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1. Introduction

1.1. Definitions

All graphs in this paper are finite, simple, and undirected. Let G be a graph. We
let V (G) and E(G) denote the vertex set and the edge set of G, respectively. For
x ∈ V (G), we let NG(x) denote the set of vertices of G adjacent to x.

A cycle is a connected 2-regular graph. The number of edges in a cycle is
called its length, and a k-cycle is a cycle of length k. The vertex-disjoint union of
cycles in a graph G is a 2-regular subgraph of G. A spanning 2-regular subgraph
of G is called a 2-factor of G. Let Kn and Km,n denote the complete graph of
order n and the complete bipartite graph with partite sets of order m and n,
respectively. For terms and symbols not defined here, we refer the reader to [7].

1.2. Motivation of our investigations and main results

In this paper, we focus on graphs which have a 2-factor consisting of cycles of the
same length. We begin with some known results.

Theorem 1 (Jackson and Yoshimoto [16]). Every 3-connected cubic graph of

order at least 5 has a 2-factor in which each component has length at least 5.

Theorem 2 (Kündgen and Richter [17]). Every 2-connected cubic graph without

a Hamiltonian cycle either is the Petersen graph or has a 2-factor in which at

least one component has length at least 7.

In particular, the number of 5-cycles in 2-factors of graphs is deeply studied
since it concerns the study of snarks [13, 14, 21], where a snark is a non-3-edge-
colorable 2-connected cubic graph. Many important problems and conjectures
can be reduced to snarks. Four Color Theorem, Tutte’s 5-flow conjecture, Cycle
Double Cover Conjecture and so on (cf. [5]). On the study of snarks, for example,
the following result is already known (see Section 3 for the definition of cyclic
edge-connectivity of a graph).

Theorem 3 (Lukot’ka et al. [20]). For every positive integer m, there exists a

nontrivial snark (i.e., one which is cyclically 4-edge-connected and has girth at

least 5) with at least m 5-cycles in each 2-factor.

We here consider the following problem.

Problem 4. For any integer k ≥ 3, characterize a 2-connected cubic graph having
only k-cycles in each 2-factor.

The case where k = 5 in Problem 4 is immediately obtained from Theorem 2,
and it was independently proved by DeVos [8]. For the case where k ∈ {3, 4, 6},
we can easily obtain the following (a graph that all of its 2-factors are Hamiltonian
is 2-factor Hamiltonian).
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Theorem 5. (i) There exists no 2-connected cubic graph having only 3-cycles
in each 2-factor.

(ii) Every 2-connected cubic graph having only 4-cycles in each 2-factor is iso-

morphic to K4.

(iii) Every 2-connected cubic graph having only 6-cycles in each 2-factor is iso-

morphic to K3,3.

Proof. By Theorem 2, for each k ∈ {3, 4, 6}, any 2-connected cubic graph having
only k-cycles in each 2-factor is Hamiltonian, that is, each such graph consists of
exactly k vertices. For k = 3, no such graph exists trivially. For k = 4 (respec-
tively, 6), we see that K4 (respectively, K3,3) is the unique 2-factor Hamiltonian
cubic graph (cf. [11]).

Furthermore, we solve Problem 4 for k = 8 as follows (the graph H8 is the
cubic graph of order 8 shown in Figure 1; the proof is presented in Section 2).

Figure 1. The graph H8.

Theorem 6. Every 2-connected cubic graph having only 8-cycles in each 2-factor
is isomorphic to H8.

As in Theorems 5 and 6, for any even k ≥ 4, a 2-connected cubic graph hav-
ing only k-cycles in each 2-factor intuitively seems to be Hamiltonian. However,
the Coxeter graph [7, Page 241] is an exception for this intuition. We confirm
(by computer) that every 2-factor of the Coxeter graph consists of exactly two
14-cycles (cf. [4, Page 403]). It is also known that the Coxeter graph is hy-
pohamiltonian (i.e., one which is not Hamiltonian but the graph obtained by
removing any vertex is Hamiltonian) [6]. For k ∈ {10, 12}, we have not been able
to find such an exception and any efficient technique to solve Problem 4.

