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Abstract

As natural relaxations of pancyclic graphs, we say a graph G is k-
pancyclic if G contains cycles of each length from k to |V (G)| and G is
weakly pancyclic if it contains cycles of all lengths from the girth to the
circumference of G, while G is weakly k-pancyclic if it contains cycles of all
lengths from k to the circumference of G. A cycle C is chorded if there is an
edge between two vertices of the cycle that is not an edge of the cycle. Com-
bining these ideas, a graph is chorded pancyclic if it contains chorded cycles
of each length from 4 to the circumference of the graph, while G is chorded
k-pancyclic if there is a chorded cycle of each length from k to |V (G)|. Fur-
ther, G is chorded weakly k-pancyclic if there is a chorded cycle of each length
from k to the circumference of the graph. We consider conditions for graphs
to be chorded weakly k-pancyclic and chorded k-pancyclic.
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1. Introduction

The study of cycles has a long and diverse history. Many different properties
have been developed concerning cycles. For example, early on Bondy [2] studied
one of the most important of these; pancyclicity. We say a graph G is pancyclic
if G contains a cycle of each length from three to the order of G and G is k-
pancyclic if it contains cycles of all lengths from k to the order of the graph.
Natural relaxations of pancyclic graphs have also been developed. In his thesis,
Brandt [3] introduced one such variation of pancyclic graphs. A graph is weakly
pancyclic if it contains cycles of all lengths from the girth to the circumference
of the graph. Further, a graph is weakly k-pancyclic if it contains cycles of all
lengths from k to the circumference (see for example [5]).

Another, more recent cycle variation is that of chorded cycles. We say an
edge between two vertices of a cycle is a chord if it is not an edge of the cycle.
We say cycle C is a chorded cycle if the vertices of C induce at least one chord.
Pósa [13] asked what conditions imply a graph contains a chorded cycle. This
question has seen considerable interest lately (see for example [7–9]).

In this paper we consider a merging of the ideas we have discussed. We say
a graph is chorded k-pancyclic if it contains chorded cycles of all lengths from k
to |V (G)| (see for example [10]). Further, G is chorded weakly k-pancyclic if G
contains chorded cycles of each length from k to the circumference of the graph.
Note that we did not say chorded cycles existed from the girth on up, since the
smallest chorded cycle contains a smaller cycle.

We consider only simple graphs in this paper. We use the standard notation
of V (G), E(G), and δ(G) for the vertex set, edge set, and minimum degree of
the graph G. Let Ka,b denote the complete bipartite graph with parts of order a
and b. Let Ck denote the cycle of order k and Pk denote the path of order k. Let
NH(x) denote the set of neighbors of the vertex x in the graph (or subgraph) H
and let < S > denote the graph induced by the vertex set S. Given an orientation
of some path or cycle, we denote by x+ and x− the successor and predecessor
of the vertex x following the given orientation. Further, let x+2 = (x+)+ and
similarly, let x−2 = (x−)−, etc. Similarly, N+

C (x) denotes the set of successors
of the neighbors of x on the cycle C following the given orientation. Let d(u, v)
denote the distance in the graph between vertices u and v. Given a subgraph or
vertex subset S let G − S be the graph obtained by removing S from G. The
girth is the length of the shortest cycle and the circumference is the length of a
longest cycle. For terms not defined here see [11].

In his thesis, Brandt [3] showed the following result.

Theorem 1. Let G 6= C5 be a nonbipartite triangle-free graph of order n. If
δ(G) > n/3, then G is weakly pancyclic with girth 4 and circumference min{2(n−
α(G)), n}.
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In [4] it is shown that Theorem 1 is best possible.

Brandt, Faudree, and Goddard [5] provided another result on weak pancyclic
graphs, removing the triangle free condition of the previous result.

Theorem 2. Every nonbipartite graph G of order n with minimum degree δ(G) ≥
(n+ 2)/3 is weakly pancyclic with girth 3 or 4.

