DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

Y. Gao

Yanhong Gao

Nankai University

email: gyh930623@163.com

P. Li

Ping Li

Nankai University

email: qdli_ping@163.com

X. Li

Xueliang Li

Center for CombinatoricsNankai UniversityTianjin 300071P.R. CHINA

email: lxl@nankai.edu.cn

Title:

Extremal graphs and classification of planar graphs by MC-numbers

PDF

Source:

Discussiones Mathematicae Graph Theory 43(4) (2023) 1253-1272

Received: 2020-10-23 , Revised: 2021-07-25 , Accepted: 2021-07-26 , Available online: 2021-08-16 , https://doi.org/10.7151/dmgt.2428

Abstract:

A path in an edge-colored graph is called monochromatic if all the edges in the path have the same color. An edge-coloring of a connected graph $G$ is called a monochromatic connection coloring (MC-coloring for short) if any two vertices of $G$ are connected by a monochromatic path in $G$. For a connected graph $G$, the monochromatic connection number (MC-number for short) of $G$, denoted by $mc(G)$, is the maximum number of colors that ensure $G$ has a monochromatic connection coloring by using this number of colors. This concept was introduced by Caro and Yuster in 2011. They proved that $mc(G)\leq m-n+k$ if $\kappa(G)\leq k-1$. In this paper we characterize all graphs $G$ with $mc(G)=m-n+\kappa(G)+1$ and $mc(G)= m-n+\kappa(G)$, respectively, where $\kappa(G)$ is the connectivity of $G$. We also prove that $mc(G)\leq m-n+4$ if $G$ is a planar graph, and classify all planar graphs by their monochromatic connection numbers.

Keywords:

monochromatic connection coloring (number), connectivity, planar graph, minors

References:

  1. X. Bai and X. Li, Graph colorings under global structural conditions.
    arXiv: 2008.07163
  2. J.A. Bondy and U.S.R. Murty, Graph Theory, Grad. Texts in Math. 244 (Springer-Verlag, London, 2008).
  3. Q. Cai, X. Li and D. Wu, Erdős-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33 (2017) 123–131.
    https://doi.org/10.1007/s10878-015-9938-y
  4. Q. Cai, X. Li and D. Wu, Some extremal results on the colorful monochromatic vertex-connectivity of a graph, J. Comb. Optim. 35 (2018) 1300–1311.
    https://doi.org/10.1007/s10878-018-0258-x
  5. Y. Caro and R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311 (2011) 1786–1792.
    https://doi.org/10.1016/j.disc.2011.04.020
  6. D. González-Moreno, M. Guevara and J.J. Montellano-Ballesteros, Monochromatic connecting colorings in strongly connected oriented graphs, Discrete Math. 340 (2017) 578–584.
    https://doi.org/10.1016/j.disc.2016.11.016
  7. R. Gu, X. Li, Z. Qin and Y. Zhao, More on the colorful monochromatic connectivity, Bull. Malays. Math. Sci. Soc. 40 (2017) 1769–1779.
    https://doi.org/10.1007/s40840-015-0274-2
  8. Z. Huang and X. Li, Hardness results for three kinds of colored connections of graphs, Theoret. Comput. Sci. 841 (2020) 27–38.
    https://doi.org/10.1016/j.tcs.2020.06.030
  9. Z. Jin, X. Li and K. Wang, The monochromatic connectivity of graphs, Taiwanese J. Math. 24 (2020) 785–815.
    https://doi.org/10.11650/tjm/200102
  10. Z. Jin, X. Li and Y. Yang, Extremal graphs with maximum monochromatic connectivity, Discrete Math. 343 (2020) 111968.
    https://doi.org/10.1016/j.disc.2020.111968
  11. P. Li and X. Li, Monochromatic $k$-edge-connection colorings of graphs, Discrete Math. 343 (2020) 111679.
    https://doi.org/10.1016/j.disc.2019.111679
  12. P. Li and X. Li, Rainbow monochromatic $k$-edge-connection colorings of graphs.
    arXiv: 2001.01419
  13. X. Li and D. Wu, A survey on monochromatic connections of graphs, Theory Appl. Graphs 0(1) (2018) Art.4.
    https://doi.org/10.20429/tag.2017.000104
  14. Y. Mao, Z. Wang, F. Yanling and C. Ye, Monochromatic connectivity and graph products, Discrete Math. Algorithms Appl. 8 (2016) 1650011.
    https://doi.org/10.1142/S1793830916500117

Close