A CHARACTERIZATION OF INTERNALLY 4-CONNECTED $\left\{P_{10}-\left\{V_{1}, V_{2}\right\}\right\}$-MINOR-FREE GRAPHS

Xiaomin Zhou, Weihua Yang ${ }^{1}$
Department of Mathematics Taiyuan University of Technology,
Taiyuan Shanxi 030024, China
e-mail: zxm110700@163.com ywh222@163.com
Xiaxia Guan
School of Mathematical Sciences
Xiamen University,
Xiamen, Fujian 361005, P.R. China
e-mail: gxx0544@126.com
AND
\section*{Chengfu Qin}
School of Mathematics Science
Guangxi Teachers Education University, Nanning, Guangxi 530001, China
e-mail: qtclf@163.com

Abstract

Let P_{10} be the Petersen graph. Let $V_{8}^{--}=P_{10}-\left\{v_{1}, v_{2}\right\}$, where v_{1} and v_{2} are the adjacent vertices of P_{10}. In this paper, all internally 4-connected graphs that do not contain V_{8}^{--}as a minor are charaterized. Keywords: internally 4-connected, V_{8}^{--}-minor-free, Petersen graph, 2-connected minor.

2020 Mathematics Subject Classification: 05C83.

[^0]
1. Introduction

In this paper, all graphs are considered to be finite and simple. For any two graphs G and H, H is called a minor of G, if H can be obtained from G by repeatedly contracting edges, deleting edges and deleting vertices, which is denoted by $H \leq$ G. Given a graph G, G is called H-minor-free, if no minor of G is isomorphic to H.

Many important problems in graph theroy are about H-minor-free graphs. For instance, there are Hadwiger's Conjecture [8] and Tutte's 4-flow-conjecture [13]. Hadwiger's Conjecture is that every K_{n}-minor-free graph is $n-1$ colorable, and 4 -flow-conjecture states that every bridgeless Petersen-minor-free graph has 4-flow. Up to now, these two conjectures are still unsolved, since the structure of K_{n}-minor-free ($n \geq 6$) graphs and Petersen-minor-free graphs are unknown.We observe that K_{6} and Petersen graph both have fifteen edges. In order to characterize these graphs, we investigate graphs with less than fifteen edges.

Ding [5] characterized all H-minor-free graphs, where H is a 3 -connected graph with at most eleven edges. For 3 -connected graphs with 12 edges, cube [9], V_{8} [11], and octahedron [3] have been determined. In addition, 4-connected $O c t^{+}$-minor-free graphs [10] (where $O c t^{+}$is the unique 13 -edge graph obtained from the octahedron by adding a nonadjacent edge) and 4 -connected \bar{P}_{7}-minorfree graphs [4] (\bar{P}_{7} denotes the complement of a path on seven vertices) are also solved.

For 2-connected graphs, the characterization problem is solved for the $K_{2,4}$ [6]. 4-connected $K_{2,5}$-minor-free planar graphs [7] are determined by Marshall.

In this article, we focus on P_{10}-minor-free graphs, where P_{10} denotes the Petersen graph. We use V_{8}^{--}to denote the graph $P_{10}-\left\{v_{1}, v_{2}\right\}$, where v_{1} and v_{2} are the adjacent vertices of P_{10}. We investigate all internally 4 -connected V_{8}^{--}-minor-free graphs and our method follows almost the same method as [1]. Obviously, V_{8}^{--}is also a 2-connected subgraph of V_{8}, see Figure 1.