This result is almost best possible. The graph formed from Km+1 and Km,m

(m ≥ 3) by identifying a vertex from each has order n = 3m and minimum degree
m = n

3 , but contains no odd cycle of length more than m + 1, while having all
even cycles up to 2m.

We extend each of these last two results as follows.

Theorem 3. Let G be a nonbipartite triangle-free graph of order n ≥ 13. If
δ(G) ≥ n+1

3 , then G is chorded weakly 6-pancyclic with circumference min{2(n−
α(G)), n}.

Theorem 4. Every nonbipartite graph G of order n ≥ 13 with minimum degree
δ(G) ≥ (n+ 2)/3 is chorded weakly 6-pancyclic.

Theorem 3 is best possible in the sense that as G is triangle-free, it contains
no chorded 4 or 5-cycles. We will prove Theorems 3 and 4 in Section 2.

Our second goal concerns the following. A well-known result of Chvátal
and Erdős relates connectivity (κ(G)) and independence number (α(G)) to cycle
length.

Theorem 5 (Chvátal, Erdős [6]). If G is a graph of order n ≥ 3 such that
α(G) ≤ κ(G), then G is hamiltonian, that is, it contains a spanning cycle.

Amar et al. [1] conjectured that if α(G) ≤ κ(G) and G is not bipartite, then
G has cycles of every length from 4 to |V (G)|. Lou [12] considered this conjecture
and proved the following.

Theorem 6. Let G be a triangle-free graph of order n ≥ 4 with α(G) ≤ κ(G).
Then G is 4-pancyclic or G = Kn

2
,n
2

, or G = C5.

Our goal is to extend Lou’s Theorem as follows.

Theorem 7. Let G be a triangle-free graph of order n ≥ 13 with α(G) ≤ κ(G).
Then G is chorded weakly 8-pancyclic, or G = Kn

2
,n
2

.

Note that since G is triangle-free, there cannot be a chorded C4 or C5 in G.
In Section 3 we will prove Theorem 7 and provide examples to show there may
not be chorded 6 and 7-cycles in such graphs. Thus, in general, this result is best
possible.
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2. Proofs of Theorems 3 and 4

In this section we prove Theorems 3 and 4. In order to do so, we begin with
several general lemmas that will apply in both proofs.

Lemma 8. Let G be a graph of order n ≥ 12 with δ(G) ≥ n+1
3 . If H is a

subgraph of G of order 6 + t (0 ≤ t ≤ 5) and x, y, z are vertices of H such that
d = degH(x) + degH(y) + degH(z) ≤ 6 + t, and

NG−H(x) ∩NG−H(y) = ∅ = NG−H(x) ∩NG−H(z),

then |NG−H(y) ∩NG−H(z)| ≥ 1.

Proof. Since δ(G) ≥ n+1
3 , we see that 3δ(G) − d ≥ n − 5 − t. But from the

neighborhood intersection conditions, since |V (G − H)| = n − 6 − t, it then
follows that |NG−H(y) ∩NG−H(z)| ≥ 1.

Lemma 9. If G has order n ≥ 12 and δ(G) ≥ n+1
3 , then G contains a chorded

6-cycle.

Proof. By Theorem 1 we know G contains 6-cycles. Suppose that G satisfies
the conditions of the Theorem and further, suppose the result fails to hold. Let
C : v1, v2, v3, . . . , v6, v1 be a chordless 6-cycle in G and let H = C.

Case 1. Assume that no two consecutive vertices of C have a common neigh-
bor in G− C.

Consider the vertices v1, v2, v3. By our assumption and Lemma 8, we see that
there exists a vertex x with x ∈ NG−H(v1)∩NG−H(v3). Let H1 =< V (C)∪{x} >
and now consider v2, v3, v4. Again by Lemma 8, we can select a vertex y with
y ∈ NG−H1(v2)∩NG−H1(v4). But then, the cycle v1, x, v3, v4, y, v2, v1 is a 6-cycle
with chord v2v3.

