analogous to the foregoing discussion, v gives at most $\frac{1}{2}$ to v_{i} for each $i=1,2, \ldots, p-1$. Thus, $\sigma_{0} \leq \frac{1}{2}(p-1)<\frac{5}{7} p$.

Case II. $|Q|=0$. Note that $p \geq 1$. By Claims 1 and $6, p \leq 4$. If $p=1$, then $\sigma_{0} \leq \frac{1}{2}<\frac{5}{7} p$ by (R0) and (R1).

Assume that $p=2$. If v_{1} is small, then (R3)-(R6) asserts that v gives at most $\frac{1}{3}$ to v_{1}. If v_{1} is false, then v gives at most $\frac{5}{13}$ to u_{1}. Consequently, $\sigma_{0} \leq \frac{5}{13}+2 \times \frac{1}{2}=\frac{18}{13}<\frac{5}{7} p$.

Assume that $p=3$. By symmetry, suppose that v_{1} is false and v_{2} is small. Let $\varepsilon=\tau\left(v \rightarrow u_{1}\right)+\tau\left(v \rightarrow v_{2}\right)$. It suffices to show that $\varepsilon \leq \frac{9}{14}$, and so we have that $\sigma_{0} \leq 3 \times \frac{1}{2}+\frac{9}{14}=\frac{5}{7} p$. Note that v gives at most $\frac{5}{14}$ to u_{1} by (R3)(R6) and since v_{2} is small. If $\tau\left(v \rightarrow u_{1}\right)=0$, then it is easy to check that $\varepsilon=\tau\left(v \rightarrow v_{2}\right) \leq \frac{1}{2}<\frac{9}{14}$. Otherwise, assume that $\tau\left(v \rightarrow u_{1}\right)>0$, which implies that u_{1} is small. If $d_{H}\left(v_{2}\right) \geq 5$ or v_{2} is a good 4 -vertex, then $\tau\left(v \rightarrow v_{2}\right) \leq \frac{1}{5}$ and therefore $\varepsilon \leq \frac{5}{14}+\frac{1}{5}=\frac{39}{70}$. Otherwise, we have to handle two subcases as follows.

- $d_{H}\left(v_{2}\right)=3$. Then $\left[v_{3} v_{2} v_{1} u_{1}\right]$ is a 4 -face. By (R3.2.1.1), v gives at most $\frac{10}{21}$ to v_{2}. By (P3), $d_{H}\left(u_{1}\right) \geq 4$. If $d_{H}\left(u_{1}\right) \geq 6$, then $\tau\left(v \rightarrow u_{1}\right) \leq \frac{1}{6}$ by (R6). If $d_{H}\left(u_{1}\right)=5$, then it is easy to check that $m_{3}^{*}\left(u_{1}\right) \leq 3$ and hence $\tau\left(v \rightarrow u_{1}\right) \leq \frac{1}{10}$ by (R5). If $d_{H}\left(u_{1}\right)=4$, then $\tau\left(v \rightarrow u_{1}\right) \leq \frac{1}{6}$ by (R4). Hence $\varepsilon \leq \frac{1}{6}+\frac{10}{21}=\frac{9}{14}$.
- $d_{H}\left(v_{2}\right)=4$ and v is not good. Let $f_{1}, f_{2}, g_{1}, g_{2}$ denote the incident faces of v_{2} in a cyclic order. It is easy to derive that $g_{1}=\left[v_{2} v_{3} z\right]$ is a false 3 -face and $g_{2}=\left[u_{1} v_{1} v_{2} z\right]$ is a 4 -face, where z is a false vertex. Let z be the crossing of the edges $u_{1} v_{3}$ and $v_{2} y$ in G. Since v_{2} is small, it follows that y is fat. By the structure of H, we have that $u_{1} v_{0}, u_{1} y \in E(H)$, which implies that $d_{H}\left(u_{1}\right) \geq 4$. By (R4)-(R6), $\tau\left(v \rightarrow u_{1}\right) \leq \frac{1}{5}$, and $\tau\left(v \rightarrow v_{2}\right) \leq \frac{1}{3}$. Hence $\varepsilon \leq \frac{1}{5}+\frac{1}{3}=\frac{8}{15}$.