Figure 1. $P_{10}, V_{8}^{--}, V_{8}, K_{4,4}^{+3,1}$, and Cube.
Let $k \geq 0$ be an integer. A k-separation of a graph G is a pair $\left\{G_{1}, G_{2}\right\}$ of induced subgraphs of G such that $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G), V\left(G_{1}\right) \cup V\left(G_{2}\right)=$ $V(G), V\left(G_{1}\right)-V\left(G_{2}\right) \neq \emptyset, V\left(G_{2}\right)-V\left(G_{1}\right) \neq \emptyset$, and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=k$. A 3connected graph G with five or more vertices is said to be internally 4 -connected,
if for every 3 -separation $\left\{G_{1}, G_{2}\right\}$ of G, at least one of G_{1}, G_{2} is isomorphic to $K_{1,3}$. According to the above definitions, we can observe that if v is a cubic vertex of an internally 4 -connected graph, then the set of vertices adjacent to v is an independent set. This can also be seen in [3]. Let \mathcal{K} be a set of graphs, in which are internally 4 -connected minors of $K_{4,5}$ or $K_{4,4}^{+3,1}$ with at least eight vertices, where $K_{4,4}^{+3,1}$ is shown in Figure 1.

The following is the main theorem of this article.
Theorem 1. Let G be an internally 4-connected graph. G is V_{8}^{--}-minor-free if and only if G is either one of the graphs in \mathcal{K} or an internally 4 -connected graph of at most seven vertices.

The rest of this paper is arranged as follows. The next section includes auxiliary results that will be used. Finally, in Section 3, we prove Theorem 1.

2. Auxiliary Results

Let n be a positive integer. A double-wheel, denoted by $D W_{n}(n \geq 3)$, is a graph obtained from a cycle $C_{n}(n \geq 3)$ with n vertices by adding two nonadjacent vertices u, v and making both of them adjacent to all vertices on the cycle C_{n}. An alternating double-wheel, denoted by $A W_{2 n}(n \geq 3)$, is a graph obtained from a cycle $C_{2 n}$ by adding two nonadjacent vertices u, v and such that u and v are alternately adjacent to every vertex in $C_{2 n}$. We can observe that $D W_{n}$ and $A W_{2 n}$ are all planar graphs for each n. Let $D W_{n}^{+}=D W_{n}+u v, A W_{2 n}^{+}=A W_{2 n}+u v$, and $\mathcal{W}^{+}=\left\{D W_{n}^{+}: n \geq 3\right\} \cup\left\{A W_{2 n}^{+}: n \geq 3\right\}$. Note that $A W_{6}$ is isomorphic to the cube (see Figure 1), and every graph in \mathcal{W}^{+}is a nonplanar graph. Let \mathcal{K}_{1} be a set of graphs such that every graph in \mathcal{K}_{1} is internally 4 -connected and with four vertices incident to all edges.

For any graph G, let $L(G)$ be the line graph of G such that $V(L(G))=E(G)$, and two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common end vertex in G. The number of vertices and edges in G are denoted by $|G|$ and $\|G\|$, respectively. Let $e=u v$ be an edge of G. Contracting the edge e, denoted by G / e, means deleting the edge e and identifying the vertices u and v to a single vertex w such that w is adjacent to all vertices which are adjacent to u and v.

Theorem 2 [11]. Every internally 4 -connected V_{8}-minor-free graph G belongs to one of the following five families:
(1) G is the graph with seven or fewer vertices;
(2) G is isomorphic to $L\left(K_{3,3}\right)$;
(3) G is in \mathcal{W}^{+};
(4) G is in \mathcal{K}_{1};
(5) G is planar.

Let G be a 3 -connected graph and v be a vertex of degree at least four of G. Let $N_{G}(v)$ denote the set of vertices of G that are adjacent to v, which are also known as neighbors of v. Given two sets, $A, B \subseteq N_{G}(v)$, where $A \cup B=N_{G}(v)$ and $|A|,|B| \geq 2$, a vertex split of v means that the graph G^{\prime} is obtained from G by replacing the vertex v in G by new vertices a and b such that $N_{G}(a)=A \cup b$ and $N_{G}(b)=B \cup a$. If G^{\prime} is a planar graph, then we call vertex split the planar split.

For every integer $n \geq 5$, let C_{n}^{2} be a graph, which is obtained from a cycle C_{n} by joining every pair of vertices of distance two in the cycle C_{n}. Note that $C_{n}^{2}(n \geq 5)$ is a 4-connected vertex-transitive graph. The graph terrahawk can be found in Figure 4.

