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Abstract

A path in an edge-colored graph is called monochromatic if all the edges
in the path have the same color. An edge-coloring of a connected graph
G is called a monochromatic connection coloring (MC-coloring for short) if
any two vertices of G are connected by a monochromatic path in G. For a
connected graph G, the monochromatic connection number (MC-number for
short) of G, denoted bymc(G), is the maximum number of colors that ensure
G has a monochromatic connection coloring by using this number of colors.
This concept was introduced by Caro and Yuster in 2011. They proved that
mc(G) ≤ m−n+k if κ(G) ≤ k−1. In this paper we characterize all graphs
G with mc(G) = m−n+κ(G)+1 and mc(G) = m−n+κ(G), respectively,
where κ(G) is the connectivity of G. We also prove that mc(G) ≤ m−n+4
if G is a planar graph, and classify all planar graphs by their monochromatic
connection numbers.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. For
notation and terminology not defined here we refer to the book [2]. We use
κ(G) to denote the connectivity of a graph G, and χ(G) to denote the chromatic
number of G. A planar graph is an outerplanar graph if it has an embedding with
every vertex on the boundary of the unbounded face. If the vertex-set V (G) of
a graph G can be partitioned into k independent subsets U1, . . . , Uk such that
every vertex of Ui connects every vertex of Uj in G for any i 6= j, then we call G
a complete k-partite graph. For nonempty and pairwise disjoint k sets V1, . . . , Vk

of vertices, if every vertex of Vi is adjacent to every vertex of Vj for any i 6= j,
then we say that V1, . . . , Vk form a complete k-partite graph. Note that here each
Vi is not necessarily an independent set. If there is no confusion, we always use
m and n to denote the number of edges and the number of vertices of a graph,
respectively. Sometimes, we also use e(G) and |V (G)| to denote the two numbers,
respectively. For a graph G, dG(v) denotes the degree of a vertex v in G. We
use Pn, Cn, Sn,K

−
n to denote a path with n vertices, a cycle with n edges, a star

with n edges and a graph obtained from Kn by removing one edge, respectively.
Analogically, a k-path or a k-cycle is a path or a cycle with k edges. For an edge
e = xy of G, G/e is called the contraction graph that is obtained from G by
deleting e and then identifying x and y, which means replacing the two vertices
x and y by a new vertex such that the new vertex is incident with all the edges
which were incident with either x or y in G before. Suppose G and H are vertex-
disjoint graphs. Then let G ∨H denote the join of G and H, which is obtained
from G and H by adding an edge between every vertex of G and every vertex of
H, and let G +H denote the graph with vertex-set V (G) ∪ V (H) and edge-set
E(G) ∪ E(H). If G = H, we also denote G+H by 2G.

Generally, the notation [k] refers to the set {1, 2, . . . , k} of integers. An edge-
coloring of G is a mapping from E(G) to a set of positive integers, say [k]. A
monochromatic subgraph is a subgraph whose edges are assigned to the same
color. An edge-coloring of a connected graph G is called a monochromatic con-
nection coloring (MC-coloring for short) if any two vertices of G are connected by
a monochromatic path in G, and the edge-colored graph G is called monochro-
matic connected. An extremal monochromatic connection coloring (extremal MC-
coloring for short) of G is a monochromatic connection coloring of G that uses
the maximum number of colors. For a connected graph G, the monochromatic
connection number (MC-number for short) of G, denoted by mc(G), is the num-
ber of colors in an extremal monochromatic connection coloring of G. Huang
and Li in [8] recently showed that it is NP-hard to compute the monochromatic
connection number for a given graph.

Suppose Γ is an edge-coloring of G and i is a color of Γ(G). The i-induced
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subgraph is a subgraph ofG induced by all the edges with color i. We also call an i-
induced subgraph a color-induced subgraph. Suppose F is the i-induced subgraph.
If F is a single edge, then we call the color i and F trivial. Otherwise, they are
called nontrivial. For a subgraph H of G, we denote Γ|H as the edge-coloring of
H by restricting the edge-coloring Γ of G to H.

An edge-coloring of G is simple if any two nontrivial color-induced subgraphs
intersect in at most one vertex. Caro and Yuster in [5] proved that each color-
induced subgraph in a graph is a tree under any extremal MC-colorings of the
graph and there exists a simple extremal MC-coloring for every connected graph.
If there are t edges in a color-induced subgraph, then we say that the subgraph
wastes t − 1 colors. Suppose Γ is an MC-coloring of G and H is the set of all
nontrivial color-induced subgraphs H. Then Γ wastes w(Γ) = ΣH∈H (e(H)− 1)
colors. Thus, the number of colors used in G is equal to m − w(Γ). If Γ is an
extremal MC-coloring of G, then since each color-induced subgraph is a tree, we
have that w(Γ) = ΣH∈H (e(H)− 1) = ΣH∈H (|V (H)| − 2), and thus mc(G) =
m− ΣH∈H (|V (H)| − 2).

For a connected graph G, we can obtain an MC-coloring by coloring a span-
ning tree monochromatically and coloring every other edge with a trivial color.
Therefore, mc(G) ≥ m− n+2 for every connected graph G. Caro and Yuster in
[5] obtained the following results.

Theorem 1.1 [5]. Let G be a connected graph with n ≥ 3. If G satisfies one of
the following properties, then mc(G) = m− n+ 2.
(1) κ(G) ≥ 4, where G is the complement of G;

(2) G is triangle-free;

(3) ∆(G) < n− 2m−3(n−1)
n−3 ;

(4) the diameter of G is greater than or equal to three;

(5) G has a cut-vertex.

Theorem 1.2 [5]. Let G be a connected graph. Then
(1) mc(G) ≤ m− n+ χ(G);

(2) mc(G) ≤ m− n+ k + 1 if κ(G) = k.

A graph G is called s-perfectly-connected if V (G) can be partitioned into s+1
parts {v}, V1, . . . , Vs, such that each Vi induces a connected subgraph, V1, . . . , Vs

form a complete s-partite graph, and v has precisely one neighbor in each Vi. We
call v a special vertex.

Proposition 1.3 [5]. If δ(G) = s, then mc(G) ≤ m − n + s, unless G is s-
perfectly-connected, in which case mc(G) = m− n+ s+ 1.

Jin et al. in [10] characterized all graphs with mc(G) = m − n + χ(G). Li
et al. in [11, 12] generalized the concept of MC-coloring. For more knowledge
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about the monochromatic connection of graphs, we refer to [1, 3, 4, 6, 7, 9, 13, 14].
Caro and Yuster in [5] showed that the bound of the second result of Theorem 1.2
is sharp, and they studied wheel graphs, outerplanar graphs and planar graphs
with minimum degree three.

The rest of this paper is organized as follows. In Section 2, we characterize
all graphs G with mc(G) = m − n + κ(G) + 1 and mc(G) = m − n + κ(G),
respectively, where κ(G) is the connectivity of G. In Section 3, we classify all
planar graphs by their monochromatic connection numbers.

2. Extremal Graphs G with κ(G) = k

For a graph G with connectivity κ(G) = k, we know that mc(G) ≤ m− n+
k+1. In this section, we characterize all graphs with mc(G) = m−n+κ(G)+ 1
and mc(G) = m− n+ κ(G), respectively. These results will be used in the next
section for the classification of planar graphs.

Let S be a set of trees. Then we use V (S) to denote
⋃

T∈S V (T ), and |S| to
denote the number of trees in S. Suppose that G is a graph with κ(G) = k and Γ
is an MC-coloring of G. Let S = {w1, . . . , wk} be a vertex-cut of G and A1, . . . , At

be the components of G−S. For a vertex x ∈ V (Ai), we always use Tx to denote
the set of nontrivial trees connecting x and a vertex in

⋃

j 6=i V (Aj). Since x
connects every vertex of

⋃

j 6=i V (Aj) by a nontrivial tree, we have
⋃

j 6=i V (Aj) ⊆
V (Tx).

