DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

M. Cream

Megan Cream

Lehigh University

email: macd19@lehigh.edu

R.J. Gould

Ronald J. Gould

Department of Mathematics, Emory University, Atlanta, GA

email: rg@emory.edu

Title:

Chorded $k$-pancyclic and weakly $k$-pancyclic graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 44(1) (2024) 337-350

Received: 2021-09-27 , Revised: 2022-01-09 , Accepted: 2022-01-10 , Available online: 2022-02-08 , https://doi.org/10.7151/dmgt.2449

Abstract:

As natural relaxations of pancyclic graphs, we say a graph $G$ is $k$-pancyclic if $G$ contains cycles of each length from $k$ to $|V(G)|$ and $G$ is weakly pancyclic if it contains cycles of all lengths from the girth to the circumference of $G$, while $G$ is weakly $k$-pancyclic if it contains cycles of all lengths from $k$ to the circumference of $G$. A cycle $C$ is chorded if there is an edge between two vertices of the cycle that is not an edge of the cycle. Combining these ideas, a graph is chorded pancyclic if it contains chorded cycles of each length from $4$ to the circumference of the graph, while $G$ is chorded $k$-pancyclic if there is a chorded cycle of each length from $k$ to $|V(G)|$. Further, $G$ is chorded weakly $k$-pancyclic if there is a chorded cycle of each length from $k$ to the circumference of the graph. We consider conditions for graphs to be chorded weakly $k$-pancyclic and chorded $k$-pancyclic.

Keywords:

cycle, chord, pancyclic, weakly pancyclic

References:

  1. D. Amar, J. Fournier and A. Germa, Pancyclism in Chvátal-Erdős graphs, Graphs Combin. 7 (1991) 101–112.
    https://doi.org/10.1007/BF01788136
  2. J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80–84.
    https://doi.org/10.1016/0095-8956(71)90016-5
  3. S. Brandt, Sufficient Conditions for Graphs to Contain All Subgraphs of a Given Type, Ph.D. Thesis (Freie Universitat Berlin, 1994).
  4. S. Brandt, The Mathematics of Paul Erdős (Springer, 1996).
  5. S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141–176.
    https://doi.org/10.1002/(SICI)1097-0118(199803)27:3<141::AID-JGT3>3.0.CO;2-O
  6. V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111–113.
    https://doi.org/10.1016/0012-365X(72)90079-9
  7. G. Chen, R.J. Gould, X. Gu and A. Saito, Cycles with a chord in dense graphs, Discrete Math. 341 (2018) 2131–2141.
    https://doi.org/10.1016/j.disc.2018.04.016
  8. M. Cream, R.J. Faudree, R.J. Gould and K. Hirohata, Chorded cycles, Graphs Combin. 32 (2016) 2295–2313.
    https://doi.org/10.1007/s00373-016-1729-4
  9. M. Cream, R.J. Gould and K. Hirohata, A note on extending Bondy's meta-conjecture, Australas. J. Combin. 67 (2017) 463–469.
  10. M. Cream, R.J. Gould and K. Hirohata, Extending vertex and edge pancyclic graphs, Graphs Combin. 34 (2018) 1691–1711.
    https://doi.org/10.1007/s00373-018-1960-2
  11. R.J. Gould, Graph Theory (Dover Publications Inc., 2012).
  12. D. Lou, The Chvátal-Erdős condition for cycles in triangle-free graphs, Discrete Math. 152 (1996) 253–257.
    https://doi.org/10.1016/0012-365X(96)80461-4
  13. L. Pósa, Problem no. $127$, Mat. Lapok 12 (1961) 254, in Hungarian.

Close