The following theorem is a chain theorem by Chun et al. in [2].
Theorem 3 [2]. Let G be an internally 4-connected graph such that G is not isomorphic to $K_{3,3}$, terrahawk, $C_{n}^{2}(n \geq 5)$, or $A W_{2 n}(n \geq 3)$. Then G has an internally 4-connected minor H with $1 \leq\|G\|-\|H\| \leq 3$.

Theorem 3 implies that if G is an internally 4-connected graph, then G can be obtained from a series of internally 4 -connected graphs $H_{0}, H_{1}, H_{2}, \ldots, H_{k}$ such that
(1) H_{0} is isomorphic to $K_{3,3}$, terrahawk, $C_{n}^{2}(n \geq 5)$, or $A W_{2 n}(n \geq 3), H_{k}$ is isomorphic to G;
(2) $H_{i}(i=2, \ldots, k)$ is obtained from H_{i-1} by adding edges or splitting vertices at most three times.

3. Main Theorem

The goal of this section is to prove the Theorem 1, which is the main theorem in this article. We first consider the graphs in \mathcal{K}. Then, we find the internally 4-connected V_{8}^{--}-minor-free graphs in V_{8}-minor-free graphs.

We note that both $A W_{6}$ and $A W_{6}^{+}$are internally 4-connected and are minors of $K_{4,5}$.

Lemma 4. Both $A W_{6}$ and $A W_{6}^{+}$are V_{8}^{--}-minor-free.
Proof. As $A W_{6}$ is a subgraph of $A W_{6}^{+}$, it is sufficient to show that $A W_{6}^{+}$is V_{8}^{--}-minor-free. Note that V_{8}^{--}has a 5 -cycle. But $A W_{6}^{+}$contains no 5 -cycles. Therefore, $A W_{6}^{+}$is V_{8}^{--}-minor-free.

Lemma 5. $K_{4,5}$ is V_{8}^{--}-minor-free.
Proof. Suppose with contradiction that $K_{4,5}$ has a V_{8}^{--}-minor. We denote by $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ the set of four vertices that are incident to all edges of $K_{4,5}$, and let $Y=V\left(K_{4,5}\right)-X=\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right\}$, as illustrated in Figure 2.

Figure 2. $K_{4,5}$ and $K_{4,4}^{+3,2}$.
Note that $K_{4,5}$ is connected and $\left|K_{4,5}\right|=9>8=\left|V_{8}^{--}\right|$. So the minor V_{8}^{--} can be obtained from $K_{4,5}$ by two ways.

We first consider that V_{8}^{--}is obtained from $K_{4,5}$ by contracting an edge, say $x_{1} y_{1}$, without lose of generality, and deleting some edges. Let $K_{4,4}^{+3,2}=K_{4,5} / x_{1} y_{1}$ and the new vertex produced be x_{5}. Then V_{8}^{--}is a subgraph of $K_{4,4}^{+3,2}$. From the structure of $K_{4,4}^{+3,2}$, the order of the 8 -cycle of V_{8}^{--}must alternate between x_{i} and $y_{j}(i, j=2,3, \ldots, 5)$, see Figure 2. However, $K_{4,4}^{+3,2}$ does not contain V_{8}^{--} as a subgraph, a contradiction.

Next, suppose V_{8}^{--}is obtained from $K_{4,5}$ by deleting a vertex and some edges. Without loss of generality, let $H_{1}=K_{4,5} \backslash x_{1}$ and $H_{2}=K_{4,5} \backslash y_{1}$. Both H_{1} and H_{2} are subgraphs of $K_{4,4}^{+3,2}$. Therefore, H_{1} and H_{2} are also V_{8}^{--}-minor-free. A contradiction.

Let G be a graph. A covering of G is a subset $C(G)$ of $V(G)$ such that every edge of G has at least one end in $C(G)$. A covering $C(G)$ is a mininum covering if G has no covering $C^{\prime}(G)$ with $\left|C^{\prime}(G)\right|<|C(G)|$. If there is no contradiction, we can omit the letter G, use C instead of $C(G)$.
Lemma 6. Both $K_{4,4}^{+3,1}$ and $K_{4,4}^{+3,2}$ are V_{8}^{--}-minor-free.
Proof. According to Lemma 5, $K_{4,4}^{+3,2}$ is V_{8}^{--}-minor-free, since $K_{4,4}^{+3,2}$ is a minor of $K_{4,5}$.