Let An,k be the set of graphs Kk−1 ∨H, where H is a connected graph with
|V (H)| = n− k + 1 and H has a cut-vertex.

Theorem 2.1. Suppose k ≥ 2 and G is a graph with κ(G) = k. Then mc(G) =
m−n+k+1 if and only if either G ∈ An,k or G is a k-perfectly-connected graph.

Proof. If G is a k-perfectly-connected graph, then by Proposition 1.3, mc(G) =
m − n + k + 1. If G = Kk−1 ∨ H is a graph in An,k, then let Γ be an edge-
coloring of G such that a spanning tree of H is the only nontrivial tree. Then
Γ is an MC-coloring of G and Γ wastes n − k − 1 colors. By Theorem 1.2,
mc(G) = m− n+ k + 1.

Next, we prove that either G ∈ An,k or G is a k-perfectly-connected graph if
mc(G) = m − n + k + 1. Suppose that Γ is an extremal MC-coloring of G and
S is the set of all non-trivial trees. Let S = {w1, . . . , wk} be a vertex-cut and
A1, . . . , At be the components of G− S. We distinguish the following cases.

Case 1. There is a component, say A1, and a vertex u of A1, such that
V
(

A1

)

⊆ V
(

Tu
)

.

Let Tu = {T1, . . . , Tr}. Since u connects every vertex of
⋃t

i=2 V (Ai) by a
nontrivial tree in {T1, . . . , Tr}, we have

⋃

i∈[t] V (Ai) ⊆ V
(
⋃

i∈[r] Ti

)

. Since any



Extremal graphs and classification of planar graphs ... 1257

two trees of {T1, . . . , Tr} share a common vertex u and Γ is simple, we have
⋃

i∈[r] Ti is a tree. Moreover,
∣

∣V
(
⋃

i∈[r] Ti

)

∩ S
∣

∣ ≥ r. Therefore,
⋃

i∈[r] Ti wastes
at least n− (k− r)− 1− r = n− k− 1 colors. Since mc(G) = m− n+ k+ 1, we

have S = {T1, . . . , Tr} and
∣

∣V
(

⋃

i∈[r] Ti

)

∩ S
∣

∣ = r. Thus,
∣

∣V (Ti) ∩ S
∣

∣ = 1, say

V (Ti) ∩ S = {wi}.
If A1 = {u}, then since κ(G) = k and dG(u) ≤ |S| = k, δ(G) = k. By

Proposition 1.3, mc(G) = m−n+k+1 implies that G is a k-perfectly-connected
graph.

If |V (A1)| ≥ 2, then r = 1; otherwise, there are at least two nontrivial trees
in S. Suppose v ∈ V (A1) \ {u} and v ∈ V (T1). Let w ∈

(
⋃t

i=2 V (Ai)
)

∩V (T2).
Then there is a nontrivial tree Tj connecting w and v. Since v ∈ V (Tj) and v /∈
V (T2), Tj 6= T2. However, {u,w} ⊆ V (Tj) ∩ V (T2), a contradiction. Therefore,
S = {T1}. Since mc(G) = m − n + k + 1, we have

∣

∣V (T1)
∣

∣ = n − k + 1. Recall
that V (T1)∩S = {w1}. Let S

′ = S \ {w1}. Then T1 is a spanning tree of G−S′.
Thus, G−S′ is connected and w1 is a cut-vertex of G−S′. Since T1 is the unique
nontrivial tree of G, we have G[S′] = Kk−1 and G = G[S′]∨ (G−S′). Therefore,
G ∈ An,k.

Case 2. For each component Ai of G − S and each vertex u ∈ V (Ai),
V (Ai) \ V (Tu) 6= ∅.

For a vertex u of A1, denote A = V (A1)\V (Tu) and v ∈ A. Let w ∈ V (A2),
and let F be the set of nontrivial trees connecting w and a vertex of A. Since Γ is
simple, we have

∣

∣V (Tu)∩S
∣

∣ ≥
∣

∣Tu
∣

∣ and
∣

∣V (F)∩S
∣

∣ ≥
∣

∣F
∣

∣. So, Tu wastes at least
n−k−|A|−1 colors, and F wastes at least |A| colors. Sincemc(G) = m−n+k+1,
Tu wastes precisely n − k − |A| − 1 colors, F wastes precisely |A| colors and
S = Tu ∪ F . The conclusion that F wastes precisely |A| colors implies that
V (A2) ∩ V (T ) = {w} for each T ∈ F . Since V (A2) * V (Tw), there is at least
one vertex in V (A2) \ V (Tw), say w′ ∈ V (A2) \ V (Tw). Then there is no tree of
Tu ∪ F that contains both v and w′, which contradicts that S = Tu ∪ F .

For convenience, we define three sets of graphs G, say B1
n,k, B

2
n,k and B3

n,k,
with κ(G) = k in the following.

B1
n,k denotes the set of graphs G that satisfies the following four conditions.

1. V (G) can be partitioned into k nonempty sets {u}, U1, . . . , Uk−1 such that
the subgraph induced by each Ui ∪ {u} is connected,

2. U1, . . . , Uk−1 form a complete (k − 1)-partite graph,

3. u has precisely two neighbors in Ut for t ∈ [k − 1] as well as one neighbor
in Ui for i 6= t,

4. G is neither a k-perfectly-connected graph nor a graph of An,k.
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B2
n,k denotes the set of graphs Kk−2 ∨H ′, where H ′ is a graph with connec-

tivity 2 and |V (H ′)| = n−k+2, and Kk−2∨H ′ is neither a k-perfectly-connected
graph nor a graph of An,k.

B3
n,k denotes the set of graphs K−

k−1 ∨ G′, where G′ is a connected graph of
order n− k + 1 with a cut-vertex.

Lemma 2.2. For every graph G ∈ B3
n,k, G is neither a k-perfectly-connected

graph nor a graph of An,k.

Proof. Suppose G ∈ B3
n,k and G = H ∨ H ′, where H = K−

k−1 and H ′ is a
connected graph of order n − k + 1 with a cut-vertex. It is obvious that there
are at most k − 2 vertices of G with degree n − 1. Since every graph of An,k

has at least k − 1 vertices of degree n − 1, B3
n,k ∩ An,k = ∅. Suppose that G

is a k-perfectly-connected graph and v is a special vertex of G. If v ∈ V (H ′),
then H is a complete graph, a contradiction. If v ∈ V (H), then H ′ = Kn−k+2, a
contradiction to that H ′ has a cut-vertex. Therefore, G is neither a k-perfectly-
connected graph nor a graph of An,k.

Combining Lemma 2.2 and the definitions of B1
n,k and B2

n,k, we have that for

every graph G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k, G is neither a k-perfectly-connected graph

nor a graph of An,k. Since κ(G) = k, by Theorem 2.1, mc(G) ≤ m− n+ k.

Lemma 2.3. If G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k, then mc(G) = m− n+ k.

Proof. Since mc(G) ≤ m−n+k, we only need to prove that mc(G) ≥ m−n+k
below.

If G ∈ B1
n,k, then let Ti be a spanning tree of G

[

Ui ∪ {u}
]

for i ∈ [k− 1]. We
color the edges of Ti with i and color any other edges with trivial colors. Then
the edge-coloring is an MC-coloring of G, which uses m − n + k colors. Thus,
mc(G) ≥ m− n+ k.

