CHORDED \boldsymbol{k}-PANCYCLIC AND WEAKLY \boldsymbol{k}-PANCYCLIC GRAPHS

Megan Cream
Department of Mathematics
Lehigh University
Bethlehem, PA 18015, USA
e-mail: macd19@lehigh.edu
AND
Ronald J. Gould
Department of Mathematics
Emory University
Atlanta, GA 30322, USA
e-mail: rg@mathcs.emory.edu

Abstract

As natural relaxations of pancyclic graphs, we say a graph G is k pancyclic if G contains cycles of each length from k to $|V(G)|$ and G is weakly pancyclic if it contains cycles of all lengths from the girth to the circumference of G, while G is weakly k-pancyclic if it contains cycles of all lengths from k to the circumference of G. A cycle C is chorded if there is an edge between two vertices of the cycle that is not an edge of the cycle. Combining these ideas, a graph is chorded pancyclic if it contains chorded cycles of each length from 4 to the circumference of the graph, while G is chorded k-pancyclic if there is a chorded cycle of each length from k to $|V(G)|$. Further, G is chorded weakly k-pancyclic if there is a chorded cycle of each length from k to the circumference of the graph. We consider conditions for graphs to be chorded weakly k-pancyclic and chorded k-pancyclic.

Keywords: cycle, chord, pancyclic, weakly pancyclic.
2020 Mathematics Subject Classification: 05C38.

1. Introduction

The study of cycles has a long and diverse history. Many different properties have been developed concerning cycles. For example, early on Bondy [2] studied one of the most important of these; pancyclicity. We say a graph G is pancyclic if G contains a cycle of each length from three to the order of G and G is k pancyclic if it contains cycles of all lengths from k to the order of the graph. Natural relaxations of pancyclic graphs have also been developed. In his thesis, Brandt [3] introduced one such variation of pancyclic graphs. A graph is weakly pancyclic if it contains cycles of all lengths from the girth to the circumference of the graph. Further, a graph is weakly k-pancyclic if it contains cycles of all lengths from k to the circumference (see for example [5]).

Another, more recent cycle variation is that of chorded cycles. We say an edge between two vertices of a cycle is a chord if it is not an edge of the cycle. We say cycle C is a chorded cycle if the vertices of C induce at least one chord. Pósa [13] asked what conditions imply a graph contains a chorded cycle. This question has seen considerable interest lately (see for example [7-9]).

In this paper we consider a merging of the ideas we have discussed. We say a graph is chorded k-pancyclic if it contains chorded cycles of all lengths from k to $|V(G)|$ (see for example [10]). Further, G is chorded weakly k-pancyclic if G contains chorded cycles of each length from k to the circumference of the graph. Note that we did not say chorded cycles existed from the girth on up, since the smallest chorded cycle contains a smaller cycle.

We consider only simple graphs in this paper. We use the standard notation of $V(G), E(G)$, and $\delta(G)$ for the vertex set, edge set, and minimum degree of the graph G. Let $K_{a, b}$ denote the complete bipartite graph with parts of order a and b. Let C_{k} denote the cycle of order k and P_{k} denote the path of order k. Let $N_{H}(x)$ denote the set of neighbors of the vertex x in the graph (or subgraph) H and let $\langle S\rangle$ denote the graph induced by the vertex set S. Given an orientation of some path or cycle, we denote by x^{+}and x^{-}the successor and predecessor of the vertex x following the given orientation. Further, let $x^{+2}=\left(x^{+}\right)^{+}$and similarly, let $x^{-2}=\left(x^{-}\right)^{-}$, etc. Similarly, $N_{C}^{+}(x)$ denotes the set of successors of the neighbors of x on the cycle C following the given orientation. Let $d(u, v)$ denote the distance in the graph between vertices u and v. Given a subgraph or vertex subset S let $G-S$ be the graph obtained by removing S from G. The girth is the length of the shortest cycle and the circumference is the length of a longest cycle. For terms not defined here see [11].

In his thesis, Brandt [3] showed the following result.
Theorem 1. Let $G \neq C_{5}$ be a nonbipartite triangle-free graph of order n. If $\delta(G)>n / 3$, then G is weakly pancyclic with girth 4 and circumference $\min \{2(n-$ $\alpha(G)), n\}$.

In [4] it is shown that Theorem 1 is best possible.
Brandt, Faudree, and Goddard [5] provided another result on weak pancyclic graphs, removing the triangle free condition of the previous result.

Theorem 2. Every nonbipartite graph G of order n with minimum degree $\delta(G) \geq$ $(n+2) / 3$ is weakly pancyclic with girth 3 or 4 .

This result is almost best possible. The graph formed from K_{m+1} and $K_{m, m}$ ($m \geq 3$) by identifying a vertex from each has order $n=3 m$ and minimum degree $m=\frac{n}{3}$, but contains no odd cycle of length more than $m+1$, while having all even cycles up to $2 m$.

We extend each of these last two results as follows.
Theorem 3. Let G be a nonbipartite triangle-free graph of order $n \geq 13$. If $\delta(G) \geq \frac{n+1}{3}$, then G is chorded weakly 6 -pancyclic with circumference $\min \{2(n-$ $\alpha(G)), n\}$.

Theorem 4. Every nonbipartite graph G of order $n \geq 13$ with minimum degree $\delta(G) \geq(n+2) / 3$ is chorded weakly 6 -pancyclic.