Next, we prove that $K_{4,4}^{+3,1}$ is V_{8}^{--}-minor-free. Suppose V_{8}^{--}is a minor of $K_{4,4}^{+3,1}$. As $\left|V_{8}^{--}\right|=\left|K_{4,4}^{+3,1}\right|, V_{8}^{--}$can be obtained from $K_{4,4}^{+3,1}$ by deleting some edges. Let $T=\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ be a set of four vertices that are incident to all edges of $K_{4,4}^{+3,1}$ and let t_{4} be the vertex of degree four. We can observe that the minimum covering in $K_{4,4}^{+3,1}-t_{4}$ is $C=T \backslash\left\{t_{4}\right\}$, and $|C|=3$. Suppose V_{8}^{--}is obtained by deleting two edges that are incident with t_{4} and deleting other edges
in $K_{4,4}^{+3,1}$. Let t be the vertex of degree two in V_{8}^{--}that corresponds to t_{4} in $K_{4,4}^{+3,1}$. Then let C^{\prime} be the minimum covering in $V_{8}^{--}-t$. We can observe that $\left|C^{\prime}\right|=4$. This is a contradiction. Therefore, $K_{4,4}^{+3,1}$ is V_{8}^{--}-minor-free.

Next, we consider graphs in \mathcal{K}.
Lemma 7. The graphs in \mathcal{K} are showed in Figure 3.

Figure 3. Graphs in \mathcal{K}.
Proof. Let $K \in \mathcal{K}$. Then K is an internally 4-connected minor of $K_{4,4}^{+3,1}$ or $K_{4,5}$. Let X be a set of four vertices incident to all edges of K. Let $Y=V(K)-X$ and let Y_{3}, Y_{4} consist of vertices of Y of degrees 3 and 4 , respectively. Since K is internally 4-connected, no two vertices in Y_{3} have the same neighbors.

If $|V(K)|=9$, then K is a minor of $K_{4,5}$ that is obtained by deleting some edges. Note that there are only five possible graphs, since $\left|Y_{4}\right|$ can be $1,2,3,4$, or 5), as illustrated in Figure 3. If $\left|Y_{4}\right|=0$, the resulting graph is not internally 4-connected.

Suppose $|V(K)|=8$. Then K is a minor of $K_{4,4}^{+3,1}$ by deleting edges. Note that for $H_{i}(i=1,2, \ldots, 13)$, adding any edge will lead the resulting graph not to be internally 4-connected. If $\left|Y_{3}\right|=4, K$ must be H_{1}. If $\left|Y_{3}\right|=3, K$ is the H_{2}. Suppose $\left|Y_{3}\right|=2$, then K is either H_{3} or H_{4}. If $\left|Y_{3}\right|=1, K$ is H_{5}, H_{6}, H_{7}
or H_{8}. If $\left|Y_{3}\right|=0, K$ is $H_{9}, H_{10}, H_{11}, H_{12}$ or H_{13}. Therefore, there are thirteen graphs on eight vertices and five graphs on nine vertices in \mathcal{K}.

Lemma 8. Every graph in \mathcal{K} is V_{8}^{--}-minor-free.
Proof. Let $K \in \mathcal{K}$. Then K is an internally 4 -connected minor of $K_{4,4}^{+3,1}$ or $K_{4,5}$. According to Lemma 5 and Lemma 6, both $K_{4,4}^{+3,1}$ and $K_{4,5}$ are V_{8}^{--}-minor-free. Therefore, K is also V_{8}^{--}-minor-free.

Lemma 9. Let G be an internally 4-connected V_{8}^{--}-minor-free planar graph. Then G is isomorphic to $C_{6}^{2}, D W_{5}$ or $A W_{6}$.