If G ∈ B2
n,k, then G = Kk−2 ∨ H ′. We color the edges of G such that a

spanning tree of H ′ is the unique nontrivial color-induced subgraph. The edge-
coloring is obviously an MC-coloring of G, which uses m − n + k colors. Thus,
mc(G) ≥ m− n+ k.

If G ∈ B3
n,k, then G = K−

k−1∨G′. Let T be a spanning tree of G′ and let F be
a 2-path obtained by connecting one vertex of G′ and two nonadjacent vertices
of K−

k−1. We color the edges of G such that {T, F} is the set of nontrivial color-
induced subgraphs. The edge-coloring is obviously an MC-coloring of G, which
uses m− n+ k colors. Thus, mc(G) ≥ m− n+ k.

Theorem 2.4. Suppose k ≥ 3, and G is a graph with κ(G) = k. Then mc(G) =
m− n+ k if and only if G ∈ B1

n,k ∪ B2
n,k ∪ B3

n,k.
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Proof. If G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k, then by Lemma 2.3, mc(G) = m− n+ k.

Suppose mc(G) = m − n + k. We will prove that G ∈ B1
n,k ∪ B2

n,k ∪ B3
n,k.

Suppose that S = {v1, . . . , vk} is a vertex-cut of G and G− S has r components
A1, . . . , Ar. Let Γ be an extremal MC-coloring of G and u ∈ V (Ai). Then Γ
wastes n − k colors. Since Γ is simple, any two trees of Tu intersect only at u.
Thus, Tu wastes

∣

∣

∣

∣

⋃

l 6=i

V (Al)

∣

∣

∣

∣

+
∣

∣V (Tu) ∩ V (Ai)
∣

∣+
∣

∣V (Tu) ∩ S
∣

∣− 1−
∣

∣Tu
∣

∣

= n− k −
∣

∣V (Ai) \ V (Tu)
∣

∣+
(∣

∣V (Tu) ∩ S
∣

∣−
∣

∣Tu|
)

− 1(1)

colors.

Claim 2.5. Suppose U ⊆ V (A1). Then
⋃

w∈U Tw wastes at least

|U |+

∣

∣

∣

∣

r
⋃

l=2

V (Al)

∣

∣

∣

∣

− 1

colors.

Proof. Let U = {a1, . . . , aq} and let Fi = Tai \
⋃i−1

l=1 Tal . Suppose Fi contains ci
vertices of U . Then Σi∈[q]ci ≥ q = |U |. Since each tree of Fi connects one vertex
of S and one vertex of

⋃r
l=2 V (Al), Fi wastes at least ci colors if ci 6= 0. Since

Fi = Ta1 wastes at least
∣

∣

⋃r
l=2 V (Al)

∣

∣ + c1 − 1 colors by equality (1),
⋃

w∈U Tw
wastes at least

∑

i∈[q]

wi ≥

∣

∣

∣

∣

r
⋃

l=2

V (Al)

∣

∣

∣

∣

+ c1 − 1 +

q
∑

i=2

ci =

∣

∣

∣

∣

r
⋃

l=2

V (Al)

∣

∣

∣

∣

− 1 +
∑

i∈[q]

ci

≥

∣

∣

∣

∣

r
⋃

l=2

V (Al)

∣

∣

∣

∣

+ |U | − 1

colors.

Claim 2.6. If T is a 2-path of G, then the two leaves of T are nonadjacent.

Proof. Suppose the two leaves of T are adjacent. Then recolor every edge of T
by a trivial color. It is easy to verify that the new coloring is an MC-coloring of G.
However, the new coloring wastes less colors, a contradiction to the assumption
that Γ is extremal.

The proof of Theorem 2.4 continues by distinguishing the following cases.

Case 1. There is a component, say A1, and a vertex u of A1 such that
A1 ⊆ V (Tu).
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Let Tu = {T1, . . . , Tt} and B =
⋃r

l=2 V (Al). Here Ti is a tree colored with i.
Each Ti contains at least one vertex of S.

Case 1.1. V (A1) = {u}.

Since S is a vertex-cut of order k and κ(G) = k, u connects every vertex of
S, that is, S = N(u).

If there is a tree of Tu, say Tt, which contains at least two vertices of S,
then by equality (1), Tu wastes at least n− k colors. Since mc(G) = m− n+ k,
Tu wastes precisely n − k colors. Thus, Tt contains precisely two vertices of S
(say vt, vt+1), and Tl contains precisely one vertex of S for l ∈ [t − 1] (say vl).
Therefore, Tu is the set of all nontrivial trees of G. Since Γ is simple, any two
trees of Tu share a common vertex u. Let Ui = V (Ti) \ {u} for i ∈ [t] and
Ui = {vi+1} for t+1 ≤ i ≤ k− 1. Then u, U1, . . . , Uk−1 form a partition of V (G)
and each G [Ui ∪ {u}] is connected. Moreover, |Ui ∩ N(u)| = 1 for i 6= t and
|Ut ∩N(u)| = 2. Since there is no nontrivial tree connecting a vertex of Ui and a
vertex of Uj if i 6= j, U1, . . . , Uk−1 form a complete (k − 1)-partite graph. Since
mc(G) 6= m − n + k + 1, by Theorem 2.1, G is neither a k-perfectly-connected
graph nor a graph of An,k. Thus, G ∈ B1

n,k.

If every tree of Tu contains precisely one vertex of S, say V (Ti) ∩ S = {vi}
for i ∈ [t], then Tu wastes n − k − 1 colors. Thus, there is a nontrivial tree T
that wastes one color, in other words, T is a 2-path. So, Tu ∪{T} is the set of all
nontrivial trees of G. Since T is a 2-path, by Claim 2.6, the two leaves of T are
nonadjacent. Let Ui = V (Ti) \ {u} for i ∈ [t] and Ui = {vi} for t + 1 ≤ i ≤ k.
Since Γ is simple, the two leaves of T cannot appear in the same set Ui. Thus,
there are two different integers i, j of [k] such that one leaf of T is in Ui and the
other leaf is in Uj . Then U1, . . . , Ui ∪ Uj , . . . , Uk form a complete (k − 1)-partite
graph. Since mc(G) 6= m−n+ k+1, by Theorem 2.1, G is neither a k-perfectly-
connected graph nor a graph of An,k. Recalling the definition of B1

n,k, we get

G ∈ B1
n,k.

Case 1.2. t = 1.

From the assumption,
⋃

i∈[r] V (Ai) ⊆ V (T1). Then T1 wastes n−k+
∣

∣V (T1)∩

S
∣

∣−2 colors. Since Γ wastes n−k colors, either T1 is the only nontrivial tree and
∣

∣V (T1)∩ S
∣

∣ = 2, or
∣

∣V (T1)∩ S
∣

∣ = 1 and there is a 2-path F such that {F, T1} is
the set of all nontrivial trees. Let V = V (T1) and U = V (G) \ V .

If
∣

∣V (T1) ∩ S
∣

∣ = 2, then since T1 is the unique nontrivial tree of Γ, we have
that G[U ] = Kk−2 and G = G[U ] ∨ G[V ]. Since S is a vertex-cut with |S| = k,
V (T1) ∩ S is a vertex-cut of G − U , then G[V ] is a graph with connectivity 2.
Since G is neither a k-perfectly-connected graph nor a graph of An,k, we have
G ∈ B2

n,k.