Assume that $p=4$. Then v_{2} is small and v_{1}, v_{3} are false. It is easy to observe that each of u_{1} and u_{3} gets at most $\frac{5}{14}$ from v. Let $\xi=\tau\left(v \rightarrow u_{1}\right)+\tau\left(v \rightarrow v_{2}\right)+$ $\tau\left(v \rightarrow u_{3}\right)$. It suffices to show that $\xi \leq \frac{6}{7}$, and so we get that $\sigma_{0} \leq 4 \times \frac{1}{2}+\frac{6}{7}=\frac{5}{7} p$.

- Assume that $d_{H}\left(v_{2}\right)=3$. By the definition of $H, v_{0} u_{1}, v_{4} u_{3} \in E(H)$, and each of u_{1} and u_{3} is an external vertex or an internal 4^{+}-vertex. By (R4)-(R6), $\tau\left(v \rightarrow u_{i}\right) \leq \frac{1}{5}$ for $i=1,3$. Let f^{\prime} be the third incident face of v_{2} other than f_{1}, f_{2}. Then $d_{H}\left(f^{\prime}\right) \geq 5$. If $d_{H}\left(f^{\prime}\right) \geq 6$, then v_{2} is a rich vertex. By (R3.1), v gives at most $\frac{1}{3}$ to v_{2}. It yields that $\xi \leq 2 \times \frac{1}{5}+\frac{1}{3}=\frac{11}{15}$. Assume that $d_{H}\left(f^{\prime}\right)=5$. Then at least one of u_{1} and u_{3} is fat, say u_{1}. If u_{3} is an external vertex or an internal 6^{+}-vertex, then $\tau\left(v \rightarrow u_{3}\right)=0$. This is because if u_{3} is an internal 6 vertex, then it is easy to compute that $b_{4} \leq 0$. Now, since v gives at most $\frac{5}{6}$ to v_{2} and hence $\xi \leq \frac{5}{6}$. Otherwise, $d_{H}\left(u_{3}\right) \leq 5$. By the structure of $H, u_{1} v_{2} \in E(H)$, deriving a contradiction.
- Assume that $d_{H}\left(v_{2}\right) \geq 4$. If u_{1} or u_{3} is fat, then $\xi \leq \frac{1}{2}+\frac{5}{14}=\frac{6}{7}$. Otherwise, if v_{2} is a 5^{+}-vertex or a good 4 -vertex, then $\xi \leq \frac{1}{8}+\frac{5}{14} \times 2=\frac{47}{56}$. Otherwise, v_{2} is a 4 -vertex that is not good. Let $f_{1}, f_{2}, g_{1}, g_{2}$ be the incident faces of v_{2} in a cyclic order. Then both g_{1} and g_{2} are 4 -faces by the definition of a good 4 -vertex. Let $g_{1}=\left[u_{1} v_{1} v_{2} z\right]$ and $g_{2}=\left[z v_{2} v_{3} u_{3}\right]$ where z must be a true vertex. By (R4.2.1), v gives at most $\frac{1}{6}$ to v_{2}. By (P3), at least one of u_{1} and u_{3} is a 4^{+}-vertex, say u_{1}. So, $\tau\left(v \rightarrow u_{1}\right) \leq \frac{1}{5}$, and therefore $\xi \leq \frac{1}{5}+\frac{5}{14}+\frac{1}{6}=\frac{76}{105}$.

Case III. $\left|T_{p}\right|=0$ and $\left|T_{0}\right|,|Q| \geq 1$. Since $Q \neq \emptyset$, it is easy to deduce that $\left|T_{0}\right| \leq 2$. First assume that $\left|T_{0}\right|=1$, namely, only f_{0} is a 3 -face with v_{1} as small vertex. By (R3)-(R6), v gives at most $\frac{2}{3}$ to v_{1}. Therefore, $\theta\left(f_{0}\right) \leq \frac{2}{3}+\frac{1}{2}=\frac{7}{6}$. It turns out that $\sigma_{0} \leq \theta\left(f_{0}\right)+\frac{1}{2}(p-2) \leq \frac{7}{6}+\frac{1}{2}(p-2)<\frac{5}{7} p$.