Proof. Let G be an internally 4-connected V_{8}^{--}-minor-free planar graph. Suppose with contradiction that G is not isomorphic to $C_{6}^{2}, D W_{5}$ or $A W_{6}$. According to Theorem 3, there is a series of internally 4 -connected graphs $H_{0}, H_{1}, H_{2}, \ldots, H_{k}$ such that H_{0} is isomorphic to $K_{3,3}$, terrahawk, $C_{n}^{2}(n \geq 5)$, or $A W_{2 n}(n \geq 3)$, H_{k} is isomorphic to G and $H_{i}(i=2, \ldots, k)$ is obtained from H_{i-1} by adding edges and splitting vertices at most three times.

As illustrated in Figure 4, note that terrahawk contains a V_{8}^{--}-minor (by contracting the thick edge labeled 1), and so does $A W_{8}$ (by contracting the thick edges labeled 2 and 3). And C_{8}^{2} also contains a V_{8}^{--}-minor, see Figure 4.

Both $A W_{2 n}(n \geq 4)$ and $C_{2 n}^{2}(n \geq 4)$ contain a V_{8}^{--}-minor, since they contain $A W_{8}$ and C_{8}^{2} as a minor, respectively. Neither $C_{2 n+1}^{2}(n \geq 2)$ nor $K_{3,3}$ is a planar graph, because they contain K_{5} and $K_{3,3}$ as a minor, respectively. Therefore, we only need to consider that H_{0} is isomorphic to C_{6}^{2} or $A W_{6}$.

Case 1. H_{0} is isomorphic to C_{6}^{2}. Then H_{1} is obtained from C_{6}^{2} by splitting vertices and adding edges. Since adding any nonadjacent edge to C_{6}^{2} will generate a nonplanar graph, we only consider the planar splits of C_{6}^{2}. (The process can also be seen in [1]). Note that C_{6}^{2} is a vertex-transitive graph. Without loss of generality, we assume that the first vertex we split in C_{6}^{2} is v_{1}. Up to symmetry, there are only four planar splits A, B, C and D, as illustrated in Figure 5. And D is isomorphic to $D W_{5}$, which is the only internally 4-connected planar graph with seven vertices [11]. Therefore, H_{1} is constructed from A, B, C or D by splitting vertices at least once and adding edges.

Case 1.1. H_{1} is constructed from A. We only consider the planar splits of A. Firstly, considering the cases that both the two new vertices have degree three, because other planar splits contain these special splits. Up to symmetry, there are four such splits, the first three cases contain a V_{8}^{--}-minor and the last one A^{\prime} is V_{8}^{--}-minor-free, as illustrated in Figure 6.

If we add any edge to A^{\prime}, the resulting graph A_{1}^{\prime} will contain a V_{8}^{--}-minor, see Figure 7. And every planar split of A^{\prime} contains a V_{8}^{--}-minor since it contains

Figure 4. Graphs which have a V_{8}^{--}-minor.

Figure 5 . Four planar splits of C_{6}^{2}.

Figure 6. Four planar splits of A.

Figure 7. Graphs generated from A^{\prime}.
planar split A_{2}^{\prime} or A_{3}^{\prime} as a minor that both new vertices have degree three, as shown in Figure 7.

Figure 8. Nine planar splits of B.

Case 1.2. H_{1} is constructed from B. We consider the planar splits of B. Every planar split of B contains a V_{8}^{--}-minor, since it contains one of the nine graphs as a minor (see Figure 8), which contains a V_{8}^{--}-minor.

Figure 9. Five planar splits of C.

Case 1.3. H_{1} is constructed from C. Similarly, for graph C, every planar split of C contains a V_{8}^{--}-minor since it contains a planar split as shown in Figure 9, which contains a V_{8}^{--}-minor.

Figure 10. Two planar splits of D.

Case 1.4. H_{1} is constructed from D. For graph D, we first consider splitting a degree- 5 vertex of D. Suppose one new vertex of degree three and the other vertex of degree four. Up to symmetry, there is exactly one such planar split D_{1}, which contains a V_{8}^{--}-minor, as illustrated in Figure 10. Then every graph obtained from D by splitting a degree- 5 vertex will have a V_{8}^{--}-minor, since it contains D_{1} as a minor. Next, having a planar split of a vertex with degree four in D. Then every such planar split of D contains a V_{8}^{--}-minor since it contains the planar split D_{2} as a minor, that both new vertices have degree three, as shown in Figure 10.