Case 2. Assume that there are two consecutive vertices of C with at least
one neighbor in G−H.

Without loss of generality, we may assume that x ∈ NG−H(v1) ∩NG−H(v2).
Let H1 =< V (C) ∪ {x} > and consider x, v2, v5. If there exists a vertex y with
y ∈ NG−H1(v2)∩NG−H1(v5) then v1, x, v2, y, v5, v6, v1 is a 6-cycle with chord v1v2.
Similarly, if y ∈ NG−H1(x)∩NG−H1(v5) then v1, v2, x, y, v5, v6, v1 is a 6-cycle with
chord xv1. If both these fail to hold, then by Lemma 8, we conclude instead that
y ∈ NG−H1(x) ∩NG−H1(v2) and let H2 =< V (H1) ∪ {y} > .

Now consider v6, x, y. If there exists a vertex z ∈ NG−H2(v6) ∩ NG−H2(x)
then v1, v2, y, x, z, v6, v1 is a 6-cycle with chord xv2. If instead z ∈ NG−H2(y) ∩
NG−H2(v6) then v1, v2, x, y, z, v6, v1 is a 6-cycle with chord xv1. If both of these
fail to hold, we conclude from Lemma 8 that z ∈ NG−H2(x) ∩NG−H2(y) and we
let H3 =< V (H2) ∪ {z} > .
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Now consider v1, v3, z. If there exists a vertex w ∈ NG−H3(v1) ∩ NG−H3(v3)
we then have a 6-cycle v1, w, v3, v2, y, x, v1 with chord xv2. But, if instead w ∈
NG−H3(z) ∩ NG−H3(v3) then v2, y, x, z, w, v3, v2 is a 6-cycle with chord xv2. Fi-
nally, if both of these fail to hold, then by Lemma 8, w ∈ NG−H3(v1)∩NG−H3(z),
then v1, w, z, x, y, v2, v1 is a 6-cycle with chord xv2, completing the proof.

Lemma 10. If G has order n ≥ 12 and δ(G) ≥ n+1
3 , then G contains a chorded

7-cycle.

Proof. By Theorem 1 we know G contains a 7-cycle. Let G be as stated, and
suppose the result fails to hold. Let C : v1, v2, v3, . . . , v7, v1 be a chordless 7-cycle
in G and let R = G− C and H = C. We now consider the following cases.

Case 1. Suppose that no two consecutive vertices of C have a common
neighbor in R.

Consider v1, v2, v3. By our assumption and Lemma 8 we see that there exists
a vertex x ∈ NR(v1) ∩ NR(v3). Let H1 =< H ∪ {x} >. Now consider v2, v5, v6.
If there exists a vertex w ∈ NG−H1(v2)∩NG−H1(v5), then v1, v2, w, v5, v4, v3, x, v1
is a 7-cycle with chord v2v3. If instead w ∈ NG−H1(v2) ∩ NG−H1(v6), then
v1, v7, v6, w, v2, v3, x, v1 is a 7-cycle with chord v1v2. However, by our assump-
tion and Lemma 8, one of these two facts must hold.

Case 2. Suppose there are two consecutive vertices on C with a common
neighbor in R.

Without loss of generality let x ∈ NR(v1) ∩ NR(v2), set H1 =< C ∪ {x} >
and consider v2, v5, x. If there exists y ∈ NG−H1(v2) ∩NG−H1(v5), then

v1, x, v2, y, v5, v6, v7, v1

is a 7-cycle with chord v1v2. If instead y ∈ NG−H1(x) ∩ NG−H1(v5), then
v1, v2, x, y, v5, v6, v7, v1 is a 7-cycle with chord xv1. If both of these fail to happen,
then by Lemma 8 there exists y ∈ NG−H1(v2)∩NG−H1(x). LetH2 =< H1∪{y} > .

