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Abstract

Let P10 be the Petersen graph. Let V −−
8 = P10 − {v1, v2}, where v1 and

v2 are the adjacent vertices of P10. In this paper, all internally 4-connected
graphs that do not contain V −−

8 as a minor are charaterized.
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1. Introduction

In this paper, all graphs are considered to be finite and simple. For any two graphs
G and H, H is called a minor of G, if H can be obtained from G by repeatedly
contracting edges, deleting edges and deleting vertices, which is denoted by H ≤
G. Given a graph G, G is called H-minor-free, if no minor of G is isomorphic
to H.

Many important problems in graph theroy are about H-minor-free graphs.
For instance, there are Hadwiger’s Conjecture [8] and Tutte’s 4-flow-conjecture
[13]. Hadwiger’s Conjecture is that every Kn-minor-free graph is n− 1 colorable,
and 4-flow-conjecture states that every bridgeless Petersen-minor-free graph has
4-flow. Up to now, these two conjectures are still unsolved, since the structure of
Kn-minor-free (n ≥ 6) graphs and Petersen-minor-free graphs are unknown.We
observe that K6 and Petersen graph both have fifteen edges. In order to charac-
terize these graphs, we investigate graphs with less than fifteen edges.

Ding [5] characterized all H-minor-free graphs, where H is a 3-connected
graph with at most eleven edges. For 3-connected graphs with 12 edges, cube
[9], V8 [11], and octahedron [3] have been determined. In addition, 4-connected
Oct+-minor-free graphs [10] (where Oct+ is the unique 13-edge graph obtained
from the octahedron by adding a nonadjacent edge) and 4-connected P 7-minor-
free graphs [4] (P 7 denotes the complement of a path on seven vertices) are also
solved.

For 2-connected graphs, the characterization problem is solved for the K2,4

[6]. 4-connected K2,5-minor-free planar graphs [7] are determined by Marshall.

In this article, we focus on P10-minor-free graphs, where P10 denotes the
Petersen graph. We use V −−8 to denote the graph P10 − {v1, v2}, where v1 and
v2 are the adjacent vertices of P10. We investigate all internally 4-connected
V −−8 -minor-free graphs and our method follows almost the same method as [1].
Obviously, V −−8 is also a 2-connected subgraph of V8, see Figure 1.

Figure 1. P10, V −−
8 , V8, K+3,1

4,4 , and Cube.

Let k ≥ 0 be an integer. A k-separation of a graph G is a pair {G1, G2} of
induced subgraphs of G such that E(G1) ∪ E(G2) = E(G), V (G1) ∪ V (G2) =
V (G), V (G1)− V (G2) 6= ∅, V (G2)− V (G1) 6= ∅, and |V (G1)∩ V (G2)| = k. A 3-
connected graph G with five or more vertices is said to be internally 4-connected,
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if for every 3-separation {G1, G2} of G, at least one of G1, G2 is isomorphic to
K1,3. According to the above definitions, we can observe that if v is a cubic
vertex of an internally 4-connected graph, then the set of vertices adjacent to v
is an independent set. This can also be seen in [3]. Let K be a set of graphs,
in which are internally 4-connected minors of K4,5 or K+3,1

4,4 with at least eight

vertices, where K+3,1
4,4 is shown in Figure 1.

The following is the main theorem of this article.

Theorem 1. Let G be an internally 4-connected graph. G is V −−8 -minor-free if
and only if G is either one of the graphs in K or an internally 4-connected graph
of at most seven vertices.

The rest of this paper is arranged as follows. The next section includes
auxiliary results that will be used. Finally, in Section 3, we prove Theorem 1.

2. Auxiliary Results

Let n be a positive integer. A double-wheel, denoted by DWn (n ≥ 3), is a graph
obtained from a cycle Cn (n ≥ 3) with n vertices by adding two nonadjacent
vertices u, v and making both of them adjacent to all vertices on the cycle Cn.
An alternating double-wheel, denoted by AW2n (n ≥ 3), is a graph obtained from
a cycle C2n by adding two nonadjacent vertices u, v and such that u and v are
alternately adjacent to every vertex in C2n. We can observe that DWn and AW2n

are all planar graphs for each n. Let DW+
n = DWn + uv, AW+

2n = AW2n + uv,
and W+ =

{
DW+

n : n ≥ 3
}
∪
{
AW+

2n : n ≥ 3
}

. Note that AW6 is isomorphic to
the cube (see Figure 1), and every graph in W+ is a nonplanar graph. Let K1

be a set of graphs such that every graph in K1 is internally 4-connected and with
four vertices incident to all edges.