Figure 11. The graphs generated from $A W_{6}$.

Case 2. H_{0} is isomorphic to $A W_{6}$. Since $A W_{6}$ is a cubic graph, the vertex in $A W_{6}$ cannot be split. Note that $A W_{6}$ is also a vertex-transitive and edgetransitive graph. Let E be the graph obtained from $A W_{6}$ by adding a nonadjacent edge e_{1}, as illustrated in Figure 11. Note that E is not an internally 4 -connected graph and is V_{8}^{--}-minor-free. Then having a planar split of v, a vertex of degree four in E, and every graph will contain a V_{8}^{--}-minor since it contains a planar split E_{1} as a minor, that both new vertices have degree three, as shown in Figure 11. If we continue adding edges to E and splitting vertices at least once, then the resulting graph will also contain E_{1} as a minor. Therefore, the resulting graph has a V_{8}^{--}-minor. Next, we only consider adding edges to E. The graph generated from E either is not an internally 4-connected graph, or contains E_{2} or E_{3} as a minor, see Figure 11.

According to all of the above, we know that H_{1} contains a V_{8}^{--}-minor, and so does G. A contradiction. Therefore, G is isomorphic to $C_{6}^{2}, D W_{5}$ or $A W_{6}$.

Proof of Theorem 1. Let G be an internally 4 -connected graph. We can observe that every G with seven or fewer vertices is V_{8}^{--}-minor-free. According to Lemma 8, if $G \in \mathcal{K}, G$ is also V_{8}^{--}-minor-free.

For the necessity, V_{8} contains V_{8}^{--}as a subgraph, so all internally 4-connected V_{8}^{--}-minor-free graphs must be V_{8}-minor-free graphs as described in Theorem 2. We must decide which of those graphs are actually V_{8}^{--}-minor-free. Let G be an internally 4 -connected V_{8}^{--}-minor-free graph. If $|G| \leq 7$, then G is V_{8}^{--}-minorfree obviously. Next, suppose that $|G| \geq 8$.

Case 1. G is isomorphic to $L\left(K_{3,3}\right)$. Then as shown in Figure 4, G has a V_{8}^{--}-minor by contracting the thick edge labeled 4.

Case 2. G is in \mathcal{W}^{+}. We note that $A W_{8}$ is a subgragh of $A W_{8}^{+}$, and it has a V_{8}^{--}-minor by contracting the thick edges labeled 2 and 3, as illustrated in Figure 4. Therefore, $A W_{8}^{+}$contains a V_{8}^{--}-minor. And $D W_{6}^{+}$also has a V_{8}^{--}-minor, see Figure 4. Since $\left\{D W_{n}^{+}: n \geq 6\right\}$ and $\left\{A W_{2 n}^{+}: n \geq 4\right\}$ have $D W_{6}^{+}$and $A W_{8}^{+}$ as a minor, respectively, they all have V_{8}^{--}-minor. Note that $A W_{6}^{+}$belongs to \mathcal{K} and is V_{8}^{--}-minor-free according to Lemma 4.

Case 3. G is in \mathcal{K}_{1}. We claim that $G \in \mathcal{K}_{1}$ is V_{8}^{--}-minor-free if and only if $G \in \mathcal{K}$. If $G \in \mathcal{K}$, then $G \in \mathcal{K}_{1}$ and is V_{8}^{--}-minor-free according to Lemma 7 and Lemma 8. Suppose $G \in \mathcal{K}_{1}$.

If $|G| \geq 10$, then G contains $K_{4,6}^{-4}$ as a minor, since $K_{4,6}^{-4}$ is the minimal graph on ten vertices in \mathcal{K}_{1}. Note that $K_{4,6}^{-4}$ contains a V_{8}^{--}-minor by contracting the thick edges labeled 5 and 6 , see Figure 4. Hence, G contains a V_{8}^{--}-minor.