In the class of 2-connected cubic graphs having only cycles of the same length
in each 2-factor, we have been able to find only non-planar graphs except for K4,
i.e., the Petersen graph, K3,3, H8, the Coxeter graph and graphs obtained from
the five graphs by recursively performing the operation called a “star product”
(for the definition of the star product, see Subsection 1.3). That is why we restrict
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ourselves to the class of planar graphs. Then, in fact, it turns out that only K4

survives among the above graphs. (In Section 3, we prove a slightly stronger
theorem than the following.)

Theorem 7. Let n ≥ 4 and k ≥ 3 be integers with n ≥ k, and G a 2-connected
cubic planar graph of order n. Then G has only k-cycles in each 2-factor if and

only if k = 4 and G is the complete graph of order 4.

Moreover, in view of the fact that the orientable (respectively, non-orientable)
genus of the Coxeter graph is equal to 3 (respectively, 6) [22], one might be able
to consider the similar problems to Theorem 7 in surfaces with low genus (e.g.,
the projective plane and/or the torus).

1.3. Short survey of results related to ours

In this subsection, we survey some known results and problems on 2-factors of
cubic graphs, which are related to our results.

Recall that a cubic graph G is 2-factor Hamiltonian if all 2-factors of G are
Hamiltonian cycles. This concept is introduced by Funk et al. [11]. They proved
that if a graph is 2-factor Hamiltonian, k-regular and bipartite, then k ≤ 3.
Aldred et al. [2] verified the same result for k-regular bipartite graphs with the
more general property that all their 2-factors are isomorphic. Moreover, the
following is also proved.

Proposition 8 (Funk et al. [11], Lemma 3.3). Let G be a 2-factor Hamiltonian

cubic bipartite graph. Then G is 3-connected and |V (G)| ≡ 2 (mod 4).

Let G1 and G2 be cubic graphs, and let x and y be vertices of G1 and G2,
respectively. A star product ofG1 and G2, denoted by G1∗G2 (or (G1, x)∗(G2, y)),
is the graph obtained from G1 and G2 by removing x and y and adding three
edges x1y1, x2y2, x3y3, where NG1

(x) = {x1, x2, x3} and NG2
(y) = {y1, y2, y3}.

Note that the star product is not always uniquely determined, in other words, the
formation of the resulting graph depends on the choice of two vertices in the star
product. It is known in [11] that if the resulting graph G1 ∗G2 is bipartite, then
it is 2-factor Hamiltonian if and only if both G1 and G2 are 2-factor Hamiltonian.
In the same paper, the following conjecture is proposed. The Heawood graph is
the incidence graph (or the Levi graph) of the Fano plane PG(2, 2), i.e., the graph
is a cubic bipartite graph of order 14 [7, Page 244]. Observe that both K3,3 and
the Heawood graph are 2-factor Hamiltonian.

Conjecture 9 (Funk et al. [11], Conjecture 3.2). Let G be a 2-factor Hamiltonian

cubic bipartite graph. Then G can be obtained from K3,3 and the Heawood graph

by a sequence of star products.
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By the results in [18, 19] (as already mentioned in [11]), in order to prove
Conjecture 9, it would be sufficient to prove the following.

Conjecture 10 (Funk et al. [11]). The Heawood graph is the only 2-factor
Hamiltonian cyclically 4-edge-connected cubic bipartite graph of girth at least 6.

Abreu et al. [1] extended some results on 2-factor Hamiltonian graphs to
the more general class of pseudo 2-factor isomorphic graphs, where a graph G is
pseudo 2-factor isomorphic if the parity of the number of cycles in a 2-factor is
the same for all 2-factors of G. They propose conjectures similar to Conjectures 9
and 10, for pseudo 2-factor isomorphic graphs. However, Goedgebeur [12] found
a counterexample for those conjectures by a computer search, and also verified
that Conjecture 10 is true up to 40 vertices.

1.4. Construction of 2-factor Hamiltonian cubic graphs

In this subsection, we introduce a construction of 2-factor Hamiltonian cubic
graphs with the help of a new lemma for the star product. As described in the
previous subsection, Funk et al. [11] showed the following useful lemma.

