DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

X. Zhou

Xiaomin Zhou

Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan-030024

email: zxm110700@163.com

W. Yang

Weihua Yang

Department of Mathematics, Taiyuan University of Technology, Shanxi Taiyuan-030024

email: yangweihua@tyut.edu.cn

0000-0002-2786-5173

X. Guan

Xiaxia Guan

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China

email: gxx0544@126.com

C. Qin

Chengfu Qin

School of Mathematics Science, Guangxi Teachers Education University, Nanning, Guangxi 530001, China

email: qtclf@163.com

Title:

A characterization of internally 4-connected $\{P_{10}− \{v_1,v_2\}\}$-minor-free graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 43(3) (2023) 731-742

Received: 2020-09-15 , Revised: 2021-02-17 , Accepted: 2021-02-17 , Available online: 2021-04-21 , https://doi.org/10.7151/dmgt.2404

Abstract:

Let $P_{10}$ be the Petersen graph. Let $V_{8}^{–} =P_{10}-\{v_{1}, v_{2}\}$, where $v_{1}$ and $v_{2}$ are the adjacent vertices of $P_{10}$. In this paper, all internally $4$-connected graphs that do not contain $V_{8}^{–}$ as a minor are charaterized.

Keywords:

internally $4$-connected, $V_{8}^{–}$-minor-free, Petersen graph, $2$-connected minor

References:

  1. N. Ananchuen and C. Lewchalermvongs, Internally $4$-connected graphs with no $\{cube,V_{8}\}$-minor, Discuss. Math. Graph Theory 41 (2021) 481–501.
    https://doi.org/10.7151/dmgt.2205
  2. C. Chun, D. Mayhew and J. Oxley, Constructing internally $4$-connected binary matroids, Adv. Appl. Math. 50 (2013) 16–45.
    https://doi.org/10.1016/j.aam.2012.03.005
  3. G. Ding, A characterization of graphs with no octahedron minor, J. Graph Theory 74 (2013) 143–162.
    https://doi.org/10.1002/jgt.21699
  4. G. Ding, C. Lewchalermvongs and J. Maharry, Graphs with no $\overline{P}_7$-minor, Electron. J. Combin. 23(2) (2016) #P2.16.
    https://doi.org/10.37236/5403
  5. G. Ding and C. Liu, Excluding a small minor, Discrete Appl. Math. 161 (2013) 355–368.
    https://doi.org/10.1016/j.dam.2012.09.001
  6. M.N. Ellingham, E.A. Marshall, K. Ozeki and S. Tsuchiya, A characterization of $K_{2,4}$-minor-free graphs, SIAM J. Discrete Math 30 (2014) 955–975.
    https://doi.org/10.1137/140986517
  7. Z. Gaslowitz, E.A. Marshall and L. Yepremyan, The characterization of planar, $4$-connected, $K_ {2, 5}$-minor-free graphs (2015).
    arXiv: 1507.06800
  8. H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschr. Naturforsch. Ges. Zürich 88 (1943) 133–143.
  9. J. Maharry, A characterization of graphs with no cube minor, J. Combin. Theory Ser. B 80 (2000) 179–201.
    https://doi.org/10.1006/jctb.2000.1968
  10. J. Maharry, An excluded minor theorem for the octahedron plus an edge, J. Graph Theory 57 (2008) 124–130.
    https://doi.org/10.1002/jgt.20272
  11. J. Maharry and N. Robertson, The structure of graphs not topologically containing the Wagner graph, J. Combin. Theory Ser. B 121 (2016) 398–420.
    https://doi.org/10.1016/j.jctb.2016.07.011
  12. N. Martinov, Uncontractable $4$-connected graphs, J. Graph Theory 6 (1982) 343–344.
    https://doi.org/10.1002/jgt.3190060310
  13. W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory 1 (1966) 15–50.
    https://doi.org/10.1016/S0021-9800(66)80004-2

Close