Now consider x, y, v6. If there exists a vertex z ∈ NG−H2(v6) ∩ NG−H2(x),
then v1, v2, y, x, z, v6, v7, v1 is a 7-cycle with chord xv1. If instead, z ∈ NG−H2(y)∩
NG−H2(v6), then v1, v2, x, y, z, v6, v7, v1 is a 7-cycle with chord xv1. Otherwise, by
Lemma 8, there is a vertex z ∈ NG−H2(x)∩NG−H2(y). We now consider v3, v7, z,
with H3 =< H2 ∪ {z} > .

If there exists a vertex w such that w ∈ NG−H3(z) ∩ NG−H3(v7), then
v1, v2, y, x, z, w, v7, v1 is a 7-cycle with chord xv1. If instead w ∈ NG−H3(z) ∩
NG−H3(v3), then v2, v1, x, y, z, w, v3, v2 is a 7-cycle with chord yv2. Otherwise, by
Lemma 8, there us a vertex w ∈ NG−H3(v3) ∩NG−H3(v7) and then

v1, x, y, v2, v3, w, v7, v1

is a 7-cycle with chord v1v2. This completes the proof of the lemma.
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Lemma 11. Let G have order n ≥ 12 and δ(G) ≥ n+1
3 . Then G contains a

chorded 8-cycle.

Proof. By Theorem 1 we know that G contains an 8-cycle. Suppose all 8-cycles
are chordless and consider the 8-cycle C : v1, v2, v3, . . . , v8, v1 and let H = C. We
now consider two cases.

Case 1. Suppose no two consecutive vertices on C have a common neighbor
in G−H.

Consider v1, v2, v3. Then, by our assumption and by Lemma 8 there exists a
vertex x ∈ NG−H(v1)∩NG−H(v3). Let H1 =< H ∪{x} > . Similarly, there exists
a vertex y with y ∈ NG−H1(v2) ∩NG−H1(v4). Let H2 =< H1 ∪ {y} > .

Next consider v8, v1, v2. Again, by our assumption and Lemma 8, there exists
a vertex z such that z ∈ NG−H2(v2)∩NG−H2(v8). Then, v1, x, v3, v4, y, v2, z, v8, v1
is an 8-cycle with chord v1v2.

Case 2. Suppose there is a pair of consecutive vertices on C with a common
neighbor in G−H.

Without loss of generality, let x ∈ NG−H(v1) ∩ NG−H(v2) and H1 =< H ∪
{x} > . Now consider v2, x, v5. If there exists y with y ∈ NG−H1(x)∩NG−H1(v5)
then, v1, v2, x, y, v5, v6, v7, v8, v1 is an 8-cycle with chord xv1. If instead y ∈
NG−H1(v2)∩NG−H1(v5) then, v1, x, v2, y, v5, v6, v7, v8, v1 is an 8-cycle with chord
v1v2. If both these cases fail to hold, then by Lemma 8 there exists y with y ∈
NG−H1(x) ∩NG−H1(v2).

Let H2 =< H1 ∪ {y} > and now consider x, y, v6. If there exists w ∈
NG−H2(x) ∩ NG−H2(v6), then v1, v2, y, x, w, v6, v7, v8, v1 is an 8-cycle with chord
xv1. If instead w ∈ NG−H2(y) ∩NG−H2(v6), then v1, v2, x, y, w, v6, v7, v8, v1 is an
8-cycle with chord xv1. If both of these cases fail to hold, then again by Lemma
8, there exists w ∈ NG−H2(x) ∩NG−H2(y).

Now let H3 =< H2 ∪ {w} > and consider v7, w, v4. If there exists z ∈
NG−H3(v7)∩NG−H3(v4), then v1, x, v2, v3, v4, z, v7, v8, v1 is an 8-cycle with chord
v1v2. If instead z ∈ NG−H3(w) ∩NG−H3(v7), then v1, v2, y, x, w, z, v7, v8, v1 is an
8-cycle with chord xv1. If both the previous cases fail to hold, then by Lemma 8
there exists z ∈ NG−H3(v4) ∩NG−H3(w), in which case v2, v1, x, y, w, z, v4, v3, v2
is an 8-cycle with chord xv2. This completes the proof of the lemma.