Lemma 11 (Funk et al. [11]). If a bipartite graph G can be represented as a star

product G = G1 ∗G2, then G is 2-factor Hamiltonian if and only if both G1 and

G2 are 2-factor Hamiltonian.

We can easily obtain a 2-factor Hamiltonian bipartite cubic graph of order n
for any n ≡ 2 (mod 4), by a star product K3,3 ∗K3,3 ∗ · · · ∗K3,3. For example,
the left of Figure 2 is a star product of two K3,3’s. To construct such graphs for
n ≡ 0 (mod 4), we prepare the following lemma. For a connected graph G, a
k-cut is a subset X ⊆ E(G) with |X| = k such that G−X is disconnected.

H10 H ′

10

Figure 2. Two 2-factor Hamiltonian cubic graphs of order 10.

Lemma 12. Let G1 and G2 be 2-factor Hamiltonian cubic graphs, and let G2 be

bipartite. Then the star product G = G1 ∗G2 is 2-factor Hamiltonian.
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Proof. Let S = {u1v1, u2v2, u3v3} be the 3-cut generated by the star product,
where ui ∈ V (G1) and vi ∈ V (G2) for each i ∈ {1, 2, 3}. Since G1, G2 and G
are all 3-edge-colorable, G has a 2-factor. Let F be a 2-factor of G. Since G2

is bipartite cubic, the two partite sets of G2 have the same number of vertices.
So F must contain an at least one edge in S, and hence F passes exactly two
edges in S. Moreover, since both G1 and G2 are 2-factor Hamiltonian, F is a
Hamiltonian cycle (otherwise, G1 or G2 has a 2-factor consisting of at least two
cycles).

By using Lemma 12, we can construct a 2-factor Hamiltonian non-bipartite
cubic graph of order n for any n ≡ 0 (mod 4), by a star product K4 ∗K3,3 ∗K3,3 ∗
· · · ∗K3,3. Observe that H8 is obtained from K4 and K3,3 by a star product.

We also see that the right of Figure 2 is obtained from two K4’s and K3,3 by
applying a star product two times. The 2-factor hamiltonicity of the resulting
graphH ′

10 obtained fromK4∗K3,3 andK4 by a star product is not guaranteed only
by Lemmas 11 and 12. However, we easily check thatH ′

10 is 2-factor Hamiltonian.
Thus, for the non-bipartite case, we need more observations for a star product to
explain all 2-factor Hamiltonian cubic graphs obtained by star products.

On the other hand, we know that there exists a 2-factor Hamiltonian cubic
graph which cannot be represented as a star product. Recall that the Heawood
graph is one such graph. Moreover, so is the triplex graph [23]. Fouquet et al.

[10] provided a general construction of such graphs, namely FS(j, k), as follows.
Prepare k disjoint K1,3’s, where Hi = {xi, yi, zi, ti} (0 ≤ i ≤ k− 1) is a K1,3 with

center vertex ti, and let T =
⋃k−1

i=0
{ti}. Then let G be the graph obtained from

the above Hi’s by joining three pairs of pendant vertices of Hi and Hi+1 for each
i (where each subscript is taken modulo k). Up to isomorphism, the matching
joining vertices of degree 1 of Hk−1 and those of H0 determines the graph G. This
construction produces essentially three distinct graphs, namely FS(1, k), FS(2, k)
and FS(3, k), where FS(j, k) is the graph with j cycles induced by V (FS(j, k))\
T . Observe that FS(j, k) is a simple cubic graph for k ≥ 3 and that if k is odd,
then FS(2, k) is known as the flower snark [15]. It is proved in [10] that FS(j, k)
is 2-factor Hamiltonian if and only if k is odd and j ∈ {1, 3}. Furthermore,
if k ≥ 3 is odd and j = 1 (or if k ≥ 5 is odd and j = 3), then FS(j, k)
cannot be represented as a star product since it is cyclically 4-edge-connected.
In particular, FS(1, 3) is the triplex graph. Therefore, there are infinitely many
2-factor Hamiltonian cubic (non-bipartite) graphs which cannot be represented
as a star product.