For any graph G, let L(G) be the line graph of G such that V (L(G)) = E(G),
and two vertices of L(G) are adjacent if and only if their corresponding edges share
a common end vertex in G. The number of vertices and edges in G are denoted
by |G| and ||G||, respectively. Let e = uv be an edge of G. Contracting the edge
e, denoted by G/e, means deleting the edge e and identifying the vertices u and
v to a single vertex w such that w is adjacent to all vertices which are adjacent
to u and v.

Theorem 2 [11]. Every internally 4-connected V8-minor-free graph G belongs to
one of the following five families:

(1) G is the graph with seven or fewer vertices;

(2) G is isomorphic to L(K3,3);
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(3) G is in W+;

(4) G is in K1;

(5) G is planar.

Let G be a 3-connected graph and v be a vertex of degree at least four of G.
Let NG(v) denote the set of vertices of G that are adjacent to v, which are also
known as neighbors of v. Given two sets, A, B ⊆ NG(v), where A ∪B = NG(v)
and |A|, |B| ≥ 2, a vertex split of v means that the graph G

′
is obtained from G

by replacing the vertex v in G by new vertices a and b such that NG(a) = A ∪ b
and NG(b) = B ∪ a. If G

′
is a planar graph, then we call vertex split the planar

split.
For every integer n ≥ 5, let C2

n be a graph, which is obtained from a cycle
Cn by joining every pair of vertices of distance two in the cycle Cn. Note that
C2
n (n ≥ 5) is a 4-connected vertex-transitive graph. The graph terrahawk can

be found in Figure 4.
The following theorem is a chain theorem by Chun et al. in [2].

Theorem 3 [2]. Let G be an internally 4-connected graph such that G is not
isomorphic to K3,3, terrahawk, C2

n (n ≥ 5), or AW2n (n ≥ 3). Then G has an
internally 4-connected minor H with 1 ≤ ||G|| − ||H|| ≤ 3.

Theorem 3 implies that if G is an internally 4-connected graph, then G can be
obtained from a series of internally 4-connected graphs H0, H1, H2, . . . ,Hk such
that

(1) H0 is isomorphic to K3,3, terrahawk, C2
n (n ≥ 5), or AW2n (n ≥ 3), Hk

is isomorphic to G;
(2) Hi (i = 2, . . . , k) is obtained from Hi−1 by adding edges or splitting

vertices at most three times.

3. Main Theorem

The goal of this section is to prove the Theorem 1, which is the main theorem
in this article. We first consider the graphs in K. Then, we find the internally
4-connected V −−8 -minor-free graphs in V8-minor-free graphs.

We note that both AW6 and AW+
6 are internally 4-connected and are minors

of K4,5.

Lemma 4. Both AW6 and AW+
6 are V −−8 -minor-free.

Proof. As AW6 is a subgraph of AW+
6 , it is sufficient to show that AW+

6 is
V −−8 -minor-free. Note that V −−8 has a 5-cycle. But AW+

6 contains no 5-cycles.
Therefore, AW+

6 is V −−8 -minor-free.
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Lemma 5. K4,5 is V −−8 -minor-free.

Proof. Suppose with contradiction that K4,5 has a V −−8 -minor. We denote by
X = {x1, x2, x3, x4} the set of four vertices that are incident to all edges of K4,5,
and let Y = V (K4,5)−X = {y1, y2, y3, y4, y5}, as illustrated in Figure 2.

x1 x4x3x2

y5y4y3y2y1

x5 x4x3x2

y2 y5y4y3

∼= x2

x3

x4

x5

y2 y3

y4y5

Figure 2. K4,5 and K+3,2
4,4 .