Lemma 12. Let G be a graph of order n ≥ 13 with δ(G) ≥ n+1
3 . Then G contains

chorded cycles of each length from 9 to the circumference of the graph.

Proof. By Theorem 1, G contains cycles of each length from 9 to the circumfer-
ence of G. Let G be as stated and suppose G has no chorded k-cycle for some
k ≥ 9. Let C = Ck : v1, v2, . . . , vk be such a cycle in G. Further, let H = G−Ck.
We consider the following cases.
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Case 1. Suppose, no two consecutive vertices of Ck have a common neighbor
off C.

By our assumption and Lemma 8, for any three consecutive vertices on Ck,
vi, vi+1, vi+2, NG−H(vi) ∩ NG−H(vi+2) 6= ∅. Let w ∈ NG−H(v1) ∩ NG−H(v3)
and let H1 =< H ∪ {w} > . If NG−H1(v2) ∩ NG−H1(v6) 6= ∅, then take w2 ∈
NG−H1(v2) ∩NG−H1(v6) and note that

v1, w, v3, v2, w2, v6, v7, . . . , vk, v1

is a k-cycle with chord v1v2. Thus, we may assume NG−H1(v2) ∩NG−H1(v6) = ∅
and by symmetry NG−H1(v2) ∩NG−H1(vk−2) = ∅.

If NG−H1(v3)∩NG−H1(v7) 6= ∅, then let w3 ∈ NG−H1(v3)∩NG−H1(v7). Now,
by our assumptions there exists wk ∈ NG−H1(vk) ∩NG−H1(v2). Now by Lemma
8, we have that

v2, v1, w, v3, w3, v7, v8, . . . , vk, wk, v2

is a k-cycle with chord v2v3. Note that if any pair of vertices vi, vi+4 for i =
2, 3, . . . , k−3 share a common neighbor off C, then we can always find a chorded
k-cycle in a similar fashion. So we may assume this never happens.

Then, in particular, considering v2, v5, v6, we know by our assumptions there
exists a vertex x ∈ NG−H1(v2)∩NG−H1(v5), and let H2 =< H1∪{x} >. Similarly,
considering v5, v8, v9, we know there exists a vertex y ∈ NG−H2(x5)∩NG−H2(v8).
Now v1, w, v3, v2, x, v5, y, v8, v9, . . . , vk, v1 is a k-cycle with chord v1v2, completing
this case.

Case 2. Suppose two consecutive vertices of C = H do have a common
neighbor in G−H.

Without loss of generality, say w ∈ NG−H(v1) ∩ NG−H(v2) and let H1 =<
H ∪ {w} > . Then if any pair vi, vi+3 for i = 2, 3, . . . , k − 3 satisfies NG−H1(vi) ∩
NG−H1(vi+3) 6= ∅ with a vertex x ∈ NG−H1(vi) ∩ NG−H1(vi+3), there exists a
k-cycle v1, w, v2, v3, . . . , vi, x, vi+3, . . . , vk, v1 with chord v1v2.

Thus, assume no such pair exists. Then, in particular, considering v2, v5, v8
we see that there exists a vertex, say w2, such that w2 ∈ NG−H(v2)∩NG−H(v8),
and considering the triple v3, v6, v9, there must exists a vertex w3 ∈ NG−H(v3) ∩
NG−H(v9) and considering v4, v7, v10 (here v10 may be v1) we have a vertex w4 ∈
NG−H(v4) ∩ NG−H(v10). Then the cycle v1, v2, w2, v8, v9, w3, v3, v4, w4, v10, v11,
. . . , v1 (note again that it is possible that v1 = v10) is a k-cycle with chord v2v3.
This completes the proof.

Note that Case 2 may require at least 13 vertices, hence the condition that
n ≥ 13. As this lemma is used in Theorems 3 and 4, the condition that n ≥ 13
must be assumed in each result.