2. Proof of Theorem 6

Let G be a 2-connected cubic graph having only 8-cycles in each 2-factor. If
|V (G)| = 8, then since there are only five connected cubic graphs of order 8,
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we can easily check that exactly one of them is 2-factor Hamiltonian, i.e., G is
isomorphic to H8. So we suppose that |V (G)| > 8, for contradiction.

Let c : E(G) → {1, 2, 3} be a 3-edge coloring of G and let u0v0 be an edge
with color 3. Observe that for each i, j ∈ {1, 2, 3} with i 6= j, the graph in-
duced by edges with colors i and j is a 2-factor consisting only of 8-cycles. So
let C1 = u0u1u2 · · ·u7u0 and C2 = v0v1v2 · · · v7v0 be two (1, 2)-cycles of length
8, where an (i, j)-cycle is a cycle induced by edges with colors i and j. With-
out loss of generality, we may suppose that uiui+1 and vivi+1 have color 1 (re-
spectively, 2) if i is even (respectively, odd). We also consider two 8-cycles
C3 = u1u0v0v1w1w2w3w4u1 and C4 = u7u0v0v7z1z2z3z4u7; C3 is a (1, 3)-cycle
in which four edges u0v0, v1w1, w2w3 and w4u1 have color 3 and the others have
color 1, and C4 is a (2, 3)-cycle in which four edges u0v0, v7z1, z2z3 and z4u7 have
color 3 and the others have color 2. We here divide the proof into two cases.

Case 1. E(C1)∩E(C3) = {u0u1} or E(C2)∩E(C3) = {v0v1}. By symmetry,
we may suppose that E(C1)∩E(C3) = {u0u1}. Here we switch two colors 1 and
3 of C3. By the hypothesis of Theorem 6, the spanning subgraph of G induced by
edges with colors 1 and 2 in the resulting 3-edge coloring is a 2-factor. However,
since u0u1 has color 3 and u0v0, u1w4 have color 1, the (1, 2)-cycle containing
vertices in V (C1) has length at least 10, a contradiction.

By this observation, one of w1w2 and w3w4 is in E(C1) and the other is in
E(C2). In other words, we can deduce the following claim.

Claim 13. (i) V (C3) ⊂ V (C1) ∪ V (C2).

(ii) V (C4) ⊂ V (C1) ∪ V (C2).

Proof. (i) It has been already shown above that every vertex of C3 is in V (C1)
∪V (C2).

(ii) By the symmetry of colors 1 and 2, one can see that V (C4) ⊂ V (C1) ∪
V (C2) like in (i). �

Case 2. One of w1w2 and w3w4 is in E(C1) and the other is in E(C2). We
switch two colors 1 and 3 of C3 and let c′ be the resulting 3-edge coloring of G.
In this case, we consider two 8-cycles D and D′ induced by edges with colors 1
and 2 in c′, each of which consists of eight vertices among C1 and C2. (Since
only the colors of C3 are switched, we see from Claim 13(i) that such cycles
exist.) Note that, in D and D′, in order to traverse between V (C1) and V (C2),
u0v0, v1w1, w2w3 or w4u1 must be taken, which are the edges of C3 with color
1 in c′. By the assumption of this case and symmetry, we may suppose that D
contains u0v0, and hence {u0, u7, v0, v7} ⊂ V (D).

Claim 14. (i) Both D and D′ have exactly two edges in {u0v0, v1w1, w2w3,
w4u1}.
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(ii) Either D = u3u4u5u6u7u0v0v7u3 (the left of Figure 3) or
D = u5u6u7u0v0v7v6v5u5 (the right of Figure 3) holds.

Proof. Let A = {u0v0, v1w1, w2w3, w4u1}.
(i) Obviously D contains at least two edges in A. If D′ contains at most one

edge in A, then D′ consists of at most 6 vertices of either V (C1) \ {u0, u7} or
V (C2) \ {v0, v7}, and hence, its length is less than 8, a contradiction.

(ii) By (i), the cycle D consists of

• four edges in E(C1) ∪ E(C2) with color 2 in both c and c′;

• two edges in A (with color 1 in c′), one of which is u0v0; and

• two edges in E(C1) ∪ E(C2) with color 1 in both c and c′.