If
∣

∣V (T1) ∩ S
∣

∣ = 1, then suppose F = x1e1ye2x2 and V (T1) ∩ S = {w}. If,
by symmetry, x1 ∈ V (T1), then V (F ) ∩ V (T1) = {x1}. Let w′ ∈ V (T1) \ {x1}.
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Then w′x2 is a trivial edge of G. Let T = T1 ∪ w′x2 and let Γ′ be an edge-
coloring of G such that T is the only nontrivial tree of G. Then Γ′ is an extremal
MC-coloring of G with |V (T ) ∩ S| = 2, this case has been discussed above. If
{x1, x2} ∩ V (T1) = ∅, then G[U ] = K−

k−1 and G = G[U ] ∨G[V ]. Moreover, G[V ]
is a connected graph with a cut-vertex w. Thus, G ∈ B3

n,k.

Case 1.3.
∣

∣V (A1)
∣

∣ ≥ 2 and t ≥ 2.

If
∣

∣V (A1)
∣

∣ ≥ 3, then there are two trees of Tu, say T1, T2, such that either
∣

∣V (T1) ∩ V (A1)
∣

∣ ≥ 3 or
∣

∣V (T1) ∩ V (A1)
∣

∣ =
∣

∣V (T2) ∩ V (A1)
∣

∣ = 2. Let wi ∈
V (Ti) ∩ B for i ∈ [2]. If

∣

∣V (T1) ∩ V (A1)
∣

∣ ≥ 3, then there are trees of Tw2
\ Tu

connecting w2 and V (T1) ∩ V (A1) \ {u}. It is obvious that Tw2
\ Tu wastes at

least two colors. Since Tu wastes at least n − k − 1 colors, Tw2
∪ Tu wastes at

least n − k − 1 + 2 = n − k + 1 colors, which contradicts that Γ is an extremal
MC-coloring of G. If

∣

∣V (T1) ∩ V (A1)
∣

∣ =
∣

∣V (T2) ∩ V (A1)
∣

∣ = 2, say {zi} =
V (Ti) ∩ V (A1) \ {u} for i ∈ [2]. Then there is a nontrivial tree F1 connecting
w1, z2, and a nontrivial tree F2 connecting w2, z1. Since Γ is simple, we have
F1 6= F2. Since {F1, F2} ∩ Tu = ∅, {F1, F2} ∪ Tu wastes at least n− k + 1 colors,
a contradiction. Therefore,

∣

∣V (A1) | = 2. Let V (A1) = {z, u} and let T1 contain
z, u. Then V (Ti) ∩ V (A1) = {u} for i ≥ 2.

Since t ≥ 2, we have B \ V (T1) 6= ∅. Then z connects every vertex of
B \ V (T1) by a nontrivial tree, Tz \ Tu is not an empty set. It is obvious that
Tu wastes at least n − k − 1 colors and Tz \ Tu wastes at least one color. Since
mc(G) = m − n + k, Tu wastes precisely n − k − 1 colors and Tz \ Tu wastes
precisely one color. Therefore, Tz \Tu has only one member, and the member is a
2-path (denoting the 2-path by F , then Tz \ Tu = {F}). So, |B \ V (T1)| = 1 and
t = 2. Then Tu = {T1, T2} and S = {F, T1, T2} is the set of all nontrivial trees.
We can also get that each tree of S intersects with S at only one vertex. So, F
and T2 are 2-paths.

Let Γ′ be an edge-coloring of G obtained from Γ by recoloring T ′ = T1 ∪ F
with 1 and recoloring any other edges with trivial colors. Then the new coloring
is also an MC-coloring of G. Since Γ′ wastes n− k colors, Γ′ is an extremal MC-
coloring of G. Then T ′ is the unique nontrivial tree of Γ′ and

∣

∣V (T ′) ∩ S
∣

∣ = 2,
this case has been discussed in Case 1.2.

Case 2. For each i ∈ [r] and each u ∈ V (Ai), V (Ai) \ V (Tu) 6= ∅ (then each
Al has an order at least two).

If there is an integer i ∈ [r] such that
∣

∣

⋃

l 6=i V (Al)
∣

∣ ≥ 3, then let u ∈ V (Ai)
and let A′ = V (Ai) \ V (Tu). Then Tu wastes at least n − |A′| − k − 1 colors.
By Claim 2.5,

⋃

w∈A′ Tw wastes at least |A′| + |
⋃

l 6=i V (Al)| − 1 colors. Since
(
⋃

w∈A′ Tw
)

∩ Tu = ∅, Tu ∪ (
⋃

w∈A′ Tw) wastes at least n− k + 1 colors, a contra-
diction. Therefore, |

⋃

l 6=i V (Al)| ≤ 2 for each i ∈ [r], and
∣

∣V (Ai)
∣

∣ = 2 for i ∈ [r]
and r = 2. Let V (A1) = {x1, x2} and V (A2) = {y1, y2}. Then each nontrivial
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tree contains at most two of {x1, x2, y1, y2}. Therefore, there is a nontrivial tree
Ti,j connecting xi, yj for i, j ∈ [2], and the four nontrivial trees are pairwise dif-
ferent. Since n = k + 4 in this case and Γ wastes n− k = 4 colors, each Ti,j is a
2-path and there is no other nontrivial tree. By Claim 2.6, the two leaves of each
Ti,j are nonadjacent. Thus, G = {x1y1, x1y2, x2y1, x2y2} is a 4-cycle. Choose a
vertex of S, say v1. Let T =

⋃

i∈[2](v1xi ∪ v1yi). Then T is a tree of G. Let

Γ′ be an edge-coloring of G such that T is the only nontrivial tree. Then Γ′ is
an MC-coloring of G and it wastes three colors, which contradicts that Γ is an
extremal MC-coloring of G.

3. Classification of Planar Graphs

In this section, we consider the monochromatic connection numbers of all
planar graphs. Since the connectivity of a planar graph is at most five, the
monochromatic connection number of a planar graph is less than or equal to
m− n+ 6. In fact, we get that m− n+ 2 ≤ mc(G) ≤ m− n+ 4 if G is a planar
graph. We characterize all planar graphs G of κ(G) = k with mc(G) = m−n+r,
for 1 ≤ k ≤ 5 and 2 ≤ r ≤ 4.

It is well-known that a graph is outerplanar if and only if it does not con-
tain a K4-minor or a K2,3-minor, and an outerplanar graph with connectivity 2
contains a vertex of degree 2. Moreover, if κ(G) = 2, then the exterior face of an
outerplanar graph G is a Hamiltonian cycle, called the boundary of G. A forest is
called a linear forest if every component of the forest is a path (possibly a single
vertex).

Lemma 3.1. Let H be a graph. Then the following is satisfied.
(1) K1 ∨H is a planar graph if and only if H is an outerplanar graph.

(2) 2K1 ∨H is a planar graph if and only if H is either a cycle or linear forest.

(3) K2 ∨H is a planar graph if and only if H is a linear forest.

(4) If H is an outerplanar graph with κ(H) = 2 and |V (H)| ≥ 4, then H contains
two nonadjacent vertices of degree 2.

Proof. Notice that K1 ∨H is a planar graph if H is an outerplanar graph. On
the other hand, if K1 ∨H is a planar graph but H is not an outerplanar graph,
then H contains either a K4-minor or a K2,3-minor. Therefore, K1 ∨H contains
either a K5-minor or a K3,3-minor, a contradiction.

It is obvious that 2K1∨S3 contains a K3,3 as a subgraph, and 2K1∨(K3+K1)
contains aK5-minor. Therefore, H does not have vertices of degrees at least three
when 2K1 ∨H is a planar graph. Then each component of H is either a cycle or
a path. If H has two components H1, H2 such that H1 is a cycle, then H has a
(K3 + K1)-minor. Thus, 2K1 ∨ H has a K5-minor, a contradiction. Therefore,
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H is either a cycle or a linear forest if 2K1 ∨H is a planar graph. On the other
hand, if H is either a cycle or a linear forest, then 2K1 ∨ H is clearly a planar
graph.

