DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

N. Matsumoto

Naoki Matsumoto

Keio University

email: naoki.matsumo10@gmail.com

0000-0003-2861-7152

K. Noguchi

Kenta Noguchi

Tokyo University of Science

email: noguchi@comb.math.keio.ac.jp

0000-0002-7790-0782

T. Yashima

Takamasa Yashima

Seikei University

email: takamasa.yashima@gmail.com

0000-0002-3378-4740

Title:

Cubic graphs having only k-cycles in each 2-factor

PDF

Source:

Discussiones Mathematicae Graph Theory 44(1) (2024) 281-296

Received: 2020-12-25 , Revised: 2021-12-09 , Accepted: 2021-12-09 , Available online: 2022-02-05 , https://doi.org/10.7151/dmgt.2447

Abstract:

We consider the class of $2$-connected cubic graphs having only $k$-cycles in each $2$-factor, and obtain the following two results: (i) every 2-connected cubic graph having only $8$-cycles in each $2$-factor is isomorphic to a unique Hamiltonian graph of order $8$; and (ii) a $2$-connected cubic planar graph $G$ has only $k$-cycles in each $2$-factor if and only if $k=4$ and $G$ is the complete graph of order $4$.

Keywords:

cubic graph, $2$-factor, Hamiltonian cycle, $2$-factor Hamiltonian

References:

  1. M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan, Pseudo $2$-factor isomorphic regular bipartite graphs, J. Combin. Theory Ser. B 98 (2008) 432–442.
    https://doi.org/10.1016/j.jctb.2007.08.006
  2. R.E.L. Aldred, M. Funk, B. Jackson, D. Labbate and J. Sheehan, Regular bipartite graphs with all $2$-factors isomorphic, J. Combin. Theory Ser. B 92 (2004) 151–161.
    https://doi.org/10.1016/j.jctb.2004.05.002
  3. K. Appel and W. Haken, Every planar map is four colorable, Bull. Amer. Math. Soc. 82 (1976) 711–712.
    https://doi.org/10.1090/S0002-9904-1976-14122-5
  4. N. Biggs, Three remarkable graphs, Canad. J. Math. 25 (1973) 397–411.
    https://doi.org/10.4153/CJM-1973-040-1
  5. A. Bonato and R.J. Nowakowski, Sketchy tweets: Ten minute conjectures in graph theory, Math. Intelligencer 34 (2012) 8–15.
    https://doi.org/10.1007/s00283-012-9275-2
  6. J.A. Bondy, Variations on the Hamiltonian theme, Canad. Math. Bull. 15 (1972) 57–62.
    https://doi.org/10.4153/CMB-1972-012-3
  7. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, 1976).
  8. M. DeVos, V.V. Mkrtchyan and S.S. Petrosyan, \mbox{Petersen} graph conjecture –- Open Problem Garden (2007).
    http://garden.irmacs.sfu.ca/?q=op/petersen_graph_conjecture
  9. A.A. Diwan, Disconnected $2$-factors in planar cubic bridgeless graphs, J. Combin. Theory Ser. B 84 (2002) 249–259.
    https://doi.org/10.1006/jctb.2001.2079
  10. J.-L. Fouquet, H. Thuillier and J.-M. Vanherpe, On a family of cubic graphs containing the flower snarks, Discuss. Math. Graph Theory 30 (2010) 289–314.
    https://doi.org/10.7151/dmgt.1495
  11. M. Funk, B. Jackson, D. Labbate and J. Sheehan, $2$-Factor hamiltonian graphs, J. Combin. Theory Ser. B 87 (2003) 138–144.
    https://doi.org/10.1016/S0095-8956(02)00031-X
  12. J. Goedgebeur, A counterexample to the pseudo $2$-factor isomorphic graph conjecture, Discrete Appl. Math. 193 (2015) 57–60.
    https://doi.org/10.1016/j.dam.2015.04.021
  13. R. Häggkvist and S. McGuinness, Double covers of cubic graphs with oddness $4$, J. Combin. Theory Ser. B 93 (2005) 251–277.
    https://doi.org/10.1016/j.jctb.2004.11.003
  14. A. Huck and M. Kochol, Five cycle double covers of some cubic graphs, J. Combin. Theory Ser. B 64 (1995) 119–125.
    https://doi.org/10.1006/jctb.1995.1029
  15. R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221–239.
    https://doi.org/10.2307/2319844
  16. B. Jackson and K. Yoshimoto, Spanning even subgraphs of $3$-edge-connected graphs, J. Graph Theory 62 (2009) 37–47.
    https://doi.org/10.1002/jgt.20386
  17. A. Kündgen and R.B. Richter, On $2$-factors with long cycles in cubic graphs, Ars Math. Contemp. 4 (2011) 79–93.
    https://doi.org/10.26493/1855-3974.194.abe
  18. D. Labbate, Characterizing minimally $1$-factorable $r$-regular bipartite graphs, Discrete Math. 248 (2002) 109–123.
    https://doi.org/10.1016/S0012-365X(01)00189-3
  19. D. Labbate, On $3$-cut reductions of minimally $1$-factorable cubic bigraphs, Discrete Math. 231 (2001) 303–310.
    https://doi.org/10.1016/S0012-365X(00)00327-7
  20. R. Lukot'ka, E. Máčajová, J. Mazák and M. Škoviera, Circuits of length $5$ in $2$-factors of cubic graphs, Discrete Math. 312 (2012) 2131–2134.
    https://doi.org/10.1016/j.disc.2011.05.026
  21. M.M. Matthews and D.P. Sumner, Hamiltonian results in $K_{1,3}$-free graphs, J. Graph Theory 8 (1984) 139–146.
    https://doi.org/10.1002/jgt.3190080116
  22. J.M.O. Mitchell, The genus of the Coxeter graph, Canad. Math. Bull. 38 (1995) 462–464.
  23. N. Robertson, P. Seymour and R. Thomas, Excluded minors in cubic graphs, J. Combin. Theory Ser. B 138 (2019) 219–285.
    https://doi.org/10.1016/j.jctb.2019.02.002
  24. P.G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh Sect. A 10 (1880) 729.
    https://doi.org/10.1017/S0370164600044643

Close