DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

T. Tian
H.J. Broersma

Hajo J. Broersma

Department of Applied MathematicsFaculty EEMCSUniversity of TwenteP.O. Box 2177500 AE ENSCHEDETHE NETHERLANDS

email: h.j.broersma@utwente.nl

0000-0002-4678-3210

L. Xiong

Liming Xiong

Beijing Institute of Technology

email: lmxiong@bit.edu.cn

0000-0002-3091-3252

Title:

Edge degree conditions for dominating and spanning closed trails

PDF

Source:

Discussiones Mathematicae Graph Theory 44(1) (2024) 363-381

Received: 2021-08-16 , Revised: 2022-02-04 , Accepted: 2022-02-08 , Available online: 2022-02-26 , https://doi.org/10.7151/dmgt.2450

Abstract:

Edge degree conditions have been studied since the 1980s, mostly with regard to hamiltonicity of line graphs and the equivalent existence of dominating closed trails in their root graphs, as well as the stronger property of being supereulerian, i.e., admitting a spanning closed trail. For a graph $G$, let ${{\overline \sigma }_2}(G)=\min \{d(u)+d(v)| uv\in E(G)\}$. Chen et al. conjectured that a 3-edge-connected graph $G$ with sufficientl large order $n$ and $\overline{\sigma}_{2}(G)> \frac{n}{9}-2$ is either supereulerian or contractible to the Petersen graph. We show that the conjecture is true when ${{\overline \sigma }_2}(G)\geq 2(\lfloor n/15 \rfloor-1)$. Furthermore, we show that for an essentially $k$-edge-connected graph $G$ with sufficiently large order $n$, the following statements hold.

Keywords:

hamiltonicity, supereulerian, degree sum, line graph

References:

  1. A. Benhocine, L. Clark, N. Köhler and H.J. Veldman, On circuits and pancyclic line graphs, J. Graph Theory 10 (1986) 411–425.
    https://doi.org/10.1002/jgt.3190100317
  2. J.A. Bondy and U.S.R. Murty, Graph Theory, in: Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
  3. R.A. Brualdi and R.F. Shanny, Hamiltonian line graphs, J. Graph Theory 5 (1981) 307–314.
    https://doi.org/10.1002/jgt.3190050312
  4. P.A. Catlin, A reduction method to find spanning Eulerian subgraphs, J. Graph Theory 12 (1988) 29–44.
    https://doi.org/10.1002/jgt.3190120105
  5. P.A. Catlin, Z.-Y. Han and H.-J Lai, Graphs without spanning closed trails, Discrete Math. 160 (1996) 81–91.
    https://doi.org/10.1016/S0012-365X(95)00149-Q
  6. W.-G. Chen, Z.-H. Chen and M. Lu, Properties of Catlin's reduced graphs and supereulerian graphs, Bull. Inst. Combin. Appl. 75 (2015) 47–63.
  7. Z.-H. Chen, A degree condition for spanning eulerian subgraphs, J. Graph Theory 17 (1993) 5–21.
    https://doi.org/10.1002/jgt.3190170103
  8. Z.-H. Chen, Hamiltonicity and degrees of adjacent vertices in claw-free graphs, J. Graph Theory 86 (2017) 193–212.
    https://doi.org/10.1002/jgt.22120
  9. Z.-H. Chen and H.-J. Lai, Collapsible graphs and matchings, J. Graph Theory 17 (1993) 597–605.
    https://doi.org/10.1002/jgt.3190170506
  10. Z.-H. Chen and H.-J. Lai, Supereulerian graphs and the Petersen graph \uppercase\expandafter{\romannumeral2}, Ars Combin. 48 (1998) 271–282.
  11. Z.-H. Chen, H.-J. Lai and M. Zhang, Spanning trails with variations of Chvátal–Erdős conditions, Discrete Math. 340 (2017) 243–251.
    https://doi.org/10.1016/j.disc.2016.08.002
  12. G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3) 2 (1952) 69–81.
    https://doi.org/10.1112/plms/s3-2.1.69
  13. R.J. Faudree, E. Flandrin and Z. Ryjáček, Claw-free graphs–-A survey, Discrete Math. 164 (1997) 87–147.
    https://doi.org/10.1016/S0012-365X(96)00045-3
  14. R.J. Gould, Recent advances on the Hamiltonian problem: survey \uppercase\expandafter{\romannumeral3}, Graphs Combin. 30 (2014) 1–46.
    https://doi.org/10.1007/s00373-013-1377-x
  15. F. Harary and C.St.J.A. Nash-Williams, On Eulerian and Hamiltonian graphs and line graphs, Canad. Math. Bull. 8 (1965) 701–709.
    https://doi.org/10.4153/CMB-1965-051-3
  16. O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960) 55.
    https://doi.org/10.2307/2308928
  17. Y. Shao, Claw-free graphs and line graphs, Ph.D. Thesis (Morgantown, West Virginia University, 2005).
    https://doi.org/10.33915/etd.2251
  18. T. Tian and L. Xiong, Traceability on $2$-connected line graphs, Appl. Math. Comput. 321 (2018) 463–471.
    https://doi.org/10.1016/j.amc.2017.10.043
  19. T. Tian and L. Xiong, $2$-connected Hamiltonian claw-free graphs involving degree sum of adjacent vertices, Discuss. Math. Graph Theory 40 (2020) 85–106.
    https://doi.org/10.7151/dmgt.2125
  20. H.J. Veldman, On dominating and spanning circuits in graphs, Discrete Math. 124 (1994) 229–239.
    https://doi.org/10.1016/0012-365X(92)00063-W

Close