If H is a linear forest, then K2 ∨H is obviously a planar graph. If K2 ∨H is
a planar graph, then since 2K1 ∨H is a subgraph of K2 ∨H, H is either a cycle
or a linear forest. Since K2 ∨H contains a K5-minor if one component of H is a
cycle, H is a linear forest.

If H is an outerplanar graph with connectivity 2 and |V (H)| = 4, then H
has two nonadjacent vertices of degree 2. If |V (H)| ≥ 5 and H does not have any
chord, then H has two nonadjacent vertices of degree 2. If |V (H)| ≥ 5 and H has
a chord e = xy, then the two {x, y}-components, say H1 and H2, are outerplanar
graphs with connectivity 2. For i ∈ [2], if

∣

∣V (Hi)
∣

∣ ≥ 4, then by induction, Hi has
a vertex zi /∈ {x, y} such that dHi

(zi) = 2; if Hi = K3, let {zi} = V (Hi) \ {x, y}.
Then z1, z2 are two nonadjacent vertices of degree 2 in H.

Let P1 denote the set of graphsG = v∨H, whereH is a connected outerplanar
graph with a cut-vertex.

Lemma 3.2. Let G be a planar graph with κ(G) = 2. Then mc(G) = m− n+ 3
if and only if G ∈ P1.

Proof. By Lemma 3.1 (1) and Theorem 2.1, G is a planar graph and mc(G) =
m−n+3 if G ∈ P1. Supposemc(G) = m−n+3. Then by Theorem 2.1, G is either
a 2-perfectly-connected graph or a graph in An,2. If G ∈ An,2, then G = v ∨H
and H is a connected graph with a cut-vertex. Then by Lemma 3.1 (1), H is a
connected outerplanar graph with a cut-vertex. If G is a 2-perfectly-connected
graph, then V (G) can be partitioned into three nonempty sets {v}, A,B such
that A,B form a complete bipartite graph. Let |A| ≤ |B|. Then 1 ≤ |A| ≤ 2;
otherwise, G contains a K3,3 as a subgraph. If |A| = 1, say A = {x}, then by
Lemma 3.1 (1), G[B] is a connected outerplanar graph. Let H = G[B ∪ v]. Then
H is a connected outerplanar graph with a cut-vertex and G = x ∨ H, and so
G ∈ P1. If |A| = 2, that is, G[A] = K2, then G[B] is a path by Lemma 3.1 (3).
Let A = {x, y} and N(v) = {x, z}, Then G−x = (y∨G[B])∪vz. Since G[B] is a
path, G− x is an outerplanar graph with a cut-vertex z. Since G = x ∨ (G− x),
we get G ∈ P1.

Let P2 = {v∨H : H is an outerplanar graph with κ(H) = 2 and H 6= u∨Pn−2}.

Lemma 3.3. Let G be a planar graph with κ(G) = 3. Then
(1) mc(G) = m− n+ 3 if and only if G ∈ {2K1 ∨ Pn−2} ∪ P2;

(2) mc(G) = m− n+ 4 if and only if G = K2 ∨ Pn−2.

Proof. By Lemma 3.1 (3) and Theorem 2.1, K2 ∨ Pn−2 is a planar graph with
mc (K2 ∨ Pn−2) = m − n + 4. Next, we prove that G = K2 ∨ Pn−2 if mc(G) =



1264 Y. Gao, P. Li and X. Li

m − n + 4. Suppose mc(G) = m − n + 4. Then either G ∈ An,3 or G is a 3-
perfectly-connected graph. If G is the latter, then V (G) can be partitioned into
four parts v, V1, V2, V3, such that each Vi induces a connected subgraph, V1, V2, V3

form a complete 3-partite graph, and v has precisely one neighbor in each Vi. Let
|V1| ≤ |V2| ≤ |V3|. If |V1| = |V2| = 1, then G[V1 ∪ V2] is an edge, say e. Thus,
G = e∨G[V3∪v]. By Lemma 3.1 (3), since G is a graph with κ(G) = 3, G[V3∪v] is
a path of order n−2. Therefore, G = K2∨Pn−2. If |V2| ≥ 2, then G[V1∪V2∪V3]
contains a K5-minor, a contradiction. If G ∈ An,3, then G = K2 ∨ H. By
Lemma 3.1 (3), since G is a graph with κ(G) = 3, G = K2 ∨ Pn−2. Therefore,
mc(G) = m− n+ 4 if and only if G = K2 ∨ Pn−2.

If mc(G) = m− n + 3, then G ∈ B1
n,3 ∪ B2

n,3 ∪ B3
n,3. If G ∈ B3

n,3, then V (G)

can be partitioned into two parts U, V such that G[U ] = K−
2 = 2K1, G[V ] is a

connected graph with a cut-vertex and G = G[U ] ∨ G[V ]. Note that κ(G) = 3.
By Lemma 3.1 (2), we get that G[V ] is a path. If G ∈ B2

n,3, then G = K1 ∨H,
where H is a graph with connectivity 2. Since G is planar, by Lemma 3.1 (1),
H is an outerplanar graph with connectivity 2 (recall that connectivity of H is
possibly 1 or 2). Therefore, G ∈ P2. If G ∈ B1

n,3, then V (G) can be partitioned
into three parts v,A,B, such that v has two neighbors in A and one neighbor in
B, and A,B form a complete bipartite graph.

If G[A] = K2, then by Lemma 3.1 (3), G[B] is a path Pn−3. Thus, G =
K2 ∨ Pn−2, a contradiction to the assumption that mc(G) = m − n + 3. If
G[A] = 2K1, then G = G[A] ∨G[B ∪ v]. By Lemma 3.1 (2), G[B ∪ v] is either a
path Pn−3 or a cycle Cn−3. Since v has precisely one neighbor in B, G[B ∪ v] is
a path. Thus, G = 2K1 ∨ Pn−2.

If |A| ≥ 3, then |B| ≤ 2. Let x be the neighbor of v in B. Since mc(G) =
m − n + 3, we have G 6= K2 ∨ Pn−2. If |B| = 2, that is, G[B] = K2, then
G = x ∨ (G − x), where x = NG(v) ∩ B. Thus, G − x is an outerplanar graph
with connectivity 2. If |B| = 1, then V (B) = {x} and G = x∨ (G− x), and thus
G− x is an outerplanar graph with connectivity 2. Therefore, G ∈ P2.

Lemma 3.4. Suppose G is a planar graph with κ(G) = k and S is a vertex-cut
with |S| = k. Then G[S] is either a cycle or a linear forest.

Proof. Let u, v be two vertices in different components of G − S. Since G is a
graph with κ(G) = k, there are k internally disjoint uv-paths L1, . . . , Lk. Let H
be a graph obtained from

⋃

i∈[k] Li by contracting all edges but those incident
with u and v. Then H = K2,k is a minor of G with one part S. Thus, by Lemma
3.1 (2), G[S] is either a cycle or a linear forest.

Lemma 3.5. Let G be a planar graph with κ(G) = k and S be a vertex-cut with
|S| = k. Suppose Γ is an extremal MC-coloring of G such that G[S] does not
contain nontrivial edges. Then we have the following.
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(1) If k = 4 and G[S] is not a 4-cycle, then mc(G) = m− n+ 2;

(2) If k = 5, then mc(G) = m− n+ 2.

In addition, if k = 4 and G[S] does not contain nontrivial edges under any
extremal MC-colorings, then mc(G) = m− n+ 2.