We are now ready to prove Theorem 3.
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Proof of Theorem 3. By Theorem 1, G is weakly pancyclic with girth 3 or 4.
Let G be a graph of order n ≥ 13 with δ(G) ≥ n+1

3 . Then by Lemmas 9, 10, 11,
and 12 we see that G contains chorded cycles of length 6 up to the circumference
of G.

As G is triangle-free, there can be no chorded 4 or 5-cycles, thus the result
is best possible.

Example for Theorem 3. We construct a graph G as follows. Begin with
a copy of C4 = v1, v2, v3, v4, v1. Blowup each of the vertices v1 and v3 into
sets of n−2

3 independent vertices and blowup the vertices v2 and v4 into sets
of n−2

6 independent vertices. For any edge of C4 insert all edges between the
corresponding sets. Finally, insert two new vertices x and y that are themselves
adjacent and join x to all vertices in the blowup of v1 and y to all vertices in the
blowup of v3 (see Figure 1). Note that δ(G) = n+1

3 . Further, it is easy to see that
G is chorded weakly 6-pancyclic.

Figure 1. Sharpness example for Theorem 3.

Proof of Theorem 4. By Theorem 2, G is weakly pancyclic with girth 3 or 4.
Again by Lemmas 9, 10, 11, and 12, we see that G has chorded cycles of each
length from 6 to the circumference of G.

3. Proof of Theorem 7

The following from [12] will be useful.

Lemma 13. If G is a triangle-free graph of order n ≥ 4 and C is a cycle in G,
then for every vertex v ∈ G − C, the set N+

C (v) is non-empty and N+
C (v) is not

an independent set, hence |N+
C (v)| ≥ 2.

The next lemma has appeared in numerous papers, thus we attribute it to
folklore.
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Lemma 14. Let C be a cycle in a graph G and v ∈ V (G − C). If there is an
edge in N+

C (v), then G contains a cycle D with V (D) = V (C) ∪ {v}.

We now state, in more detail, what Lou [12] proved.

Theorem 15. If G (G 6= Km,m or C5) is a triangle-free graph with α(G) ≤ κ(G),
then

1. G is k-regular and

2. k = α(G) = κ(G) = κ and G is κ-regular

3. G has diameter 2, and

4. G contains cycles of length 4 up to |V (G)|.

What Lou proved actually puts some real restrictions on graphs G that satisfy
the conditions of being triangle-free with α(G) = κ(G). The most severe is a
bound on the order of G.

Lemma 16. If G is a triangle-free graph of order n with α(G) = κ(G) = k, then
n ≤ k2 + 1.

Proof. Let G be as stated above. Select any vertex v. Then v has exactly k
mutually nonadjacent neighbors and each of these vertices may have at most k−1
distinct new neighbors. If there are any other vertices, say x, then d(v, x) > 2
and there is no way to create a path to v that would be of length at most 2.
Thus, no such x exists and so n ≤ 1 + k + k(k − 1) = k2 + 1.

This lemma provides another simple observation that if α(G) = 2, then G is
either C5 or C4, and if α(G) = 3, then n ≤ 10. Thus, from now on we need only
consider α(G) ≥ 4.

The graphs in Figures 2 and 3 show that the conditions of being triangle-free
with α(G) = κ(G) are not enough to guarantee that 6 and 7-cycles are chorded.

Figure 2. Here α(G) = 3.
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We now present our proof of Theorem 7, the extension of Lou’s Theorem,
which utilizes an expansion of the ideas in his approach.

Figure 3. Here α(G) = 4.

Proof. Suppose the result fails to hold. Then by Theorem 6, there must exist
an integer k with 4 ≤ k ≤ |V (G)| − 2, such that G contains a Ck but no chorded
Ck+2. We next show that each of the following structures (see Figure 4) on a Ck,
actually provides a chorded Ck+2.

To see this for structure (I), consider the (k + 2)-cycle a, u, v, a+, a+2, . . . , a
with chord aa+.