Theorem 3 is best possible in the sense that as G is triangle-free, it contains no chorded 4 or 5 -cycles. We will prove Theorems 3 and 4 in Section 2.

Our second goal concerns the following. A well-known result of Chvátal and Erdős relates connectivity $(\kappa(G))$ and independence number $(\alpha(G))$ to cycle length.

Theorem 5 (Chvátal, Erdős [6]). If G is a graph of order $n \geq 3$ such that $\alpha(G) \leq \kappa(G)$, then G is hamiltonian, that is, it contains a spanning cycle.

Amar et al. [1] conjectured that if $\alpha(G) \leq \kappa(G)$ and G is not bipartite, then G has cycles of every length from 4 to $|V(G)|$. Lou [12] considered this conjecture and proved the following.

Theorem 6. Let G be a triangle-free graph of order $n \geq 4$ with $\alpha(G) \leq \kappa(G)$. Then G is 4 -pancyclic or $G=K_{\frac{n}{2}, \frac{n}{2}}$, or $G=C_{5}$.

Our goal is to extend Lou's Theorem as follows.
Theorem 7. Let G be a triangle-free graph of order $n \geq 13$ with $\alpha(G) \leq \kappa(G)$. Then G is chorded weakly 8 -pancyclic, or $G=K_{\frac{n}{2}, \frac{n}{2}}$.

Note that since G is triangle-free, there cannot be a chorded C_{4} or C_{5} in G. In Section 3 we will prove Theorem 7 and provide examples to show there may not be chorded 6 and 7 -cycles in such graphs. Thus, in general, this result is best possible.

2. Proofs of Theorems 3 and 4

In this section we prove Theorems 3 and 4 . In order to do so, we begin with several general lemmas that will apply in both proofs.
Lemma 8. Let G be a graph of order $n \geq 12$ with $\delta(G) \geq \frac{n+1}{3}$. If H is a subgraph of G of order $6+t(0 \leq t \leq 5)$ and x, y, z are vertices of H such that $d=\operatorname{deg}_{H}(x)+\operatorname{deg}_{H}(y)+\operatorname{deg}_{H}(z) \leq 6+t$, and

$$
N_{G-H}(x) \cap N_{G-H}(y)=\emptyset=N_{G-H}(x) \cap N_{G-H}(z),
$$

then $\left|N_{G-H}(y) \cap N_{G-H}(z)\right| \geq 1$.
Proof. Since $\delta(G) \geq \frac{n+1}{3}$, we see that $3 \delta(G)-d \geq n-5-t$. But from the neighborhood intersection conditions, since $|V(G-H)|=n-6-t$, it then follows that $\left|N_{G-H}(y) \cap N_{G-H}(z)\right| \geq 1$.
Lemma 9. If G has order $n \geq 12$ and $\delta(G) \geq \frac{n+1}{3}$, then G contains a chorded 6 -cycle.
Proof. By Theorem 1 we know G contains 6 -cycles. Suppose that G satisfies the conditions of the Theorem and further, suppose the result fails to hold. Let $C: v_{1}, v_{2}, v_{3}, \ldots, v_{6}, v_{1}$ be a chordless 6 -cycle in G and let $H=C$.

Case 1. Assume that no two consecutive vertices of C have a common neighbor in $G-C$.

Consider the vertices v_{1}, v_{2}, v_{3}. By our assumption and Lemma 8, we see that there exists a vertex x with $x \in N_{G-H}\left(v_{1}\right) \cap N_{G-H}\left(v_{3}\right)$. Let $H_{1}=<V(C) \cup\{x\}>$ and now consider v_{2}, v_{3}, v_{4}. Again by Lemma 8 , we can select a vertex y with $y \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{4}\right)$. But then, the cycle $v_{1}, x, v_{3}, v_{4}, y, v_{2}, v_{1}$ is a 6 -cycle with chord $v_{2} v_{3}$.

Case 2. Assume that there are two consecutive vertices of C with at least one neighbor in $G-H$.

Without loss of generality, we may assume that $x \in N_{G-H}\left(v_{1}\right) \cap N_{G-H}\left(v_{2}\right)$. Let $H_{1}=<V(C) \cup\{x\}>$ and consider x, v_{2}, v_{5}. If there exists a vertex y with $y \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{5}\right)$ then $v_{1}, x, v_{2}, y, v_{5}, v_{6}, v_{1}$ is a 6 -cycle with chord $v_{1} v_{2}$. Similarly, if $y \in N_{G-H_{1}}(x) \cap N_{G-H_{1}}\left(v_{5}\right)$ then $v_{1}, v_{2}, x, y, v_{5}, v_{6}, v_{1}$ is a 6 -cycle with chord $x v_{1}$. If both these fail to hold, then by Lemma 8 , we conclude instead that $y \in N_{G-H_{1}}(x) \cap N_{G-H_{1}}\left(v_{2}\right)$ and let $H_{2}=<V\left(H_{1}\right) \cup\{y\}>$.

