DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

A. Gorzkowska

Aleksandra Gorzkowska

AGH University of Science and Technology

email: agorzkow@agh.edu.pl

M.A. Henning

Michael A. Henning

University of Johannesburg

email: mahenning@uj.ac.za

0000-0001-8185-067X

M. Pilśniak

Monika Pilśniak

AGH, Kraków

email: pilsniak@agh.edu.pl

E. Tumidajewicz

Elżbieta Tumidajewicz

AGH University of Science and Technology

email: etumid@agh.edu.pl

Title:

Total and paired domination stability in prisms

PDF

Source:

Discussiones Mathematicae Graph Theory 43(4) (2023) 1147-1169

Received: 2020-12-07 , Revised: 2021-07-01 , Accepted: 2021-07-01 , Available online: 2021-07-16 , https://doi.org/10.7151/dmgt.2421

Abstract:

A set $D$ of vertices in an isolate-free graph is a total dominating set if every vertex is adjacent to a vertex in $D$. If the set $D$ has the additional property that the subgraph induced by $D$ contains a perfect matching, then $D$ is a paired dominating set of $G$. The total domination number $\gamma_{t}(G)$ and the paired domination number $\gamma_\textrm{pr}(G)$ of a graph $G$ are the minimum cardinalities of a total dominating set and a paired dominating set of $G$, respectively. The total domination stability (respectively, paired domination stability) of $G$, denoted $\textrm{st}_{\gamma_t}(G)$ (respectively, $\textrm{st}_{\gamma_\textrm{pr}}(G)$), is the minimum size of a non-isolating set of vertices in $G$ whose removal changes the total domination number (respectively, paired domination number). In this paper, we study total and paired domination stability in prisms.

Keywords:

total domination stability, paired domination stability, prism, hypercube

References:

  1. M. Amraee, N. Jafari Rad and M. Maghasedi, Roman domination stability in graphs, Math. Rep. (Bucur.) 21(71) (2019) 193–204.
  2. S. Arumugam and R. Kala, Domination parameters of hypercubes, J. Indian Math. Soc. (N.S.) 65 (1998) 31–38.
  3. J. Azarija, M.A. Henning and S. Klavžar, $($Total$)$ domination in prisms, Electron. J. Combin. 24(1) (2017) #P1.19.
    https://doi.org/10.37236/6288
  4. A. Aytaç and B. Atay Atakul, Exponential domination critical and stability in some graphs, Internat. J. Found. Comput. Sci. 2019 (781–791).
    https://doi.org/10.1142/S0129054119500217
  5. D. Bauer, F. Harary, J. Nieminen and C.L. Suffel, Domination alternation sets in graphs, Discrete Math. 47 (1983) 153–161.
    https://doi.org/10.1016/0012-365X(83)90085-7
  6. W. Goddard and M.A. Henning, A note on domination and total domination in prisms, J. Comb. Optim. 35 (2018) 14–20.
    https://doi.org/10.1007/s10878-017-0150-0
  7. A. Gorzkowska, M.A. Henning, M. Pilśniak and E. Tumidajewicz, Paired domination stability in graphs, (2020), manuscript.
  8. F. Harary and M. Livingston, Independent domination in hypercubes, Appl. Math. Lett. 6 (1993) 27–28.
    https://doi.org/10.1016/0893-9659(93)90027-K
  9. T.W. Haynes, M.A. Henning and L.C. van der Merwe, Domination and total domination in complementary prisms, J. Comb. Optim. 18 (2009) 23–37.
    https://doi.org/10.1007/s10878-007-9135-8
  10. T.W. Haynes and P.J. Slater, Paired domination in graphs, Networks 32 (1998) 199–206.
    https://doi.org/10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO;2-F
  11. M.A. Henning and M. Krzywkowski, Total domination stability in graphs, Discrete Appl. Math. 236 (2018) 246–255.
    https://doi.org/10.1016/j.dam.2017.07.022
  12. M.A. Henning and D.F. Rall, On the total domination number of Cartesian products of graphs, Graphs Combin. 21 (2005) 63–69.
    https://doi.org/10.1007/s00373-004-0586-8
  13. M.A. Henning and A. Yeo, Total Domination in Graphs (Springer Monographs in Mathematics, 2013).
    https://doi.org/10.1007/978-1-4614-6525-6
  14. Z. Li, Z. Shao and S.J. Xu, $2$-rainbow domination stability of graphs, J. Comb. Optim. 38 (2019) 836–845.
    https://doi.org/10.1007/s10878-019-00414-0
  15. M. Mollard, On perfect codes in Cartesian product of graphs, European J. Combin. 32 (2011) 398–403.
    https://doi.org/10.1016/j.ejc.2010.11.007
  16. C.M. Mynhardt and M. Schurch, Paired domination in prisms of graphs, Discuss. Math. Graph Theory 31 (2011) 5–23.
    https://doi.org/10.7151/dmgt.1526
  17. P.R.J. Östergård and U. Blass, On the size of optimal binary codes of length $9$ and covering radius $1$, IEEE Trans. Inform. Theory 47 (2001) 2556–2557.
    https://doi.org/10.1109/18.945268
  18. N. Jafari Rad, E. Sharifi and M. Krzywkowski, Domination stability in graphs, Discrete Math. 339 (2016) 1909–1914.
    https://doi.org/10.1016/j.disc.2015.12.026
  19. G.J.M. van Wee, Improved sphere bounds on the covering radius of codes, IEEE Trans. Inform. Theory 34 (1988) 237–245.
    https://doi.org/10.1109/18.2632

Close