For structure (III), consider the (k+2)-cycle a, u, b, b−, . . . , a+, v, b+, b+2, . . . , a
with chord aa+.

For structure (IV), consider the (k+2)-cycle a, u, v, b, b−, . . . a+, b+, b+2, . . . , a
with chord aa+.

In order to handle structure II we first need to develop several facts.

Claim 1. Every vertex off the k-cycle Ck : x1, x2, . . . , xk, x1 (k ≥ 6) has at least
one adjacency on Ck.

Proof. Suppose there is a vertex v 6∈ V (Ck) such that v has no adjacencies
on Ck. Then since G is triangle-free, E(N(v)) = ∅. However, for any xi ∈
V (Ck), N(v) ∪ {xi} is a set of cardinality κ(G) + 1. If this set is independent, a
contradiction arises to Theorem 15. Thus, every vertex on Ck is adjacent to at
least one vertex in N(v). Without loss of generality, say x1v1 ∈ E(G) for some
v1 ∈ N(v). Now d(v, x3) > 2. Either there exists v3 ∈ N(v) such that v3 6= v1
with v3x3 ∈ E(G) or x3v1 ∈ E(G).

First suppose latter happens, then d(v, x4) > 2. Since G is triangle-free,
v1x4 6∈ E(G), which implies there exists v4 ∈ N(v) such that v4x4 ∈ E(G). Next
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note that d(v, x2) > 2. If x2v4 ∈ E(G) we obtain structure III, and hence a
chorded (k + 2)-cycle exists in G, a contradiction. Further, to avoid a triangle,
x2v1 6∈ E(G), so there exists v2 ∈ N(v) (v2 6= v1, v4) such that v2x2 ∈ E(G).
Note that we can extend Ck to a (k + 2)-cycle

C∗ = x2, v2, v, v4, x4, x5, . . . , x1, x2.

Now d(x2, x5) > 2. Further, x2x5 6∈ E(G) as that would provide a chord for C∗.
Also x1x5 6∈ E(G) for the same reason, and x3x5 6∈ E(G) since G is triangle-
free. Thus, there exists some w 6∈ V (Ck) such that x2w, x5w ∈ E(G). Now
x1, v1, v, v2, x2, w, x5, x6, . . . , xk, x1 is a (k + 2)-cycle with chord x1x2, a contra-
diction.

Figure 4. Four structures producing chorded (k + 2)-cycles.

Now consider the former case, that is, that there exists v3 /∈ V (Ck) such that
v3 6= v1 and v3v, v3x3 ∈ E(G). Since d(v, x2) > 2 and v1x2, v3, x2 /∈ E(G), there
exists a v2 ∈ N(v) with v2x2 ∈ E(G). Again there is a (k + 2)-cycle

C ′ : x1, v1, v, v3, x3, x4, . . . , xk, x1.

If there are any chords in Ck not involving x2, then C ′ is chorded, a contradiction.
Now d(x2, x5) > 2. If there exists w ∈ NG−Ck

(x2)−{x1} such that wx5 ∈ E(G),
then

x1, v1, v, v2, x2, w, x5, x6, . . . , xk, x1

is a (k + 2)-cycle with chord x1x2. So we may assume x2x5 ∈ E(G). Next note
that d(x3, xk) > 2. If v3xk ∈ E(G), then again C ′ is chorded with chord v3xk.
So we may assume there exists a vertex w ∈ NG−Ck

(x3) with wxk ∈ E(G). Now
we see that

x3, v3, v, v2, x2, x5, x6, . . . xk, w, x3
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is a (k + 2)-cycle with chord x2x3, a contradiction completing this case and the
proof of the claim.

Claim 2. If structure II exists in G, then a chorded (k + 2)-cycle exists in G.