Now consider v_{6}, x, y. If there exists a vertex $z \in N_{G-H_{2}}\left(v_{6}\right) \cap N_{G-H_{2}}(x)$ then $v_{1}, v_{2}, y, x, z, v_{6}, v_{1}$ is a 6 -cycle with chord $x v_{2}$. If instead $z \in N_{G-H_{2}}(y) \cap$ $N_{G-H_{2}}\left(v_{6}\right)$ then $v_{1}, v_{2}, x, y, z, v_{6}, v_{1}$ is a 6 -cycle with chord $x v_{1}$. If both of these fail to hold, we conclude from Lemma 8 that $z \in N_{G-H_{2}}(x) \cap N_{G-H_{2}}(y)$ and we let $H_{3}=<V\left(H_{2}\right) \cup\{z\}>$.

Now consider v_{1}, v_{3}, z. If there exists a vertex $w \in N_{G-H_{3}}\left(v_{1}\right) \cap N_{G-H_{3}}\left(v_{3}\right)$ we then have a 6 -cycle $v_{1}, w, v_{3}, v_{2}, y, x, v_{1}$ with chord $x v_{2}$. But, if instead $w \in$ $N_{G-H_{3}}(z) \cap N_{G-H_{3}}\left(v_{3}\right)$ then $v_{2}, y, x, z, w, v_{3}, v_{2}$ is a 6 -cycle with chord $x v_{2}$. Finally, if both of these fail to hold, then by Lemma $8, w \in N_{G-H_{3}}\left(v_{1}\right) \cap N_{G-H_{3}}(z)$, then $v_{1}, w, z, x, y, v_{2}, v_{1}$ is a 6 -cycle with chord $x v_{2}$, completing the proof.

Lemma 10. If G has order $n \geq 12$ and $\delta(G) \geq \frac{n+1}{3}$, then G contains a chorded 7-cycle.

Proof. By Theorem 1 we know G contains a 7 -cycle. Let G be as stated, and suppose the result fails to hold. Let $C: v_{1}, v_{2}, v_{3}, \ldots, v_{7}, v_{1}$ be a chordless 7 -cycle in G and let $R=G-C$ and $H=C$. We now consider the following cases.

Case 1. Suppose that no two consecutive vertices of C have a common neighbor in R.

Consider v_{1}, v_{2}, v_{3}. By our assumption and Lemma 8 we see that there exists a vertex $x \in N_{R}\left(v_{1}\right) \cap N_{R}\left(v_{3}\right)$. Let $H_{1}=<H \cup\{x\}>$. Now consider v_{2}, v_{5}, v_{6}. If there exists a vertex $w \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{5}\right)$, then $v_{1}, v_{2}, w, v_{5}, v_{4}, v_{3}, x, v_{1}$ is a 7 -cycle with chord $v_{2} v_{3}$. If instead $w \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{6}\right)$, then $v_{1}, v_{7}, v_{6}, w, v_{2}, v_{3}, x, v_{1}$ is a 7 -cycle with chord $v_{1} v_{2}$. However, by our assumption and Lemma 8, one of these two facts must hold.

Case 2. Suppose there are two consecutive vertices on C with a common neighbor in R.

Without loss of generality let $x \in N_{R}\left(v_{1}\right) \cap N_{R}\left(v_{2}\right)$, set $H_{1}=<C \cup\{x\}>$ and consider v_{2}, v_{5}, x. If there exists $y \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{5}\right)$, then

$$
v_{1}, x, v_{2}, y, v_{5}, v_{6}, v_{7}, v_{1}
$$

is a 7 -cycle with chord $v_{1} v_{2}$. If instead $y \in N_{G-H_{1}}(x) \cap N_{G-H_{1}}\left(v_{5}\right)$, then $v_{1}, v_{2}, x, y, v_{5}, v_{6}, v_{7}, v_{1}$ is a 7 -cycle with chord $x v_{1}$. If both of these fail to happen, then by Lemma 8 there exists $y \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}(x)$. Let $H_{2}=<H_{1} \cup\{y\}>$.

Now consider x, y, v_{6}. If there exists a vertex $z \in N_{G-H_{2}}\left(v_{6}\right) \cap N_{G-H_{2}}(x)$, then $v_{1}, v_{2}, y, x, z, v_{6}, v_{7}, v_{1}$ is a 7 -cycle with chord $x v_{1}$. If instead, $z \in N_{G-H_{2}}(y) \cap$ $N_{G-H_{2}}\left(v_{6}\right)$, then $v_{1}, v_{2}, x, y, z, v_{6}, v_{7}, v_{1}$ is a 7 -cycle with chord $x v_{1}$. Otherwise, by Lemma 8, there is a vertex $z \in N_{G-H_{2}}(x) \cap N_{G-H_{2}}(y)$. We now consider v_{3}, v_{7}, z, with $H_{3}=<H_{2} \cup\{z\}>$.

If there exists a vertex w such that $w \in N_{G-H_{3}}(z) \cap N_{G-H_{3}}\left(v_{7}\right)$, then $v_{1}, v_{2}, y, x, z, w, v_{7}, v_{1}$ is a 7 -cycle with chord $x v_{1}$. If instead $w \in N_{G-H_{3}}(z) \cap$ $N_{G-H_{3}}\left(v_{3}\right)$, then $v_{2}, v_{1}, x, y, z, w, v_{3}, v_{2}$ is a 7 -cycle with chord $y v_{2}$. Otherwise, by Lemma 8, there us a vertex $w \in N_{G-H_{3}}\left(v_{3}\right) \cap N_{G-H_{3}}\left(v_{7}\right)$ and then

$$
v_{1}, x, y, v_{2}, v_{3}, w, v_{7}, v_{1}
$$

is a 7 -cycle with chord $v_{1} v_{2}$. This completes the proof of the lemma.