Proof. By Lemma 3.4, G has a K2,k-minor with one part S. Since G is a planar
graph, by Lemma 3.1 (2), G[S] is either a cycle or a linear forest. Let A1, . . . , Ar

be the components of G− S.

Suppose Γ is an extremal MC-coloring of G such that G[S] does not contain
nontrivial edges. We use S to denote the set of all nontrivial trees of G. For
each T ∈ S, let xT = |V (T ) ∩ S| when |V (T ) ∩ S| ≥ 2 and let xT = 1 when
|V (T ) ∩ S| ≤ 1. Suppose T is a tree of S such that xT is maximum. Since G[S]
is not a complete graph, we have xT ≥ 2.

Without loss of generality, suppose A1 is a minimum component of G − S.
Choose two vertices u, v from A1, A2, respectively. Let U = V (A1) \ V (Tu).
Denote F as the set of nontrivial trees connecting v and a vertex of U (if U = ∅,
then F = ∅). Then Tu wastes n − k − |U | − 1 + ΣT ′∈Tu (xT ′ − 1) colors and F
wastes at least |U |+ΣT ′∈F (xT ′ − 1) colors. Assume T = Tu∪F . Then T wastes

wT ≥ n− k − 1 + ΣT ′∈T (xT ′ − 1)(2)

colors. Moreover, the equality will mean that each tree of F intersects with
⋃

i 6=1Ai only at v if F 6= ∅. Since G[S] does not contain nontrivial edges, if
T ′ ∈ S \ T , then T ′ wastes at least xT ′ − 1 colors. Then Γ wastes

wΓ ≥ n− k − 1 + ΣT ′∈S (xT ′ − 1)(3)

colors. If the equality of (3) holds, then the equality of (2) will hold. Therefore,
the equality of (3) will mean that each tree of F intersects with

⋃

i 6=1Ai only at
v if F 6= ∅.

Claim 3.6. If it does not simultaneously happen that G[S] is a 4-cycle and xT =
2, then mc(G) = m− n+ 2.

Proof. Note thatG[S] is either a cycle or a linear forest. Therefore, G[S] contains
a 5-cycle if |S| = 5, and G[S] contains a 2K2 if |S| = 4.

Suppose xT ≥ 4. If k = 4, then wΓ ≥ n − 2. If k = 5 and xT ≥ 5, then
wΓ ≥ n− 2. If k = 5 and xT = 4, then let S \ V (T ) = {u′}. Since G[S] contains
a 5-cycle, u′ does not connect a vertex of S \ {u′} in G[S]. Therefore, u′ connects
this vertex by a nontrivial tree different from T . Thus, wΓ ≥ n− 2.

Suppose xT = 3. If k = 4, then let S \ V (T ) = {u}. Since G[S] contains a
2K2, u does not connect a vertex of S \ {u} in G[S]. Therefore, u connects this
vertex by a nontrivial tree different from T . Thus, wΓ ≥ n− 2. If k = 5, then let
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{u, v} = S \ V (T ). Since G[S] contains a 5-cycle, u connects a vertex of S \ {u}
by a nontrivial tree T1, and v connects a vertex of S \ {v} by a nontrivial tree
T2. No matter T1 = T2 or not, Γ wastes at least n− 2 colors.

Suppose xT = 2. Since T is a tree of S such that xT is maximum, for any two
different pairs of nonadjacent vertices of S, there are two different nontrivial trees
connecting them, respectively. Therefore, ΣT ′∈S (xT ′ − 1) ≥ e(G[S]). Since G[S]
contains a 5-cycle for k = 5 and G[S] contains a 2K2 for k = 4, if Γ wastes at most
n − 3 colors, then k = 4 and G[S] = 2K2. Note that it does not simultaneously
happen that G[S] is a 4-cycle and xT = 2. Thus, Γ wastes at least n− 2 colors,
and then mc(G) = m− n+ 2.

By Claim 3.6, the former two results hold. Now we prove that if k = 4 and
G[S] does not contain nontrivial edges under any extremal MC-colorings, then
mc(G) = m− n+ 2. If it does not simultaneously happen that G[S] is a 4-cycle
and xT = 2, then by Claim 3.6, mc(G) = m−n+2. Thus, we only need to prove
that subject to the conditions that G[S] is a 4-cycle and xT = 2, we can get a
contradiction if mc(G) ≥ m− n+ 3.

Assume that G[S] is a 4-cycle and xT = 2. Then let E(G[S]) = {v1v2, v3v4}.
Suppose, to the contrary, that mc(G) ≥ m − n + 3. Since xT = 2, there is a
nontrivial tree T1 connecting v1, v2, and a nontrivial tree T2 connecting v3, v4.
Then Γ wastes at least

n− k − 1 + ΣT ′∈S (xT ′ − 1) ≥ n− k − 1 + (xT1
− 1) + (xT2

− 1) = n− 3(4)

colors. Since mc(G) ≥ m − n + 3, Γ wastes exactly n − 3 colors, and so the
equality of (4) holds. Since the equality of (4) will mean that the equality of (3)
holds, each tree of F intersects with A2 only at v if F 6= ∅. In addition, T1 and T2

are the only two trees each of which intersects with S at more than one vertex.
If S 6= T , then S ′ = S \ T 6= ∅. Since T1 and T2 are the only two trees each

of which intersects with S at more than one vertex, T wastes at least

n− k − 1 + ΣT ′∈T ∩{T1,T2} (xT ′ − 1)

colors, and Γ wastes at least

n− k − 1 + ΣT ′∈T ∩{T1,T2} (xT ′ − 1) + ΣT ′∈S′∩{T1,T2}

(

e(T ′)− 1
)

colors. Let T ′ ∈ S ′. Since k = 4 and Γ wastes exactly n− 3 colors, T ′ is a 2-path
and T ′ ∈ S ′ ∩ {T1, T2}, say T ′ = T1. Let T ∗ = v1v3 ∪ v2v3 and let Γ′ be an
edge-coloring of G obtained from Γ by recoloring T ∗ with a new nontrivial colors
and recoloring all edges of T1 with new trivial colors. Then Γ′ is an extremal
MC-coloring of G and G[S] contains nontrivial edges, a contradiction.
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If S = T and U 6= ∅, then each tree of F intersects with V (A2) only at v.
Suppose

∣

∣

⋃

l 6=1 V (Al)
∣

∣ ≥ 2 and v′ ∈
⋃

l 6=1 V (Al) \ {v}. Since U 6= ∅, there is a
nontrivial tree T ′′ connecting v′ and a vertex of U . However, T ′′ is not a member
of T , a contradiction to that S = T . Thus,

∣

∣

⋃

l 6=1 V (Al)
∣

∣ = 1, in other words,

G−S has two components A1, A2 and
∣

∣V (A2)
∣

∣ = 1. Note that A1 is a minimum
component of G − S,

∣

∣V (A1) | = 1. Therefore, G = 2K1 ∨ C4 and G[S] = C4.
Let F ′ be a 2-path connecting the two components of G − S in G, and let F ′′

be a 3-path of G[S]. Suppose Γ′ is an edge-coloring of G such that F ′, F ′′ are
all nontrivial trees. Then Γ′ is an extremal MC-coloring of G and G[S] contains
nontrivial edges, a contradiction.

If S = T and U = ∅, then S = Tu. Since each pair of different trees in
Tu intersect only at u, we have Tu = {T1, T2}. Therefore, S = {T1, T2}. Let

Bi = V (Ti) ∩
(

S ∪
⋃

l 6=1 V (Al)
)

for i = [2]. Then
∣

∣V (B1)
∣

∣,
∣

∣V (B2)
∣

∣ ≥ 3. Since

T1 and T2 intersect only at u, every vertex of B1 connects every vertex of B2 by
a trivial edge, then G[B1 ∪B2] contains a K3,3, a contradiction.