Note that K4,5 is connected and |K4,5| = 9 > 8 = |V −−8 |. So the minor V −−8

can be obtained from K4,5 by two ways.
We first consider that V −−8 is obtained from K4,5 by contracting an edge, say

x1y1, without lose of generality, and deleting some edges. Let K+3,2
4,4 = K4,5/x1y1

and the new vertex produced be x5. Then V −−8 is a subgraph of K+3,2
4,4 . From

the structure of K+3,2
4,4 , the order of the 8-cycle of V −−8 must alternate between

xi and yj (i, j = 2, 3, . . . , 5), see Figure 2. However, K+3,2
4,4 does not contain V −−8

as a subgraph, a contradiction.
Next, suppose V −−8 is obtained from K4,5 by deleting a vertex and some

edges. Without loss of generality, let H1 = K4,5\x1 and H2 = K4,5\y1. Both H1

and H2 are subgraphs of K+3,2
4,4 . Therefore, H1 and H2 are also V −−8 -minor-free.

A contradiction.

Let G be a graph. A covering of G is a subset C(G) of V (G) such that every
edge of G has at least one end in C(G). A covering C(G) is a mininum covering
if G has no covering C

′
(G) with |C ′(G)| < |C(G)|. If there is no contradiction,

we can omit the letter G, use C instead of C(G).

Lemma 6. Both K+3,1
4,4 and K+3,2

4,4 are V −−8 -minor-free.

Proof. According to Lemma 5, K+3,2
4,4 is V −−8 -minor-free, since K+3,2

4,4 is a minor
of K4,5.

Next, we prove that K+3,1
4,4 is V −−8 -minor-free. Suppose V −−8 is a minor of

K+3,1
4,4 . As |V −−8 | = |K+3,1

4,4 |, V
−−
8 can be obtained from K+3,1

4,4 by deleting some
edges. Let T = {t1, t2, t3, t4} be a set of four vertices that are incident to all
edges of K+3,1

4,4 and let t4 be the vertex of degree four. We can observe that the

minimum covering in K+3,1
4,4 − t4 is C = T\{t4}, and |C| = 3. Suppose V −−8 is

obtained by deleting two edges that are incident with t4 and deleting other edges
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in K+3,1
4,4 . Let t be the vertex of degree two in V −−8 that corresponds to t4 in

K+3,1
4,4 . Then let C

′
be the minimum covering in V −−8 − t. We can observe that

|C ′ | = 4. This is a contradiction. Therefore, K+3,1
4,4 is V −−8 -minor-free.

Next, we consider graphs in K.

Lemma 7. The graphs in K are showed in Figure 3.

|V (K)| = 9

|V (K)| = 8

H1 H5H4H3H2

H6

H11 H13H12

H10H9H8H7

Figure 3. Graphs in K.

Proof. Let K ∈ K. Then K is an internally 4-connected minor of K+3,1
4,4 or K4,5.

Let X be a set of four vertices incident to all edges of K. Let Y = V (K) − X
and let Y3, Y4 consist of vertices of Y of degrees 3 and 4, respectively. Since K is
internally 4-connected, no two vertices in Y3 have the same neighbors.

If |V (K)| = 9, then K is a minor of K4,5 that is obtained by deleting some
edges. Note that there are only five possible graphs, since |Y4| can be 1, 2, 3, 4,
or 5), as illustrated in Figure 3. If |Y4| = 0, the resulting graph is not internally
4-connected.

Suppose |V (K)| = 8. Then K is a minor of K+3,1
4,4 by deleting edges. Note

that for Hi (i = 1, 2, . . . , 13), adding any edge will lead the resulting graph not
to be internally 4-connected. If |Y3| = 4, K must be H1. If |Y3| = 3, K is the
H2. Suppose |Y3| = 2, then K is either H3 or H4. If |Y3| = 1, K is H5, H6, H7
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or H8. If |Y3| = 0, K is H9, H10, H11, H12 or H13. Therefore, there are thirteen
graphs on eight vertices and five graphs on nine vertices in K.

Lemma 8. Every graph in K is V −−8 -minor-free.

Proof. Let K ∈ K. Then K is an internally 4-connected minor of K+3,1
4,4 or K4,5.

According to Lemma 5 and Lemma 6, both K+3,1
4,4 and K4,5 are V −−8 -minor-free.