Lemma 11. Let G have order $n \geq 12$ and $\delta(G) \geq \frac{n+1}{3}$. Then G contains a chorded 8-cycle.

Proof. By Theorem 1 we know that G contains an 8 -cycle. Suppose all 8-cycles are chordless and consider the 8 -cycle $C: v_{1}, v_{2}, v_{3}, \ldots, v_{8}, v_{1}$ and let $H=C$. We now consider two cases.

Case 1. Suppose no two consecutive vertices on C have a common neighbor in $G-H$.

Consider v_{1}, v_{2}, v_{3}. Then, by our assumption and by Lemma 8 there exists a vertex $x \in N_{G-H}\left(v_{1}\right) \cap N_{G-H}\left(v_{3}\right)$. Let $H_{1}=<H \cup\{x\}>$. Similarly, there exists a vertex y with $y \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{4}\right)$. Let $H_{2}=<H_{1} \cup\{y\}>$.

Next consider v_{8}, v_{1}, v_{2}. Again, by our assumption and Lemma 8, there exists a vertex z such that $z \in N_{G-H_{2}}\left(v_{2}\right) \cap N_{G-H_{2}}\left(v_{8}\right)$. Then, $v_{1}, x, v_{3}, v_{4}, y, v_{2}, z, v_{8}, v_{1}$ is an 8 -cycle with chord $v_{1} v_{2}$.

Case 2. Suppose there is a pair of consecutive vertices on C with a common neighbor in $G-H$.

Without loss of generality, let $x \in N_{G-H}\left(v_{1}\right) \cap N_{G-H}\left(v_{2}\right)$ and $H_{1}=<H \cup$ $\{x\}>$. Now consider v_{2}, x, v_{5}. If there exists y with $y \in N_{G-H_{1}}(x) \cap N_{G-H_{1}}\left(v_{5}\right)$ then, $v_{1}, v_{2}, x, y, v_{5}, v_{6}, v_{7}, v_{8}, v_{1}$ is an 8 -cycle with chord $x v_{1}$. If instead $y \in$ $N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{5}\right)$ then, $v_{1}, x, v_{2}, y, v_{5}, v_{6}, v_{7}, v_{8}, v_{1}$ is an 8-cycle with chord $v_{1} v_{2}$. If both these cases fail to hold, then by Lemma 8 there exists y with $y \in$ $N_{G-H_{1}}(x) \cap N_{G-H_{1}}\left(v_{2}\right)$.

Let $H_{2}=<H_{1} \cup\{y\}>$ and now consider x, y, v_{6}. If there exists $w \in$ $N_{G-H_{2}}(x) \cap N_{G-H_{2}}\left(v_{6}\right)$, then $v_{1}, v_{2}, y, x, w, v_{6}, v_{7}, v_{8}, v_{1}$ is an 8-cycle with chord $x v_{1}$. If instead $w \in N_{G-H_{2}}(y) \cap N_{G-H_{2}}\left(v_{6}\right)$, then $v_{1}, v_{2}, x, y, w, v_{6}, v_{7}, v_{8}, v_{1}$ is an 8 -cycle with chord $x v_{1}$. If both of these cases fail to hold, then again by Lemma 8 , there exists $w \in N_{G-H_{2}}(x) \cap N_{G-H_{2}}(y)$.

Now let $H_{3}=<H_{2} \cup\{w\}>$ and consider v_{7}, w, v_{4}. If there exists $z \in$ $N_{G-H_{3}}\left(v_{7}\right) \cap N_{G-H_{3}}\left(v_{4}\right)$, then $v_{1}, x, v_{2}, v_{3}, v_{4}, z, v_{7}, v_{8}, v_{1}$ is an 8-cycle with chord $v_{1} v_{2}$. If instead $z \in N_{G-H_{3}}(w) \cap N_{G-H_{3}}\left(v_{7}\right)$, then $v_{1}, v_{2}, y, x, w, z, v_{7}, v_{8}, v_{1}$ is an 8 -cycle with chord $x v_{1}$. If both the previous cases fail to hold, then by Lemma 8 there exists $z \in N_{G-H_{3}}\left(v_{4}\right) \cap N_{G-H_{3}}(w)$, in which case $v_{2}, v_{1}, x, y, w, z, v_{4}, v_{3}, v_{2}$ is an 8 -cycle with chord $x v_{2}$. This completes the proof of the lemma.

Lemma 12. Let G be a graph of order $n \geq 13$ with $\delta(G) \geq \frac{n+1}{3}$. Then G contains chorded cycles of each length from 9 to the circumference of the graph.

Proof. By Theorem 1, G contains cycles of each length from 9 to the circumference of G. Let G be as stated and suppose G has no chorded k-cycle for some $k \geq 9$. Let $C=C_{k}: v_{1}, v_{2}, \ldots, v_{k}$ be such a cycle in G. Further, let $H=G-C_{k}$. We consider the following cases.

Case 1. Suppose, no two consecutive vertices of C_{k} have a common neighbor off C.