Lemma 3.7. Let Γ be a simple extremal MC-coloring of G and e = xy be a
nontrivial edge in G. Suppose that mc(G) = e(G) − |V (G)| + x and H is the
underlying graph of G/e. Then mc(H) ≥ e(H)− |V (H)|+ x.

Proof. Since Γ is a simple extremal MC-coloring of G and mc(G) = e(G) −
|V (G)|+ x, Γ wastes |V (G)| − x colors. Suppose z is the new vertex of V (G/e).
Then any parallel edges are incident with z, and between any two vertices there
are at most two parallel edges. Since e is a nontrivial edge, Γ is simple and every
color-induced subgraph in G is a tree, we have that any color-induced subgraph
of G/e is a tree. It is obvious that any two vertices of G/e are connected by
a monochromatic path under Γ|G/e. Moreover, Γ|G/e wastes |V (G)| − 1 − x =
|V (G/e)| − x colors.

Suppose there are parallel edges e1, e2 between u and z. If there is a trivial
and parallel edge between u and z, say e1, then we delete e1. Then the resulting
graph is also monochromatic connected, and the edge-coloring wastes |V (G/e)|−x
colors. If the two parallel edges are nontrivial, then suppose e1, e2 are edges of two
nontrivial trees T1, T2, respectively. Let T be a spanning tree of T1∪T2 containing
e1. Let Γ

′ be an edge-coloring of G/e−e2 obtained from Γ by recoloring T with a
new nontrivial color, and then recoloring any other edges of E (T1 ∪ T2) \E(T ) \
{e2} with trivial colors. Then Γ′ is an MC-coloring of G/e − e2 and Γ′ wastes
at most

∣

∣V (G/e− e2)
∣

∣ − x =
∣

∣V (G/e)
∣

∣ − x colors. By the above operation, we
obtain an underlying graph H of G/e, and a simple MC-coloring Γ′′ of H, which
wastes at most |V (H)| − x colors. Thus, mc(H) ≥ e(H)− |V (H)|+ x.

Lemma 3.8. Let G be a planar graph and e = ab be an edge of G. If the
underlying graph of G/e contains {u, v} ∨ Pt as a subgraph, u is the new vertex
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and a (and also b) connects two leaves of Pt, then either NG(a) ∩ I = ∅ and
I ⊆ NG(b), or NG(b) ∩ I = ∅ and I ⊆ NG(a), where I is the set of internal
vertices of Pt.

Proof. If NG(a) ∩ I 6= ∅ and NG(b) ∩ I 6= ∅, then let G′ be a graph obtained
from G by contracting all but two pendent edges of Pt. Then G′ has a subgraph
K3,3 with one part {a, b, v}, and so G also has a K3,3-minor, a contradiction.

Lemma 3.9. If G is a planar graph with κ(G) = 4, then mc(G) ≤ m − n + 3,
and mc(G) = m− n+ 3 if and only if G = 2K1 ∨ Cn−2.

Proof. Suppose G = {u, v}∨H, where H is an (n−2)-cycle and uv is not an edge
of G. Then there is a 2-path P connecting u and v. Let L be a spanning tree ofH.
Suppose Γ is an edge-coloring such that P and L are all nontrivial trees ofG. Then
Γ is an MC-coloring of G , which wastes n− 3 colors. Thus, mc(G) ≥ m−n+3.
It is easy to verify that G is neither a graph of An,4 ∪ B1

n,4 ∪ B2
n,4 ∪ B3

n,4, nor a
4-perfectly-connected graph. Therefore, mc(G) = m− n+ 3.

Suppose mc(G) ≥ m−n+3. We prove that G = 2K1∨Cn−2 below. Suppose
S = {x1, x2, x3, x4} is a vertex-cut of G. If G[S] does not contain nontrivial edges
under any extremal MC-colorings of G, then by Lemma 3.5, mc(G) = m−n+2.
If there is an extremal MC-coloring Γ of G such that G[S] has a nontrivial edge,
say e = x1x2, then by Lemma 3.7 the underlying graph H of G/e satisfies that
mc(H) ≥ e(H) − |V (H)| + 3. Since H is a graph with κ(H) = 3, H is either
2K1 ∨ Pn−3 or K2 ∨ Pn−3, or a graph of P2. Since κ(G) = 4, if there is a vertex
x of H with dH(x) = 3, then either x is the new vertex or x is incident with the
new vertex.

Case 1. Either H = 2K1 ∨ Pn−3 or H = K2 ∨ Pn−3.
From the assumption, V (H) can be partitioned into two parts A = {u, v}

and B, such that H[B] = Pn−3 and H = H[A] ∨ H[B]. Here, uv is an edge
of H if H = K2 ∨ Pn−3, and uv is not an edge of H if H = 2K1 ∨ Pn−3. Let
H[B] = v1e1v2e2 · · · en−4vn−3. If |B| = 3, then H contains a spanning subgraph
K1 ∨ C4. Since each vertex of V (H) \ {v2} has a degree three in H, v2 is the
new vertex and G has a subgraph K2 ∨ C4, a contradiction to the choice that G
is a planar graph. Thus, |V (B)| ≥ 4 and v1, vn−3 are the only two vertices with
degree 3 in H. Therefore, the new vertex is either u or v, say u by symmetry.
Since κ(G) = 4, v1 (and also vn−3) connects x1, x2 in G. Then by Lemma 3.8,
suppose that x1 does not connect any vertices of {v2, . . . , vn−4} and x2 connects
every vertex of {v2, . . . , vn−4}. Since κ(G) = 4, x1 connects v. Then G[B ∪ x1] is
an (n− 2)-cycle and thus G = 2K1 ∨ Cn−2.

Case 2. H ∈ P2.
From the definition of P2, H = v ∨ R, where R is an outerplanar graph

with connectivity 2. If R = K3, then |V (G)| = 5. Since κ(G) = 4, G =



Extremal graphs and classification of planar graphs ... 1269

K5, a contradiction. Thus, |V (R)| ≥ 4. Since R is an outerplanar graph with
connectivity 2, by Lemma 3.1 (4), R has two nonadjacent vertices of degree 2.
Moreover, the boundary C of R is a Hamiltonian cycle.

Case 2.1. R has at least three vertices of degree two, say u1, u2, u3.

Note that every vertex of degree 2 in R is either a new vertex or incident with
the new vertex in H. Thus, v is the new vertex and each ui connects both x1 and
x2 in G. Note that u1, u2 and u3 divide C into three paths. Let H ′ be a graph
obtained from H by contracting all but one edge of each such path. Then the
underlying graph of H ′ is a K5, and so G also has a K5-minor, a contradiction.

Case 2.2. R has exactly two vertices of degree two and v is not the new
vertex.

Suppose w1, w2 are nonadjacent vertices of degree 2 in R. Since v is not the
new vertex, w1, w2 have a common neighbor z in R, and z is the new vertex.

Let P = R − z. We prove that H = vz ∨ P and P is a path. We first prove
that R = z ∨ P , which implies that each chord of R is incident with z. Suppose,
to the contrary, that there is a chord f = z1z2 of R such that z /∈ {z1, z2}.
Then z1, z2 divide C into two paths L1 and L2, say z is an internal vertex of L1.
Since R is an outerplanar graph, z does not connect any internal vertices of L2

in H. Furthermore, since z is the new vertex, neither x1 nor x2 connects internal
vertices of L2 in G. Thus, {v, z1, z2} is a vertex-cut of G, a contradiction to the
assumption that κ(G) = 4. So, R = z ∨ P and P is a path. Since v connects
every vertex of R, we have H = vz ∨ P .