Therefore, K is also V −−8 -minor-free.

Lemma 9. Let G be an internally 4-connected V −−8 -minor-free planar graph.
Then G is isomorphic to C2

6 , DW5 or AW6.

Proof. Let G be an internally 4-connected V −−8 -minor-free planar graph. Sup-
pose with contradiction that G is not isomorphic to C2

6 , DW5 or AW6. According
to Theorem 3, there is a series of internally 4-connected graphs H0, H1, H2, . . . ,Hk

such that H0 is isomorphic to K3,3, terrahawk, C2
n (n ≥ 5), or AW2n (n ≥ 3), Hk

is isomorphic to G and Hi (i = 2, . . . , k) is obtained from Hi−1 by adding edges
and splitting vertices at most three times.

As illustrated in Figure 4, note that terrahawk contains a V −−8 -minor (by
contracting the thick edge labeled 1), and so does AW8 (by contracting the thick
edges labeled 2 and 3). And C2

8 also contains a V −−8 -minor, see Figure 4.

Both AW2n (n ≥ 4) and C2
2n (n ≥ 4) contain a V −−8 -minor, since they contain

AW8 and C2
8 as a minor, respectively. Neither C2

2n+1 (n ≥ 2) nor K3,3 is a planar
graph, because they contain K5 and K3,3 as a minor, respectively. Therefore, we
only need to consider that H0 is isomorphic to C2

6 or AW6.

Case 1. H0 is isomorphic to C2
6 . Then H1 is obtained from C2

6 by splitting
vertices and adding edges. Since adding any nonadjacent edge to C2

6 will generate
a nonplanar graph, we only consider the planar splits of C2

6 . (The process can
also be seen in [1]). Note that C2

6 is a vertex-transitive graph. Without loss of
generality, we assume that the first vertex we split in C2

6 is v1. Up to symmetry,
there are only four planar splits A, B, C and D, as illustrated in Figure 5. And
D is isomorphic to DW5, which is the only internally 4-connected planar graph
with seven vertices [11]. Therefore, H1 is constructed from A, B, C or D by
splitting vertices at least once and adding edges.

Case 1.1. H1 is constructed from A. We only consider the planar splits of A.
Firstly, considering the cases that both the two new vertices have degree three,
because other planar splits contain these special splits. Up to symmetry, there
are four such splits, the first three cases contain a V −−8 -minor and the last one
A
′

is V −−8 -minor-free, as illustrated in Figure 6.

If we add any edge to A
′
, the resulting graph A

′
1 will contain a V −−8 -minor,

see Figure 7. And every planar split of A
′

contains a V −−8 -minor since it contains
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∼=

≥

C2
8

DW+
6

K−4
4,6

≥

Terrahawk

≥

AW8

1 1

2

2 3

4 4
7≥

L(K3,3)

6

6

∼=

3

5

5

Figure 4. Graphs which have a V −−
8 -minor.

C2
6

B C D

v1

A

Figure 5. Four planar splits of C2
6 .

A
A
′

∼= ∼=∼=

Figure 6. Four planar splits of A.
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A
′

≥≥∼=

A
′
3A

′
1 A

′
2

Figure 7. Graphs generated from A
′
.

planar split A
′
2 or A

′
3 as a minor that both new vertices have degree three, as

shown in Figure 7.

B

∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

∼=

Figure 8. Nine planar splits of B.

Case 1.2. H1 is constructed from B. We consider the planar splits of B.
Every planar split of B contains a V −−8 -minor, since it contains one of the nine
graphs as a minor (see Figure 8), which contains a V −−8 -minor.

C

∼=∼=

∼=

∼=∼=

∼=

Figure 9. Five planar splits of C.

Case 1.3. H1 is constructed from C. Similarly, for graph C, every planar split
of C contains a V −−8 -minor since it contains a planar split as shown in Figure 9,
which contains a V −−8 -minor.
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D

∼=∼=
∼=

D1 D2

Figure 10. Two planar splits of D.