Hence by symmetry, the statement holds. �

C1 C2 C2C1

u0 v0

v7

u3

u1 v1

u0 v0

u1 v1

u5 v5

Figure 3. The 8-cycle D in Subcases 2.1 and 2.2.

By Claim 14, we further divide the case into two cases.

Subcase 2.1. D = u3u4u5u6u7u0v0v7u3. The edges u3v7 and w2w3 coincide.
If w1w2 = v6v7 and w3w4 = u3u2 (thus v1v6 ∈ E(G)), then G has multiple edges
u1u2 and u1w4, a contradiction. So w1w2 = u2u3 and w3w4 = v7v6. We consider
the (2, 3)-cycle C4 = u7u0v0v7z1z2z3z4u7 in the original 3-edge coloring c (see
the left of Figure 4). Now z1 = u3 and z2 = u4, and the edge z3z4 is an edge in
E(C1) ∪ E(C2) by Claim 13(ii).

C1 C2 C2C1

u0 v0

v7

u3 = z1

u1 v1

u0 v0

u1 v1

u5 v5

z2

z3
z4

z4

z3 z2
z1

Figure 4. The (2, 3)-cycle C4 in Subcases 2.1 and 2.2.



Cubic Graphs Having Only k-Cycles in Each 2-Factor 289

Claim 15. (i) The edges z3z4 and v3v4 cannot coincide.

(ii) The edges z3z4 and u5u6 cannot coincide.

Proof. (i) First, suppose that z3z4 = v3v4. By switching colors 2 and 3 of C4 in c,
the spanning subgraph induced by edges with colors 1 and 2 (in the resulting edge
coloring) has the cycle of length 16 (i.e., u0v0v1v2v3u4u5u6u7v4v5v6v7u3u2u1), a
contradiction. Second, suppose that z3z4 = v4v3. Similarly, we obtain the cycle
of length 16 (i.e., u0v0v1v2v3u7u6u5u4v4v5v6v7u3u2u1), a contradiction.

(ii) First, suppose that z3z4 = u5u6. Then multiple edges appear, a contra-
diction. Second, suppose that z3z4 = u6u5. Then the spanning subgraph induced
by edges with colors 1 and 3 in the original 3-edge coloring c has the cycle of
length 4 (i.e., u4u5u7u6), a contradiction. �

By Claim 15, z3z4 must be one of {u1u2, v1v2, v5v6}, which contradicts that
G is cubic.

Subcase 2.2. D = u5u6u7u0v0v7v6v5u5. The edges u5v5 and w2w3 coincide.
If w1w2 = v4v5 and w3w4 = u5u4 and if switching two colors 1 and 3 of C3,
then the spanning subgraph induced by edges with colors 1 and 2 in the resulting
3-edge coloring contains two (1, 2)-cycles u1u2u3u4u1 and v1v2v3v4v1 of length 4,
a contradiction. So w1w2 = u4u5 and w3w4 = v5v4.

We here consider the (2, 3)-cycle C4 = u7u0v0v7z1z2z3z4u7 in c (see the right
of Figure 4). By Claim 13(ii), the edge z1z2 is an edge in E(C1) ∪ E(C2). For
each edge e with color 2 in c in {u1u2, u3u4, u5u6, v1v2, v3v4, v5v6}, one end vertex
of e is incident to an edge of C3. Thus, some vertex x ∈ V (C1) ∪ V (C2) must be
of degree at least 4 (i.e., x is incident to at least one each edge of C3 and C4),
which contradicts that G is cubic.

3. Proof of Theorem 7

In this section, we shall prove the following stronger theorem, and hence Theorem
7 follows as a corollary.

Theorem 16. Let n ≥ 4 and k ≥ 3 be integers with n ≥ k, G a 2-connected
cubic planar graph of order n, and v ∈ V (G). If every 2-factor of G consists of a

cycle through v of length at most k and a disjoint union of k-cycles, then k = 4
and G is isomorphic to K4.