Consider the graph G below. Since w1, w2 are vertices of degree 3 and z is
the new vertex of H, w1 (and also w2) connects x1 and x2 in G. Let I = V (P ) \
{w1, w2}. Since H = vz ∨ P , by Lemma 3.8, suppose that x1 does not connect
any vertices of I and x2 connects every vertex of I. Then D = G[V (P ) ∪ x1] is
a Cn−2 and G − v = x2 ∨D. Since {v, x2} ∨ D is a spanning subgraph of G, v
does not connect x2 by Lemma 3.1 (3). This implies that G = {x2, v} ∨D, and
so G = 2K1 ∨ Cn−2.

Case 2.3. R has exactly two vertices of degree two and v is the new vertex.

Suppose a, b are nonadjacent vertices of degree 2 in R. Then a, b divide
C into two paths, say L1 and L2. Let L1 = ae1z1e2 · · · zses+1b and L2 =
af1w1f2 · · ·wtft+1b. Since a, b are vertices of degree 3 in H, a (and also b) con-
nects x1 and x2 in G.

If NG (x1)∩(V (L1) \ {a, b}) 6= ∅ and NG (x2)∩(V (L1) \ {a, b}) 6= ∅, then let
J be a graph obtained from H by contracting all edges of C but e1, es+1 and f1.
Then the underlying graph of J is aK5, and so G has aK5-minor, a contradiction.
Thus, by symmetry, suppose V (L1) ⊆ NG(x1) and NG (x2) ∩ V (L1) = {a, b}.
By the same reason, it will happen that NG (x1) ∩ (V (L2) \ {a, b}) 6= ∅ and
NG (x2) ∩ (V (L2) \ {a, b}) 6= ∅. Thus, V (L2) ⊆ NG (x2) and NG (x1) ∩ V (L2) =
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{a, b}. Therefore, NG (x1) ∩ V (R) = V (L1) and NG (x2) ∩ V (R) = V (L2).

If R = K1 ∨Pn−3, then G = 2K1 ∨Cn−2. We will prove that R = K1 ∨Pn−3

below.

Claim 3.10. Suppose l = n1n2 is a chord of R. Then one end of l is contained
in V (L1) \ {a, b} and the other end of l is contained in V (L2) \ {a, b}.

Proof. Suppose, to the contrary, that {n1, n2} ⊆ V (L1). Then S′ = {x1, x2, n1,
n2} is a vertex-cut of G with |S′| = 4. However, dG[S′](x1) = 3, a contradiction
to Lemma 3.4.

If, by symmetry,
∣

∣V (L1)
∣

∣ = 3, then L1 = ae1z1e2b, and so by Claim 3.10, z1
connects every vertex of L2. Thus, R = K1 ∨ Pn−3.

If
∣

∣V (L1)
∣

∣,
∣

∣V (L2)
∣

∣ ≥ 4, then recall that e = x1x2 is a nontrivial edge
under Γ. Suppose e is an edge of a nontrivial tree T . Then there is a nontrivial
edge f of T between {x1, x2} and R. By symmetry, suppose f = x1w, where
w ∈ V (L1). Let H ′ be the underlying graph of G/f . Then by Lemma 3.7,
mc(H ′) ≥ e(H ′)− |V (H ′)|+ 3. Since H ′ is a planar graph with κ(H ′) = 3, H ′ is
either 2K1 ∨ Pn−3 or K2 ∨ Pn−3, or a graph of P2.

Suppose H ′ is either 2K1 ∨ Pn−3 or K2 ∨ Pn−3. Let H ′ = A ∨ Pn−3, where
V (A) = {y1, y2}. If x2 ∈ V (A) (say x2 = y2), then since |L1| ≥ 4, y1 is an
internal vertex of L1 and y1 6= w. This implies that either y1a or y1b is an edge
of G, a contradiction. If x2 /∈ {y1, y2}, then the degree of x2 in H ′ is at most
4. Since V (L2) ⊆ NH′(x2) and |L2| ≥ 4, we have |L2| = 4 and A ⊆ V (L1).
So, L2 = af1w1f2w2f3b. Since |L1| ≥ 4, by Claim 3.10, A = {w1, w2}. Let J
be a graph obtained from H ′ by contracting all edges of L1 but e2. Then the
underlying graph of J is a K5, and so G has a K5-minor, a contradiction.

Suppose H ′ is a graph of P2. Then H ′ = y ∨H ′′, where H ′′ is an outerpla-
nar graph with connectivity 2. If y = x2, then x2 connects every vertex of R.
However, since NG(x2) ∩ V (L1) = {a, b} and

∣

∣V (L1)
∣

∣ ≥ 4, we get a contradic-
tion. If y 6= x2, then y ∈ V (R) and thus R = K1 ∨ Pn−3, a contradiction to the
assumption that

∣

∣V (L1)
∣

∣,
∣

∣V (L2)
∣

∣ ≥ 4.

Lemma 3.11. If G is a planar graph with κ(G) = 5, then mc(G) = m− n+ 2.

Proof. Suppose mc(G) ≥ m − n + 3. Let S = {v1, . . . , v5} be a vertex-cut of
G and Γ be an extremal MC-coloring of G. If G[S] does not contain nontrivial
edges, then by Lemma 3.5, mc(G) = m−n+2, a contradiction. Otherwise, there
is a nontrivial edge in G[S], say e = v1v2. Let H be the underlying graph of G/e.
Then by Lemma 3.7, mc(H) ≥ e(H) − |V (H)| + 3. Since κ(H) = 4, we have
mc(H) = e(H)− |V (H)|+3. Thus, H = 2K1 ∨Cn−2, say H = {u, v}∨C, where
C = Cn−2. Since each vertex of C has a degree 4 in H, either u or v is the new
vertex. By symmetry, let u be the new vertex. Thus, v1, v2 connect every vertex
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of C, in other words, e∨C is a subgraph of G, a contradiction to the choice that
G is planar.

Combining Lemmas 3.2, 3.3, 3.9 and 3.11, we get the following conclusions.

Theorem 3.12. Suppose G is a connected planar graph. Then mc(G) ≤ m−n+4
and the following results hold.
(1) If G is a graph with κ(G) = 1, then mc(G) = m− n+ 2;

(2) If G is a graph with κ(G) = 2, then m − n + 2 ≤ mc(G) ≤ m − n + 3 and
mc(G) = m− n+ 3 if and only if G ∈ P1;

(3) If G is a graph with κ(G) = 3, then m−n+2 ≤ mc(G) ≤ m−n+4. Moreover,
mc(G) = m− n+ 4 if and only if G = K2 ∨ Pn−2, and mc(G) = m− n+ 3
if and only if either G ∈ P2, or G = 2K1 ∨ Pn−2;

(4) If G is a graph with κ(G) = 4, then m − n + 2 ≤ mc(G) ≤ m − n + 3, and
mc(G) = m− n+ 3 if and only if G = 2K1 ∨ Cn−2;

(5) If G is a graph with κ(G) = 5, then mc(G) = m− n+ 2.

For ease of reading, the classification of planar graphs are summarized in the
following table (remember that the connectivity κ(G) of a planar graph G is at
most 5).

mc(G)
κ(G)

1 2 3 4 5

m− n+ 4 ∅ ∅ G = K2 ∨ Pn−2 ∅ ∅

m− n+ 3 ∅ G ∈ P1
either G ∈ P2,

or G = 2K1 ∨ Pn−2
G = 2K1 ∨ Cn−2 ∅

m− n+ 2 all all but the above all but the above all but the above all

Table 1. The classification of planar graphs.
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