By our assumption and Lemma 8, for any three consecutive vertices on C_{k}, $v_{i}, v_{i+1}, v_{i+2}, N_{G-H}\left(v_{i}\right) \cap N_{G-H}\left(v_{i+2}\right) \neq \emptyset$. Let $w \in N_{G-H}\left(v_{1}\right) \cap N_{G-H}\left(v_{3}\right)$ and let $H_{1}=<H \cup\{w\}>$. If $N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{6}\right) \neq \emptyset$, then take $w_{2} \in$ $N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{6}\right)$ and note that

$$
v_{1}, w, v_{3}, v_{2}, w_{2}, v_{6}, v_{7}, \ldots, v_{k}, v_{1}
$$

is a k-cycle with chord $v_{1} v_{2}$. Thus, we may assume $N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{6}\right)=\emptyset$ and by symmetry $N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{k-2}\right)=\emptyset$.

If $N_{G-H_{1}}\left(v_{3}\right) \cap N_{G-H_{1}}\left(v_{7}\right) \neq \emptyset$, then let $w_{3} \in N_{G-H_{1}}\left(v_{3}\right) \cap N_{G-H_{1}}\left(v_{7}\right)$. Now, by our assumptions there exists $w_{k} \in N_{G-H_{1}}\left(v_{k}\right) \cap N_{G-H_{1}}\left(v_{2}\right)$. Now by Lemma 8 , we have that

$$
v_{2}, v_{1}, w, v_{3}, w_{3}, v_{7}, v_{8}, \ldots, v_{k}, w_{k}, v_{2}
$$

is a k-cycle with chord $v_{2} v_{3}$. Note that if any pair of vertices v_{i}, v_{i+4} for $i=$ $2,3, \ldots, k-3$ share a common neighbor off C, then we can always find a chorded k-cycle in a similar fashion. So we may assume this never happens.

Then, in particular, considering v_{2}, v_{5}, v_{6}, we know by our assumptions there exists a vertex $x \in N_{G-H_{1}}\left(v_{2}\right) \cap N_{G-H_{1}}\left(v_{5}\right)$, and let $H_{2}=<H_{1} \cup\{x\}>$. Similarly, considering v_{5}, v_{8}, v_{9}, we know there exists a vertex $y \in N_{G-H_{2}}\left(x_{5}\right) \cap N_{G-H_{2}}\left(v_{8}\right)$. Now $v_{1}, w, v_{3}, v_{2}, x, v_{5}, y, v_{8}, v_{9}, \ldots, v_{k}, v_{1}$ is a k-cycle with chord $v_{1} v_{2}$, completing this case.

Case 2. Suppose two consecutive vertices of $C=H$ do have a common neighbor in $G-H$.

Without loss of generality, say $w \in N_{G-H}\left(v_{1}\right) \cap N_{G-H}\left(v_{2}\right)$ and let $H_{1}=<$ $H \cup\{w\}>$. Then if any pair v_{i}, v_{i+3} for $i=2,3, \ldots, k-3$ satisfies $N_{G-H_{1}}\left(v_{i}\right) \cap$ $N_{G-H_{1}}\left(v_{i+3}\right) \neq \emptyset$ with a vertex $x \in N_{G-H_{1}}\left(v_{i}\right) \cap N_{G-H_{1}}\left(v_{i+3}\right)$, there exists a k-cycle $v_{1}, w, v_{2}, v_{3}, \ldots, v_{i}, x, v_{i+3}, \ldots, v_{k}, v_{1}$ with chord $v_{1} v_{2}$.

Thus, assume no such pair exists. Then, in particular, considering v_{2}, v_{5}, v_{8} we see that there exists a vertex, say w_{2}, such that $w_{2} \in N_{G-H}\left(v_{2}\right) \cap N_{G-H}\left(v_{8}\right)$, and considering the triple v_{3}, v_{6}, v_{9}, there must exists a vertex $w_{3} \in N_{G-H}\left(v_{3}\right) \cap$ $N_{G-H}\left(v_{9}\right)$ and considering v_{4}, v_{7}, v_{10} (here v_{10} may be v_{1}) we have a vertex $w_{4} \in$ $N_{G-H}\left(v_{4}\right) \cap N_{G-H}\left(v_{10}\right)$. Then the cycle $v_{1}, v_{2}, w_{2}, v_{8}, v_{9}, w_{3}, v_{3}, v_{4}, w_{4}, v_{10}, v_{11}$, \ldots, v_{1} (note again that it is possible that $v_{1}=v_{10}$) is a k-cycle with chord $v_{2} v_{3}$. This completes the proof.

Note that Case 2 may require at least 13 vertices, hence the condition that $n \geq 13$. As this lemma is used in Theorems 3 and 4 , the condition that $n \geq 13$ must be assumed in each result.

We are now ready to prove Theorem 3.

Proof of Theorem 3. By Theorem 1, G is weakly pancyclic with girth 3 or 4. Let G be a graph of order $n \geq 13$ with $\delta(G) \geq \frac{n+1}{3}$. Then by Lemmas $9,10,11$, and 12 we see that G contains chorded cycles of length 6 up to the circumference of G.

As G is triangle-free, there can be no chorded 4 or 5 -cycles, thus the result is best possible.

Example for Theorem 3. We construct a graph G as follows. Begin with a copy of $C_{4}=v_{1}, v_{2}, v_{3}, v_{4}, v_{1}$. Blowup each of the vertices v_{1} and v_{3} into sets of $\frac{n-2}{3}$ independent vertices and blowup the vertices v_{2} and v_{4} into sets of $\frac{n-2}{6}$ independent vertices. For any edge of C_{4} insert all edges between the corresponding sets. Finally, insert two new vertices x and y that are themselves adjacent and join x to all vertices in the blowup of v_{1} and y to all vertices in the blowup of v_{3} (see Figure 1). Note that $\delta(G)=\frac{n+1}{3}$. Further, it is easy to see that G is chorded weakly 6 -pancyclic.