Next assume that $\left|T_{0}\right|=2$. Only f_{0}, f_{1} are 3 -faces, v_{1} is false and v_{2} is small. It suffices to show that $\theta\left(f_{0}, f_{1}\right) \leq \frac{25}{14}$ and so $\sigma_{0} \leq \theta\left(f_{0}, f_{1}\right)+\frac{1}{2}(p-3) \leq$ $\frac{25}{14}+\frac{1}{2}(p-3) \leq \frac{5}{7} p$. By (R3)-(R6), $\tau\left(v \rightarrow u_{1}\right) \leq \frac{5}{14}$. If $\tau\left(v \rightarrow u_{1}\right)=0$, then since $\tau\left(v \rightarrow v_{2}\right) \leq \frac{11}{14}$, we obtain that $\theta\left(f_{0}, f_{1}\right) \leq 2 \times \frac{1}{2}+\frac{11}{14}=\frac{25}{14}$. Otherwise, $\tau\left(v \rightarrow u_{1}\right)>0$, which implies that u_{1} is small. If v_{2} is a 4^{+}-vertex or a rich 3 -vertex, then v gives at most $\frac{1}{3}$ to v_{2} by (R3)-(R6). It follows that $\theta\left(f_{0}, f_{1}\right) \leq$
$2 \times \frac{1}{2}+\frac{1}{3}+\frac{5}{14}=\frac{71}{42}$. Otherwise, v_{2} is a poor 3 -vertex. Let f_{1}, f_{2}, g be the incident faces of v_{2} in a cyclic order. Then both f_{2} and g are 4 -faces. Let $f_{2}=\left[v v_{2} z v_{3}\right]$ and $g=\left[v_{1} u_{1} z v_{2}\right]$, where z is a false vertex. If $d_{H}\left(u_{1}\right) \leq 5$, then (P2) implies that v_{3} is fat and hence $v_{2} v_{3} \in E(H)$ by the definition of H, which contradicts the fact that f_{2} is a 4 -face. Otherwise, $d_{H}\left(u_{1}\right) \geq 6$. When $d_{H}\left(u_{1}\right)=6$, it is easy to inspect that $m_{3}^{*}\left(u_{1}\right) \leq 4$. In this case, v gives noting to u_{1}, contradicting the assumption that $\tau\left(v \rightarrow u_{1}\right)>0$.

Case IV. $\left|T_{0}\right|,|Q|,\left|T_{p}\right| \geq 1$. The proof is split into three subcases below by symmetry.

- $\left|T_{0}\right|=\left|T_{p}\right|=1$. Note that $p \geq 3$. If $p \geq 4$, then $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}\right)+\frac{1}{2}(p-3) \leq$ $\frac{7}{6}+\frac{7}{6}+\frac{1}{2}(p-3)=\frac{1}{2} p+\frac{5}{6}<\frac{5}{7} p$ by the previous proof. Otherwise, $p=3$. If both v_{1} and v_{2} are poor 3 -vertices, then it is easy to find a 4 -cycle with two nonadjacent 3 -vertices in H, contradicting (P3). Otherwise, at least one of v_{1} and v_{2}, say v_{1}, is a 4^{+}-vertex or a rich 3 -vertex. Then v gives at most $\frac{1}{3}$ to v_{1} by (R3)-(R6) and hence $\theta\left(f_{0}\right) \leq \frac{1}{2}+\frac{1}{3}=\frac{5}{6}$. Consequently, $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}\right) \leq \frac{5}{6}+\frac{7}{6}=2<\frac{5}{7} p$. - $\left|T_{0}\right|=1$ and $\left|T_{p}\right|=2$. Then $p \geq 4$. If $p \geq 5$, then $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}, f_{p-2}\right)+$ $\frac{1}{2}(p-4) \leq \frac{7}{6}+\frac{25}{14}+\frac{1}{2}(p-4)=\frac{1}{2} p+\frac{20}{21}<\frac{5}{7} p$. Otherwise, $p=4$. Similarly to the previous discussion, at least one of v_{1} and v_{2} is not a poor 3 -vertex. If v_{1} is not, then $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}, f_{p-2}\right) \leq \frac{5}{6}+\frac{25}{14}=\frac{55}{21}<\frac{5}{7} p$. If v_{2} is not, then $\theta\left(f_{p-1}, f_{p-2}\right) \leq \frac{1}{2} \times 2+\frac{1}{3}+\frac{5}{14}=\frac{71}{42}$, so that $\sigma_{0} \leq \theta\left(f_{0}\right)+\theta\left(f_{p-1}, f_{p-2}\right) \leq \frac{7}{6}+\frac{71}{42}=$ $\frac{20}{7}=\frac{5}{7} p$.
- $\left|T_{0}\right|=\left|T_{p}\right|=2$. Then $p \geq 5$. It yields that $\sigma_{0} \leq \theta\left(f_{0}, f_{1}\right)+\theta\left(f_{p-1}, f_{p-2}\right)+$ $\frac{1}{2}(p-5) \leq \frac{25}{14}+\frac{25}{14}+\frac{1}{2}(p-5)=\frac{1}{2} p+\frac{15}{14} \leq \frac{5}{7} p$.