For $|G|=9$, we consider the graph $K_{4,5}$. Adding any edge to the color class of size five in $K_{4,5}$ will lead the graph not belong to \mathcal{K}_{1}, which is a contradiction. If add any edge to the color class of size four in $K_{4,5}$ will lead a V_{8}^{--}-minor. According to Lemma 5, $K_{4,5}$ is V_{8}^{--}-minor-free. Therefore, $K_{4,5}$ is the maximal V_{8}^{--}-minor-free graph with nine vertices in \mathcal{K}_{1}. Then G is a minor of $K_{4,5}$ and is also V_{8}^{--}-minor-free. So $G \in \mathcal{K}$.

Suppose $|G|=8$. According to Lemma 6 and the analysis of above, we can similarly prove that $K_{4,4}^{+3,1}$ and $K_{4,4}^{+3,2}$, which belong to \mathcal{K}_{1}, are maximal V_{8}^{--}-minor-free graphs with eight vertices. Therefore, G is a minor of $K_{4,4}^{+3,1}$ or $K_{4,4}^{+3,2}$ and is also V_{8}^{--}-minor-free. So G with eight vertices belongs to \mathcal{K}.

Case 4. G is planar. According to Lemma $9, G$ is isomorphic to $A W_{6}$, which belongs to \mathcal{K}.

References

[1] N. Ananchuen and C. Lewchalermvongs, Internally 4-connected graphs with no $\left\{\right.$ cube,$\left.V_{8}\right\}$-minor, Discuss. Math. Graph Theory 41 (2021) 481-501. https://doi.org/10.7151/dmgt. 2205
[2] C. Chun, D. Mayhew and J. Oxley, Constructing internally 4-connected binary matroids, Adv. Appl. Math. 50 (2013) 16-45. https://doi.org/10.1016/j.aam.2012.03.005
[3] G. Ding, A characterization of graphs with no octahedron minor, J. Graph Theory 74 (2013) 143-162. https://doi.org/10.1002/jgt. 21699
[4] G. Ding, C. Lewchalermvongs and J. Maharry, Graphs with no \bar{P}_{7}-minor, Electron. J. Combin. 23(2) (2016) \#P2.16. https://doi.org/10.37236/5403
[5] G. Ding and C. Liu, Excluding a small minor, Discrete Appl. Math. 161 (2013) 355-368. https://doi.org/10.1016/j.dam.2012.09.001
[6] M.N. Ellingham, E.A. Marshall, K. Ozeki and S. Tsuchiya, A characterization of $K_{2,4}$-minor-free graphs, SIAM J. Discrete Math 30 (2014) 955-975. https://doi.org/10.1137/140986517
[7] Z. Gaslowitz, E.A. Marshall and L. Yepremyan, The characterization of planar, 4connected, $K_{2,5}$-minor-free graphs (2015). arXiv:1507.06800
[8] H. Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljahresschr. Naturforsch. Ges. Zürich 88 (1943) 133-143.
[9] J. Maharry, A characterization of graphs with no cube minor, J. Combin. Theory Ser. B 80 (2000) 179-201. https://doi.org/10.1006/jctb.2000.1968
[10] J. Maharry, An excluded minor theorem for the octahedron plus an edge, J. Graph Theory 57 (2008) 124-130. https://doi.org/10.1002/jgt. 20272
[11] J. Maharry and N. Robertson, The structure of graphs not topologically containing the Wagner graph, J. Combin. Theory Ser. B 121 (2016) 398-420.
https://doi.org/10.1016/j.jctb.2016.07.011
[12] N. Martinov, Uncontractable 4-connected graphs, J. Graph Theory 6 (1982) 343-344. https://doi.org/10.1002/jgt. 3190060310
[13] W.T. Tutte, On the algebraic theory of graph colorings, J. Combin. Theory $\mathbf{1}$ (1966) 15-50.
https://doi.org/10.1016/S0021-9800(66)80004-2

[^0]: ${ }^{1}$ Corresponding author.