Figure 1. Sharpness example for Theorem 3.
Proof of Theorem 4. By Theorem 2, G is weakly pancyclic with girth 3 or 4. Again by Lemmas $9,10,11$, and 12 , we see that G has chorded cycles of each length from 6 to the circumference of G.

3. Proof of Theorem 7

The following from [12] will be useful.
Lemma 13. If G is a triangle-free graph of order $n \geq 4$ and C is a cycle in G, then for every vertex $v \in G-C$, the set $N_{C}^{+}(v)$ is non-empty and $N_{C}^{+}(v)$ is not an independent set, hence $\left|N_{C}^{+}(v)\right| \geq 2$.

The next lemma has appeared in numerous papers, thus we attribute it to folklore.

Lemma 14. Let C be a cycle in a graph G and $v \in V(G-C)$. If there is an edge in $N_{C}^{+}(v)$, then G contains a cycle D with $V(D)=V(C) \cup\{v\}$.

We now state, in more detail, what Lou [12] proved.
Theorem 15. If $G\left(G \neq K_{m, m}\right.$ or $\left.C_{5}\right)$ is a triangle-free graph with $\alpha(G) \leq \kappa(G)$, then

1. G is k-regular and
2. $k=\alpha(G)=\kappa(G)=\kappa$ and G is κ-regular
3. G has diameter 2 , and
4. G contains cycles of length 4 up to $|V(G)|$.

What Lou proved actually puts some real restrictions on graphs G that satisfy the conditions of being triangle-free with $\alpha(G)=\kappa(G)$. The most severe is a bound on the order of G.

Lemma 16. If G is a triangle-free graph of order n with $\alpha(G)=\kappa(G)=k$, then $n \leq k^{2}+1$.

Proof. Let G be as stated above. Select any vertex v. Then v has exactly k mutually nonadjacent neighbors and each of these vertices may have at most $k-1$ distinct new neighbors. If there are any other vertices, say x, then $d(v, x)>2$ and there is no way to create a path to v that would be of length at most 2 . Thus, no such x exists and so $n \leq 1+k+k(k-1)=k^{2}+1$.

This lemma provides another simple observation that if $\alpha(G)=2$, then G is either C_{5} or C_{4}, and if $\alpha(G)=3$, then $n \leq 10$. Thus, from now on we need only consider $\alpha(G) \geq 4$.

The graphs in Figures 2 and 3 show that the conditions of being triangle-free with $\alpha(G)=\kappa(G)$ are not enough to guarantee that 6 and 7 -cycles are chorded.

Figure 2. Here $\alpha(G)=3$.

We now present our proof of Theorem 7, the extension of Lou's Theorem, which utilizes an expansion of the ideas in his approach.

Figure 3. Here $\alpha(G)=4$.

Proof. Suppose the result fails to hold. Then by Theorem 6, there must exist an integer k with $4 \leq k \leq|V(G)|-2$, such that G contains a C_{k} but no chorded C_{k+2}. We next show that each of the following structures (see Figure 4) on a C_{k}, actually provides a chorded C_{k+2}.

To see this for structure (I), consider the ($k+2$)-cycle $a, u, v, a^{+}, a^{+2}, \ldots, a$ with chord $a a^{+}$.

For structure (III), consider the ($k+2$)-cycle $a, u, b, b^{-}, \ldots, a^{+}, v, b^{+}, b^{+2}, \ldots, a$ with chord $a a^{+}$.

For structure (IV), consider the ($k+2$)-cycle $a, u, v, b, b^{-}, \ldots a^{+}, b^{+}, b^{+2}, \ldots, a$ with chord $a a^{+}$.

In order to handle structure II we first need to develop several facts.
Claim 1. Every vertex off the k-cycle $C_{k}: x_{1}, x_{2}, \ldots, x_{k}, x_{1}(k \geq 6)$ has at least one adjacency on C_{k}.

Proof. Suppose there is a vertex $v \notin V\left(C_{k}\right)$ such that v has no adjacencies on C_{k}. Then since G is triangle-free, $E(N(v))=\emptyset$. However, for any $x_{i} \in$ $V\left(C_{k}\right), N(v) \cup\left\{x_{i}\right\}$ is a set of cardinality $\kappa(G)+1$. If this set is independent, a contradiction arises to Theorem 15. Thus, every vertex on C_{k} is adjacent to at least one vertex in $N(v)$. Without loss of generality, say $x_{1} v_{1} \in E(G)$ for some $v_{1} \in N(v)$. Now $d\left(v, x_{3}\right)>2$. Either there exists $v_{3} \in N(v)$ such that $v_{3} \neq v_{1}$ with $v_{3} x_{3} \in E(G)$ or $x_{3} v_{1} \in E(G)$.