Similarly, we can define σ_{i} on X_{i} for $i=1,2, \ldots, t-1$, and establish $\sigma_{i} \leq$ $\frac{5}{7}\left(m_{i}+1\right)$. Thus,

$$
c^{\prime}(v) \geq k-4-\sum_{0 \leq i \leq t-1} \sigma_{i} \geq k-4-\frac{5}{7} \sum_{0 \leq i \leq t-1}\left(m_{i}+1\right) \geq k-4-\frac{5}{7} k \geq 0 .
$$

Up to now, the statement (I) has been proved. To show the statement (II), we first observe that $c^{\prime}\left(f_{0}\right)=d_{H}\left(f_{0}\right)-4=2-4=-2$. Let $v \in V(C)$. By (R0), v needs to send the weight to $d_{H}(v)-1$ incident internal faces and $d_{H}(v)-2$ internal neighbors, so $c^{\prime}(v) \geq d_{H}(v)-4-\frac{1}{2}\left(d_{H}(v)-1\right)-\frac{1}{2}\left(d_{H}(v)-2\right)=-\frac{5}{2}$. Consequently,

$$
\sum_{v \in V(C)} c^{\prime}(v)+c^{\prime}\left(f_{0}\right) \geq-2-\frac{5}{2} \times 2=-7 .
$$

This completes the proof of the theorem.

4. Concluding Remarks

In this paper, we show that every 1-planar graph G with $\Delta \geq 13$ has $\operatorname{la}(G) \leq$ $\left\lceil\frac{\Delta+1}{2}\right\rceil$. This fact together with some known results stated previously implies immediately the following.

Corollary 4.1. Conjecture 1 holds for 1 -planar graphs with $\Delta \notin\{7,9,11,12\}$.
It should be pointed out that, in a separate paper, we have further proved that Conjecture 1 holds for 1-planar graphs with $\Delta=11$ or 12 . However, it remains open for a 1-planar graph G with $\Delta=7$ or 9 to have la $(G) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil$.

Suppose that G is a graph and $e=x y \in E(G)$. We say that e is an (i, j)-edge if $d_{G}(x)=i$ and $d_{G}(y)=j$, and an L-light-edge if $d_{G}(x)+d_{G}(y) \leq L$, where L is a constant. An even cycle $C=v_{0} v_{1} \cdots v_{2 m-1} v_{0}$ of G is called a k-alternating-cycle if $d_{G}\left(v_{i}\right)=k$ for $i=0,2,4, \ldots, 2 m-2$. A 3 -alternating-cycle of length 4 is said to be a 3 -alternating 4 -cycle.

It was shown in [13] that every 1-planar graph G with $\delta(G) \geq 2$ contains a 29 -light-edge or a 2 -alternating-cycle. Our Theorem 2 shows that every 1-planar graph G with $\delta(G) \geq 3$ contains a 15 -light-edge, or a 3 -cycle with a 16 -lightedge, or a 3 -alternating 4 -cycle. From this fact, the following two corollaries hold trivially.

Corollary 4.2. Every 1-planar graph G with $\delta(G) \geq 3$ contains a 16-light-edge or a 3 -alternating 4-cycle.

Corollary 4.3. Every 1-planar graph G with $\delta(G) \geq 4$ or without 4-cycles contains a 16 -light-edge.

It is unknown if the value 16 in Corollary 4.2 is best possible. Recall that Fabrici and Madaras [8] presented a 7 -regular 1-planar graph. Hudák and S̆ugerek [12] constructed a 1 -planar graph with only $(6,8)$-edges and $(8,8)$-edges, and a 1 -planar graph with only $(5,9)$-edges, $(5,10)$-edges and $(9,10)$-edges. These examples assert that there exist 1 -planar graphs G without 3 -alternating 4 -cycles contain a 14-light-edge and no edge $x y \in E(G)$ satisfies $d_{G}(x)+d_{G}(y)<14$.