Note that our proof strongly depends on Theorem 17 shown by Diwan [9]
(see Theorem in Page 251, the first paragraph after the theorem in Page 251 and
the Cases 4 and 5 in the proof in Pages 252–258). A cyclic k-cut S of a connected
graph G is one such that at least 2 components of G−S have cycles. A connected
graph G containing two disjoint cycles is cyclically k-edge-connected if there is no
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cyclic l-cut of G with l ≤ k − 1. Let k(H) be the cyclic edge-connectivity of H,
which is the maximum integer m such that H is cyclically m-edge-connected. A
k-face is a face bounded by a closed walk of length k, and two faces are adjacent

if their boundary walks share an edge.

Theorem 17 (Diwan [9]). Let G be a 2-connected cubic planar graph except K4.

(i) If k(G) = 4 and G does not contain a 4-cycle, then G has a perfect matching

which contains four edges corresponding to a cyclic 4-cut of G.

(ii) If k(G) = 5, then G has a 2-factor F satisfying one of the following:

(a) a 5-cycle f1 in F is a 5-face of G; or

(b) an 8-cycle f2 in F is the symmetric difference of boundaries of two

adjacent 5-faces of G.

Proof of Theorem 16. If n = 4, then G is isomorphic to K4 and hence the
theorem holds. So, we suppose that G is a minimal counterexample, i.e., it
satisfies all the assumptions in the theorem but G 6= K4, and let v be a vertex as
in the statement.

It is well known by the Four Color Theorem [3] (in particular, Tait’s theorem
[24]) that every 2-connected cubic planar graph has a 3-edge coloring. Let c :
E(G) → {1, 2, 3} be a 3-edge coloring of G and let Gi,j be the subgraph of G
induced by the edges with colors i and j for any two distinct i, j ∈ {1, 2, 3}. Since
each Gi,j is a 2-factor of G, every (i, j)-cycle in Gi,j , other than one through v,
is of length k, which is an alternating cycle with colors i and j. Thus, k (and the
length of the cycle through v) must be even.

Claim 18. G is 3-edge connected.

Proof. Suppose to the contrary that G has a 2-cut S = {e1, e2}. Since each Gi,j

consists of cycle(s), e1 and e2 are colored by the same color, say 1. Let R be a
connected component of G−S that does not contain v. Observe that V (R) must
be a multiple of k by considering (2, 3)-cycles in R. Let C be the (1, 2)-cycle
containing e1 and e2. Since all (1, 2)-cycles in R are of length k, the length of C
must be more than k, a contradiction.

Claim 19. In every 3-edge coloring of G, all edges in any 4- or 6-cut of G cannot

be colored by the same color.

Proof. Let S = {e1, e2, e3, e4} be a 4-cut of G and R be a component of G− S
that does not contain v. Suppose that all edges in S are colored by the same
color, say 1. Observe that V (R) must be a multiple of k by considering (2, 3)-
cycles in R. Let C be the (1, 2)-cycle containing e1. One can see that C contains
4 or exactly 2 edges in S. If C contains all edges in S, then the length of C
must be more than k by considering (1, 2)-cycles in R, a contradiction. If C
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contains exactly 2 edges in S, then switch the colors 1 and 2 of C in c. Let c′

be the resulting 3-edge coloring of G and let C2 be the (2, 3)-cycle (colored in c′)
containing e1 in G. Then the length of C2 must be more than k by considering
(2, 3)-cycles (colored in c′) in R, a contradiction.

Let S be a 6-cut of G and suppose that all edges in S are colored by the
same color, say 1. In this case there are only two possibilities: all edges in S are
contained in exactly one (1, 2)-cycle, or there exists a (1, 2)-cycle that contains
exactly two edges in S. In both cases we can use the similar argument above,
and we get a contradiction.

Claim 20. G has none of the following configurations:

(i) two adjacent 3-faces;

(ii) a 4-face;

(iii) a 5-face adjacent to a 3-face;

(iv) a 6-face adjacent to at least two 3-faces;

(v) a 7-face adjacent to at least three 3-faces;

(vi) an 8-face adjacent to at least four 3-faces.