First suppose latter happens, then $d\left(v, x_{4}\right)>2$. Since G is triangle-free, $v_{1} x_{4} \notin E(G)$, which implies there exists $v_{4} \in N(v)$ such that $v_{4} x_{4} \in E(G)$. Next
note that $d\left(v, x_{2}\right)>2$. If $x_{2} v_{4} \in E(G)$ we obtain structure III, and hence a chorded $(k+2)$-cycle exists in G, a contradiction. Further, to avoid a triangle, $x_{2} v_{1} \notin E(G)$, so there exists $v_{2} \in N(v)\left(v_{2} \neq v_{1}, v_{4}\right)$ such that $v_{2} x_{2} \in E(G)$. Note that we can extend C_{k} to a $(k+2)$-cycle

$$
C^{*}=x_{2}, v_{2}, v, v_{4}, x_{4}, x_{5}, \ldots, x_{1}, x_{2} .
$$

Now $d\left(x_{2}, x_{5}\right)>2$. Further, $x_{2} x_{5} \notin E(G)$ as that would provide a chord for C^{*}. Also $x_{1} x_{5} \notin E(G)$ for the same reason, and $x_{3} x_{5} \notin E(G)$ since G is trianglefree. Thus, there exists some $w \notin V\left(C_{k}\right)$ such that $x_{2} w, x_{5} w \in E(G)$. Now $x_{1}, v_{1}, v, v_{2}, x_{2}, w, x_{5}, x_{6}, \ldots, x_{k}, x_{1}$ is a ($k+2$)-cycle with chord $x_{1} x_{2}$, a contra-

Figure 4. Four structures producing chorded ($k+2$)-cycles.

Now consider the former case, that is, that there exists $v_{3} \notin V\left(C_{k}\right)$ such that $v_{3} \neq v_{1}$ and $v_{3} v, v_{3} x_{3} \in E(G)$. Since $d\left(v, x_{2}\right)>2$ and $v_{1} x_{2}, v_{3}, x_{2} \notin E(G)$, there exists a $v_{2} \in N(v)$ with $v_{2} x_{2} \in E(G)$. Again there is a $(k+2)$-cycle

$$
C^{\prime}: x_{1}, v_{1}, v, v_{3}, x_{3}, x_{4}, \ldots, x_{k}, x_{1} .
$$

If there are any chords in C_{k} not involving x_{2}, then C^{\prime} is chorded, a contradiction. Now $d\left(x_{2}, x_{5}\right)>2$. If there exists $w \in N_{G-C_{k}}\left(x_{2}\right)-\left\{x_{1}\right\}$ such that $w x_{5} \in E(G)$, then

$$
x_{1}, v_{1}, v, v_{2}, x_{2}, w, x_{5}, x_{6}, \ldots, x_{k}, x_{1}
$$

is a $(k+2)$-cycle with chord $x_{1} x_{2}$. So we may assume $x_{2} x_{5} \in E(G)$. Next note that $d\left(x_{3}, x_{k}\right)>2$. If $v_{3} x_{k} \in E(G)$, then again C^{\prime} is chorded with chord $v_{3} x_{k}$. So we may assume there exists a vertex $w \in N_{G-C_{k}}\left(x_{3}\right)$ with $w x_{k} \in E(G)$. Now we see that

$$
x_{3}, v_{3}, v, v_{2}, x_{2}, x_{5}, x_{6}, \ldots x_{k}, w, x_{3}
$$

is a $(k+2)$-cycle with chord $x_{2} x_{3}$, a contradiction completing this case and the proof of the claim.

Claim 2. If structure II exists in G, then a chorded $(k+2)$-cycle exists in G.
Proof. Suppose structure II arises and let $C_{k}=x_{1}, x_{2}, \ldots, x_{k}$. Without loss of generality suppose that $v_{1}, v_{3} \in N_{G-C}(v)$ and $v_{1} x_{1}$ and $v_{3} x_{3}$ are edges of G. Now, by Claim 1, vertex v must have an adjacency on the cycle C_{k}. If $v x_{2} \in E(G)$, then structure I is formed and we have a chorded $(k+2)$-cycle, a contradiction to our assumption. Thus, assume $v x_{2} \notin E(G)$. Further, $v x_{1}, v x_{3} \notin E(G)$, since either edge would create a triangle in G. Thus, $v x_{i} \in E(G)$ for some $i, 4 \leq i \leq k$. Now this edge is a chord of the $(k+2)$-cycle $x_{1}, v_{1}, v, v_{3}, x_{3}, x_{4}, \ldots, x_{1}$, a contradiction which completes the proof of the claim.

Next choose a cycle C of length m such that $r=\max _{v \in G-C}\left|N_{C}(v)\right|$ (that is, over all vertices off C, v has the maximum number of adjacencies, and the maximum is taken over all choices of cycles of length m). Take a vertex v from $G-C$ with $\left|N_{C}(v)\right|=r$ and another vertex $u \in V(G-C)$ which is, if possible, adjacent to v. By Lemma 13, the vertex u must have two neighbors y_{1} and y_{2} on C such that $y_{1}^{+} y_{2}^{+} \in E(G)$. Thus, by Lemma 14 , there is an $(m+1)$-cycle D with $V(D)=V(C) \cup\{u\}$. If $r \geq \kappa-1$, then v has all of its neighbors on D, so again by Lemma 14 there is a cycle on $|V(D) \cup\{v\}|=m+2$ vertices with chord $y_{1} y_{1}^{+}$, a contradiction.

