DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

R. Marinho

Rodrigo Marinho

CAMGSD - IST, University of Lisbon

email: rodrigo.marinho@tecnico.ulisboa.pt

0000-0002-3967-629X

M. Preissmann

Myriam Preissmann

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000 Grenoble, France

email: myriam.preissmann@grenoble-inp.fr

D. Sasaki

Diana Sasaki

IME, Universidade do Estado do Rio de Janeiro, Brazil

email: diana.sasaki@ime.uerj.br

Title:

New results on Type 2 snarks

PDF

Source:

Discussiones Mathematicae Graph Theory 43(4) (2023) 879-893

Received: 2020-03-16 , Revised: 2021-04-29 , Accepted: 2021-04-29 , Available online: 2021-06-01 , https://doi.org/10.7151/dmgt.2409

Abstract:

Snarks are cyclically 4-edge-connected cubic graphs that admit no proper 3-edge-coloring. A snark is of Type 1 if it has a proper total coloring of its vertices and edges with four colors; it is of Type 2 if any total coloring requires at least five colors. Following an extensive computer search, in 2003, Cavicchioli et al. asked whether there exist Type 2 snarks of girth at least 5. This question is still open, however, in 2015, Brinkmann et al. described the first known family of Type 2 snarks of girth 4. In this work we provide new families of Type 2 snarks of girth 4, all of which can be constructed by a dot product of two Type 1 snarks. We also show that the previously constructed Type 2 snarks of Brinkmann et al. do not have this property.

Keywords:

dot product, total coloring, snark

References:

  1. K.I. Appel and W. Haken, Every planar map is four colorable, Amer. Math. Soc. 98 (1989).
    https://doi.org/10.1090/conm/098
  2. M. Behzad, Graphs and Their Chromatic Numbers, Ph.D. Thesis (Michigan State University, 1965).
  3. D. Blanuša, Problem cetiriju boja, Glasnik Mat. Fiz. Astr. Ser. II (1946) 31–42, in Croatian.
  4. G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468–488.
    https://doi.org/10.1016/j.jctb.2013.05.001
  5. G. Brinkmann, M. Preissmann and D. Sasaki, Snarks with total chromatic number $5$, Discrete Math. Theor. Comput. Sci. 17 (2015) 369–382.
  6. C.N. Campos, S. Dantas and C.P. de Mello, The total-chromatic number of some families of snarks, Discrete Math. 311 (2011) 984–988.
    https://doi.org/10.1016/j.disc.2011.02.013
  7. A. Cavicchioli, T.E. Murgolo, B. Ruini and F. Spaggiari, Special classes of snarks, Acta Appl. Math. 76 (2003) 57–88.
    https://doi.org/10.1023/A:1022864000162
  8. S. Dantas, C.M.H. de Figueiredo, M. Preissmann and D. Sasaki, The hunting of a snark with total chromatic number $5$, Discrete Appl. Math. 164 (2014) 470–481.
    https://doi.org/10.1016/j.dam.2013.04.006
  9. B. Descartes, Network-colourings, Math. Gaz. 32(299) (1948) 67–69.
    https://doi.org/10.2307/3610702
  10. D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Math. Program. 1 (1971) 168–194.
    https://doi.org/10.1007/BF01584085
  11. M. Gardner, Mathematical games: snarks, Boojums and other conjectures related to the four-color-map theorem, Scientific American 234 (1976) 126–130.
    https://doi.org/10.1038/scientificamerican0476-126
  12. M.K. Goldberg, Construction of class $2$ graphs with maximum vertex degree $3$, J. Combin. Theory Ser. B 31 (1981) 282–291.
    https://doi.org/10.1016/0095-8956(81)90030-7
  13. R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221–239.
    https://doi.org/10.1080/00029890.1975.11993805
  14. R. Isaacs, Loupekhine's snarks: a bifamily of non-Tait-colorable graphs, Technical Report 263, Dept. of Math. Sci., The Johns Hopkins University, Maryland, U.S.A. (1976).
  15. T.R. Jensen and B. Toft, Graph Coloring Problems (John Wiley and Sons, 2011).
  16. M. Preissmann, C-minimal snarks, Annals Discrete Math. 17 (1983) 559–565.
    https://doi.org/10.1016/S0304-0208(08)73434-0
  17. N. Robertson, D.P. Sanders, P.D. Seymour and R. Thomas, The four-colour theorem, J. Combin. Theory Ser. B 70 (1997) 2–44.
    https://doi.org/10.1006/jctb.1997.1750
  18. M. Rosenfeld, On the total coloring of certain graphs, Israel J. Math. 9 (1971) 396–402.
    https://doi.org/10.1007/BF02771690
  19. P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293–309.
    https://doi.org/10.1016/0012-365X(80)90158-2
  20. G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367–387.
    https://doi.org/10.1017/S0004972700042660
  21. P.G. Tait, Remarks on the colouring of maps, Proc. Roy. Soc. Edinburgh 10 (1880) 501–503.
    https://doi.org/10.1017/S0370164600044643
  22. W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80–91.
    https://doi.org/10.4153/CJM-1954-010-9
  23. V.G. Vizing, On an estimate of the chromatic class of a p-graph, Diskret. Analiz 3 (1964) 25–30.
  24. V.G. Vizing, Some unsolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968) 117–134, in Russian.
    https://doi.org/10.1070/RM1968v023n06ABEH001252

Close