Proof. (i) If G contains two adjacent 3-faces v1v2v3 and v2v3v4, then G has a
2-cut S = {v1u1, v4u4} since G is not isomorphic to K4, where ui is the neighbor
of vi other than v2 and v3 for i ∈ {1, 4}. This is contrary to Claim 18.

(ii) Suppose that G contains a 4-face v1v2v3v4. Let ui be the neighbor of vi
other than vi−1 and vi+1 for i ∈ {1, 2, 3, 4} with indices taken modulo 4 (the ui’s
are not necessarily distinct). Let S = {v1u1, v2u2, v3u3, v4u4}. By Claim 19 and
symmetry, we may suppose that c(v1u1) = c(v2u2) = 1 and c(v3u3) = c(v4u4) =
2. Let C be a (1, 2)-cycle containing v1u1. If C does not contain v3u3, then
switch the colors 1 and 2 of C in c. In the resulting 3-edge coloring, all edges
in the 4-cut S are colored by 2, which contradicts Claim 19. If C contains v3u3,
then C is represented as u1v1v2u2 · · ·u3v3v4u4 · · ·u1 by the planarity of G. So C
can be divided into two cycles u1v1v4u4 · · ·u1 and u2v2v3u3 · · ·u2, which creates
a new 2-factor of G having two cycles of length less than k, a contradiction.

(iii) Suppose that G contains a 5-face adjacent to a 3-face, namely v1v2v3v4v6
and v4v5v6. Let ui be the neighbor of vi other than vi−1 and vi+1 for i ∈
{1, 2, 3, 5} with indices taken modulo 6 (the ui’s are not necessarily distinct).
Let S = {v1u1, v2u2, v3u3, v5u5}. By Claim 19 and symmetry, we may suppose
that c(v1u1) = c(v2u2) = 1 and c(v3u3) = c(v5u5) = 2. Let C be a (1, 2)-cycle
containing v1u1; thus C contains v2u2. If C does not contain v3u3, then switch
the colors 1 and 2 of C in c. In the resulting 3-edge coloring, all edges in the
4-cut S are colored by 2, which contradicts Claim 19. If C contains v3u3, then C
is represented as u1v1v2u2 · · ·u3v3v4v6v5u5 · · ·u1 by the planarity of G. So C can
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be divided into two cycles u1v1v6v4v5u5 · · ·u1 and u2v2v3u3 · · ·u2, which creates
a new 2-factor of G having two cycles of length less than k, a contradiction.

(iv) Suppose that G contains a 6-face adjacent to at least two 3-faces. By
Claim 20(i) and symmetry, it can be divided into two cases as follows: (iv.1) A 6-
face v1v2v3v5v6v8 and two 3-faces v3v4v5 and v6v7v8. Let ui be the neighbor of vi
other than vi−1 and vi+1 for i ∈ {1, 2, 4, 7} with indices taken modulo 8 (the ui’s
are not necessarily distinct). Let S = {v1u1, v2u2, v4u4, v7u7}. By Claim 19 and
symmetry, we may suppose that one of the following holds: c(v1u1) = c(v2u2) = 1
and c(v4u4) = c(v7u7) = 2, or c(v1u1) = c(v7u7) = 1 and c(v2u2) = c(v4u4) =
2. In both cases, let C be a (1, 2)-cycle containing v1u1; thus C contains v2u2
or v7u7. If C does not contain v4u4, then switch the colors 1 and 2 of C in
c. In the resulting 3-edge coloring, all edges in the 4-cut S are colored by 2,
contrary to Claim 19. If C contains v4u4, then C can be divided into two cycles
like in the case (iii), which creates a new 2-factor of G having two cycles of
length less than k, a contradiction. (iv.2) A 6-face v1v2v4v5v6v8 and two 3-faces
v2v3v4 and v6v7v8. Let ui be the neighbor of vi other than vi−1 and vi+1 for
i ∈ {1, 3, 5, 7} with indices taken modulo 8 (the ui’s are not necessarily distinct).
Let S = {v1u1, v3u3, v5u5, v7u7}. By Claim 19 and symmetry, we may suppose
that c(v1u1) = c(v3u3) = 1 and c(v5u5) = c(v7u7) = 2. In this case, considering
a (1, 2)-cycle containing v1u1, we can get a contradiction like in the case (iv.1).