We conclude this paper by raising the following problem.
Problem 1. What is the least integer L such that every 1-planar graph G without 3 -alternating 4 -cycles contains an L-light-edge?

The above related discussion tells us that $14 \leq L \leq 16$.

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable suggestions on improving this paper.

References

[1] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs III: Cyclic and acyclic invariants, Math. Slovaca 30 (1980) 405-417.
[2] J. Akiyama, G. Exoo and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks 11 (1981) 69-72. https://doi.org/10.1002/net. 3230110108
[3] N. Alon, The linear arboricity of graphs, Israel J. Math. 62 (1988) 311-325. https://doi.org/10.1007/BF02783300
[4] O.V. Borodin, A new proof of the 6 color theorem, J. Graph Theory 19 (1995) 507-521. https://doi.org/10.1002/jgt. 3190190406
[5] O.V. Borodin, A.V. Kostochka, A. Raspaud and E. Sopena, Acyclic colouring of 1-planar graphs, Discrete Appl. Math 114 (2001) 29-41. https://doi.org/10.1016/S0166-218X(00)00359-0
[6] M. Cygan, J.-F. Hou, L. Kowalik, B. Lužar and J.-L Wu, A planar linear arboricity conjecture, J. Graph Theory 69 (2012) 403-425.
https://doi.org/10.1002/jgt. 20592
[7] H. Enomoto and B. Péroche, The linear arboricity of some regular graphs, J. Graph Theory 8 (1984) 309-324. https://doi.org/10.1002/jgt. 3190080211
[8] I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865. https://doi.org/10.1016/j.disc.2005.11.056
[9] A. Ferber, J. Fox and V. Jain, Towards the linear arboricity conjecture, J. Combin. Theory Ser. B 142 (2020) 56-79. https://doi.org/10.1016/j.jctb.2019.08.009
[10] F. Guldan, Some results on linear arboricity, J. Graph Theory 10 (1986) 505-509. https://doi.org/10.1002/jgt. 3190100408
[11] F. Harary, Covering and packing in graphs I, Ann. New York Acad. Sci. 175 (1970) 198-205.
https://doi.org/10.1111/j.1749-6632.1970.tb56470.x
[12] D. Hudák and P. Šugerek, Light edges in 1-planar graphs with prescribed minimum degree, Discuss. Math. Graph Theory 32 (2012) 545-556. https://doi.org/10.7151/dmgt. 1625
[13] J. Liu, X. Hu, W. Wang and Y. Wang, Light structures in 1-planar graphs with an application to linear 2-arboricity, Discrete Appl. Math. 267 (2019) 120-130. https://doi.org/10.1016/j.dam.2019.05.001
[14] J. Liu, Y. Wang, P. Wang, L. Zhang and W. Wang, An improved upper bound on the linear 2-arboricity of 1-planar graphs, Acta Math. Sin. (Engl. Ser.) 37 (2021) 262-278.
https://doi.org/10.1007/s10114-020-9488-9
[15] J.-L. Wu, On the linear arboricity of planar graphs, J. Graph Theory 31 (1999) 129-134.
https://doi.org/10.1002/(SICI)1097-0118(199906)31:2;129::AID-JGT5;3.0.CO;2-A
[16] J.-L. Wu and Y.-W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, J. Graph Theory 58 (2008) 210-220. https://doi.org/10.1002/jgt. 20305
[17] W. Yang, W. Wang and Y. Wang, An improved upper bound for the acyclic chromatic number of 1-planar graphs, Discrete Appl. Math. 283 (2020) 275-291. https://doi.org/10.1016/j.dam.2020.01.010
[18] X. Zhang, G. Liu and J. Wu, On the linear arboricity of 1-planar graphs, Oper. Res. Trans. 3 (2011) 38-44.
[19] X. Zhang and J.-L. Wu, On edge colorings of 1-planar graphs, Inform. Process. Lett. 111 (2011) 124-128.
https://doi.org/10.1016/j.ipl.2010.11.001
Received 5 February 2022
Revised 29 March 2022
Accepted 29 March 2022
Available online 27 April 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