Now we may assume that $r \leq \kappa-2$. Then $u v \in E(G)$ and v has another neighbor $w \in G-C$. By Lemma 14, w also has two neighbors z_{1}, z_{2} on C such that $z_{1}^{+} z_{2}^{+} \in E(G)$. Since G is triangle-free, in any direction on C, there are at least two vertices between z_{1} and z_{2}, otherwise $<z_{1}^{+}, z_{2}, z_{2}^{+}>=K_{3}$. Thus, we may assume $z_{1} \notin\left\{y_{1}^{-}, y_{1}, y_{1}^{+}\right\}$. Fix an orientation on D with the path $y_{2}^{+}, \ldots, y_{1}^{-}, y_{1}$ and let $S \subset D$ be the set of vertices y of C satisfying $y^{-} \in N_{C}(v)$. We wish to show that $N_{G-C}(v) \cup S \cup\left\{z_{1}^{+2}\right\}$ (with respect to the orientation on D) is an independent set with cardinality $\kappa+1$, the final contradiction.

In order to do this note that on C, the vertex $z_{1} \neq x_{1}^{+2}, x_{1}^{-2}$ or structure II results, a contradiction. Thus, the edges $z_{1} z_{1}^{+}$and $z_{1}^{+} z_{2}^{+}$on D are also on C. Similarly, avoiding structure I, we see that there is no edge between any vertex in $N_{G-C}(v)$ and any vertex of S. For the same reason, on $D, z_{1}^{+2} \notin S$ and, in particular, v is not adjacent to z_{1}^{+}on D. Also, on $D, v z_{1}^{+2} \notin E(G)$ otherwise,

$$
z_{1}^{+2}, z_{1}^{+3}, \ldots, z_{1}, w, v, z_{1}^{+2}
$$

is an $(m+2)$-cycle with chord $w z_{2}$. Moreover, z_{1}^{+2} is not adjacent to a vertex $y \in S$ since otherwise $z_{1}, w, v, y^{-}, y^{-2}, \ldots z_{1}^{+2}, y, y^{+}, \ldots z_{1}^{-}, z_{1}$ is an $(m+2)$-cycle with chord $w z_{2}$, again a contradiction to our assumption. Since an edge in S also creates an $(m+2)$-cycle with chord $y y^{-}$, all that remains is to show that z_{1}^{+2} is
not adjacent to any vertex of $N_{G-C}(v)$. For any vertex of $N_{G-C}(v)$ other than w, this follows, as structure II would be formed and hence a chorded $(m+2)$-cycle would exist. But if z_{1}^{+2} is adjacent to w, we can form a new m cycle C^{\prime} with w replacing z_{1}^{+}. As v is adjacent to w but not to z_{1}^{+}, v now has $r+1$ neighbors on C^{\prime}, contradicting our choice of cycle C. Thus, the set $N_{G-C}(v) \cup\left\{z_{1}^{+2}\right\} \cup S$ is independent and has cardinality at least $r+1$, a contradiction completing the proof.

4. Conclusion

It is clear from recent work that many conditions implying various cycle properties in a graph can be used to show stronger results concerning cycles with chords. This paper is just one such situation. Broadening our meta-conjecture from [9]:

Almost any condition that implies some cycle property in a graph also implies a chorded cycle property, possibly with some families of exceptional graphs, and small order exceptions.

Acknowledgement

The second author is supported by the Heilbrun Distinguished Emeritus Fellowship of Emory University.

References

[1] D. Amar, J. Fournier and A. Germa, Pancyclism in Chvátal-Erdős graphs, Graphs Combin. 7 (1991) 101-112.
https://doi.org/10.1007/BF01788136
[2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971) 80-84. https://doi.org/10.1016/0095-8956(71)90016-5
[3] S. Brandt, Sufficient Conditions for Graphs to Contain All Subgraphs of a Given Type, Ph.D. Thesis (Freie Universitat Berlin, 1994).
[4] S. Brandt, The Mathematics of Paul Erdős (Springer, 1996).
[5] S. Brandt, R. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141-176.
https://doi.org/10.1002/(SICI)1097-0118(199803)27:3;141::AID-JGT3¿3.0.CO;2-O
[6] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
https://doi.org/10.1016/0012-365X(72)90079-9
[7] G. Chen, R.J. Gould, X. Gu and A. Saito, Cycles with a chord in dense graphs, Discrete Math. 341 (2018) 2131-2141.
https://doi.org/10.1016/j.disc.2018.04.016
[8] M. Cream, R.J. Faudree, R.J. Gould and K. Hirohata, Chorded cycles, Graphs Combin. 32 (2016) 2295-2313.
https://doi.org/10.1007/s00373-016-1729-4
[9] M. Cream, R.J. Gould and K. Hirohata, A note on extending Bondy's metaconjecture, Australas. J. Combin. 67 (2017) 463-469.
[10] M. Cream, R.J. Gould and K. Hirohata, Extending vertex and edge pancyclic graphs, Graphs Combin. 34 (2018) 1691-1711.
https://doi.org/10.1007/s00373-018-1960-2
[11] R.J. Gould, Graph Theory (Dover Publications Inc., 2012).
[12] D. Lou, The Chvátal-Erdős condition for cycles in triangle-free graphs, Discrete Math. 152 (1996) 253-257.
https://doi.org/10.1016/0012-365X(96)80461-4
[13] L. Pósa, Problem no. 127, Mat. Lapok 12 (1961) 254, in Hungarian.
Received 27 September 2021
Revised 9 January 2022
Accepted 10 January 2022
Available online 8 February 2022

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