(v) and (vi) One can also get a contradiction like in the previous case. We
leave the proofs to the reader.

Let H be the cubic planar graph obtained from G by contracting each 3-face
of G to a single vertex (by Claims 18 and 20(i), there is no multiple edge in H).
Moreover, since H is clearly 2-connected cubic planar, H has a 2-factor F . We
denote by FG the 2-factor of G obtained from F by a suitable extension (i.e., for
a contracted vertex vf of degree 3 corresponding to a 3-face f = xyz and two
edges avf , vfb in F where ay, zb ∈ E(G), FG passes four edges ay, yx, xz and zb
instead of avf and vfb; see Figure 5).

G H

a b a b

vf
y z

x

f

Figure 5. The 2-factor FG of G obtained from a 2-factor F of H.

Note that the parity of the length of a cycle C in FG is the same as that of
the cycle in F corresponding to C, and recall that every cycle in each 2-factor has
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even length. On the one hand, H is 3-edge-connected since G is 3-edge-connected
by Claim 18. On the other hand, by the construction of H and Claim 20(ii)–(vi),
one can check that H has neither a 3-face nor a 4-face, and hence H has a 5-face
by Euler’s formula. Thus, we consider the following three cases divided by the
cyclic edge-connectivity k(H): 3 ≤ k(H) ≤ 5.

Case 1. k(H) = 5. By Theorem 17(ii), H has a 2-factor F satisfying one
of the following: (ii.a) a 5-cycle f1 in F is a 5-face of H; or (ii.b) an 8-cycle
f2 in F is the symmetric difference of boundaries of two adjacent 5-faces of H.
If the condition (ii.a) holds, then FG has an odd cycle (extended from f1), a
contradiction. Otherwise, i.e., if (ii.b) holds, then the cycle in FG extended from
f2 is separated by six edges from other component of FG, since f2 is an 8-cycle
containing exactly one chord (see Figure 6). Then the six edges correspond to a
(cyclic) 6-cut S of G. The six edges of S are colored by the same color in the
3-edge coloring induced by the 2-factor FG, contrary to Claim 19.

F in H FG in G

f2

Figure 6. An 8-cycle f2 in F , and the cycle in FG extended from f2.

Case 2. k(H) = 4. Recall that H has no 4-face (and hence no 4-cycle).
By Theorem 17(i), H has a perfect matching M which contains the four edges
corresponding to a cyclic 4-cut S of H. By the construction of H, S is also a
cyclic 4-cut of G. Let F = G − M be the 2-factor of H. If the 2-factor FG of
G consists of all but one k-cycles, which are all even cycles, then FG induces a
3-edge coloring of G such that the four edges of S are colored by the same color,
contrary to Claim 19.

Case 3. k(H) = 3. Let S be a cyclic 3-cut of H. By the construction of H, S
is also a cyclic 3-cut of G. Let R1 be the component of G−S containing a vertex
v and let R2 be the other one. We denote by G/R1 (respectively, G/R2) the
graph obtained from G by contracting R1 (respectively, R2) to a single vertex,
say r1 (respectively, r2). By construction, both G/R1 and G/R2 are 2-connected
cubic planar graphs.



294 N. Matsumoto, K. Noguchi and T. Yashima

Recall that H has no 3-face (and hence no 3-cycle), and notice that since S is
a cyclic 3-cut in H, G/R1 is not isomorphic to K4. Since |V (G/R1)| < |V (G)|, by
inductive hypothesis, G/R1 has a 2-factor F1 which does not satisfy the following.
A cycle passing r1 is of length at most k and the other cycles are of length k. Let
e1 and e2 be two edges incident to r1 used in F1. Observe that G/R2 has a 2-
factor F2 containing both e1 and e2 since G/R2 has a 3-edge coloring. Moreover,
F1 ∪ F2 forms a 2-factor F of G. However, by the assumption of F1, F does
not satisfy the assumption in the statement of the theorem (because one of the
cycles of F in R2, that does not contain v, is not of length k; or the cycle of F
containing e1 and e2 is of length more than k), a contradiction.
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