Proof. Suppose structure II arises and let Ck = x1, x2, , . . . , xk. Without loss of
generality suppose that v1, v3 ∈ NG−C(v) and v1x1 and v3x3 are edges of G. Now,
by Claim 1, vertex v must have an adjacency on the cycle Ck. If vx2 ∈ E(G), then
structure I is formed and we have a chorded (k+ 2)-cycle, a contradiction to our
assumption. Thus, assume vx2 6∈ E(G). Further, vx1, vx3 6∈ E(G), since either
edge would create a triangle in G. Thus, vxi ∈ E(G) for some i, 4 ≤ i ≤ k. Now
this edge is a chord of the (k+ 2)-cycle x1, v1, v, v3, x3, x4, . . . , x1, a contradiction
which completes the proof of the claim.

Next choose a cycle C of length m such that r = maxv∈G−C |NC(v)| (that
is, over all vertices off C, v has the maximum number of adjacencies, and the
maximum is taken over all choices of cycles of length m). Take a vertex v from
G− C with |NC(v)| = r and another vertex u ∈ V (G− C) which is, if possible,
adjacent to v. By Lemma 13, the vertex u must have two neighbors y1 and y2
on C such that y+1 y

+
2 ∈ E(G). Thus, by Lemma 14, there is an (m+ 1)-cycle D

with V (D) = V (C) ∪ {u}. If r ≥ κ − 1, then v has all of its neighbors on D, so
again by Lemma 14 there is a cycle on |V (D)∪ {v}| = m+ 2 vertices with chord
y1y

+
1 , a contradiction.

Now we may assume that r ≤ κ − 2. Then uv ∈ E(G) and v has another
neighbor w ∈ G−C. By Lemma 14, w also has two neighbors z1, z2 on C such that
z+1 z

+
2 ∈ E(G). Since G is triangle-free, in any direction on C, there are at least

two vertices between z1 and z2, otherwise < z+1 , z2, z
+
2 >= K3. Thus, we may

assume z1 6∈ {y−1 , y1, y
+
1 }. Fix an orientation on D with the path y+2 , . . . , y

−
1 , y1

and let S ⊂ D be the set of vertices y of C satisfying y− ∈ NC(v). We wish to
show that NG−C(v) ∪ S ∪ {z+2

1 } (with respect to the orientation on D) is an
independent set with cardinality κ+ 1, the final contradiction.

In order to do this note that on C, the vertex z1 6= x1
+2, x−21 or structure

II results, a contradiction. Thus, the edges z1z
+
1 and z+1 z

+
2 on D are also on C.

Similarly, avoiding structure I, we see that there is no edge between any vertex
in NG−C(v) and any vertex of S. For the same reason, on D, z+2

1 /∈ S and, in
particular, v is not adjacent to z+1 on D. Also, on D, vz+2

1 /∈ E(G) otherwise,

z+2
1 , z+3

1 , . . . , z1, w, v, z
+2
1

is an (m + 2)-cycle with chord wz2. Moreover, z+2
1 is not adjacent to a vertex

y ∈ S since otherwise z1, w, v, y
−, y−2, . . . z+2

1 , y, y+, . . . z−1 , z1 is an (m+ 2)-cycle
with chord wz2, again a contradiction to our assumption. Since an edge in S also
creates an (m+ 2)-cycle with chord yy−, all that remains is to show that z+2

1 is
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not adjacent to any vertex of NG−C(v). For any vertex of NG−C(v) other than w,
this follows, as structure II would be formed and hence a chorded (m+ 2)-cycle
would exist. But if z+2

1 is adjacent to w, we can form a new m cycle C ′ with w
replacing z+1 . As v is adjacent to w but not to z+1 , v now has r + 1 neighbors
on C ′, contradicting our choice of cycle C. Thus, the set NG−C(v) ∪ {z+2

1 } ∪ S
is independent and has cardinality at least r + 1, a contradiction completing the
proof.

4. Conclusion

It is clear from recent work that many conditions implying various cycle properties
in a graph can be used to show stronger results concerning cycles with chords.
This paper is just one such situation. Broadening our meta-conjecture from [9]:

Almost any condition that implies some cycle property in a graph also implies
a chorded cycle property, possibly with some families of exceptional graphs, and
small order exceptions.
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