Case 1.4. H1 is constructed from D. For graph D, we first consider splitting
a degree-5 vertex of D. Suppose one new vertex of degree three and the other
vertex of degree four. Up to symmetry, there is exactly one such planar split
D1, which contains a V −−8 -minor, as illustrated in Figure 10. Then every graph
obtained from D by splitting a degree-5 vertex will have a V −−8 -minor, since it
contains D1 as a minor. Next, having a planar split of a vertex with degree four in
D. Then every such planar split of D contains a V −−8 -minor since it contains the
planar split D2 as a minor, that both new vertices have degree three, as shown
in Figure 10.

AW6 ∼=

split

≥

E

v

E3

∼=

E2

E1

Figure 11. The graphs generated from AW6.

Case 2. H0 is isomorphic to AW6. Since AW6 is a cubic graph, the vertex
in AW6 cannot be split. Note that AW6 is also a vertex-transitive and edge-
transitive graph. Let E be the graph obtained from AW6 by adding a nonadjacent
edge e1, as illustrated in Figure 11. Note that E is not an internally 4-connected
graph and is V −−8 -minor-free. Then having a planar split of v, a vertex of degree
four in E, and every graph will contain a V −−8 -minor since it contains a planar
split E1 as a minor, that both new vertices have degree three, as shown in Figure
11. If we continue adding edges to E and splitting vertices at least once, then
the resulting graph will also contain E1 as a minor. Therefore, the resulting
graph has a V −−8 -minor. Next, we only consider adding edges to E. The graph
generated from E either is not an internally 4-connected graph, or contains E2

or E3 as a minor, see Figure 11.
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According to all of the above, we know that H1 contains a V −−8 -minor, and
so does G. A contradiction. Therefore, G is isomorphic to C2

6 , DW5 or AW6.

Proof of Theorem 1. Let G be an internally 4-connected graph. We can
observe that every G with seven or fewer vertices is V −−8 -minor-free. According
to Lemma 8, if G ∈ K, G is also V −−8 -minor-free.

For the necessity, V8 contains V −−8 as a subgraph, so all internally 4-connected
V −−8 -minor-free graphs must be V8-minor-free graphs as described in Theorem 2.
We must decide which of those graphs are actually V −−8 -minor-free. Let G be an
internally 4-connected V −−8 -minor-free graph. If |G| ≤ 7, then G is V −−8 -minor-
free obviously. Next, suppose that |G| ≥ 8.

Case 1. G is isomorphic to L(K3,3). Then as shown in Figure 4, G has a
V −−8 -minor by contracting the thick edge labeled 4.

Case 2. G is in W+. We note that AW8 is a subgragh of AW+
8 , and it has a

V −−8 -minor by contracting the thick edges labeled 2 and 3, as illustrated in Figure
4. Therefore, AW+

8 contains a V −−8 -minor. And DW+
6 also has a V −−8 -minor,

see Figure 4. Since
{
DW+

n : n ≥ 6
}

and
{
AW+

2n : n ≥ 4
}

have DW+
6 and AW+

8

as a minor, respectively, they all have V −−8 -minor. Note that AW+
6 belongs to

K and is V −−8 -minor-free according to Lemma 4.

Case 3. G is in K1. We claim that G ∈ K1 is V −−8 -minor-free if and only if
G ∈ K. If G ∈ K, then G ∈ K1 and is V −−8 -minor-free according to Lemma 7
and Lemma 8. Suppose G ∈ K1.

If |G| ≥ 10, then G contains K−44,6 as a minor, since K−44,6 is the minimal graph

on ten vertices in K1. Note that K−44,6 contains a V −−8 -minor by contracting the

thick edges labeled 5 and 6, see Figure 4. Hence, G contains a V −−8 -minor.
For |G| = 9, we consider the graph K4,5. Adding any edge to the color class

of size five in K4,5 will lead the graph not belong to K1, which is a contradiction.
If add any edge to the color class of size four in K4,5 will lead a V −−8 -minor.
According to Lemma 5, K4,5 is V −−8 -minor-free. Therefore, K4,5 is the maximal
V −−8 -minor-free graph with nine vertices in K1. Then G is a minor of K4,5 and
is also V −−8 -minor-free. So G ∈ K.

Suppose |G| = 8. According to Lemma 6 and the analysis of above, we can
similarly prove that K+3,1

4,4 and K+3,2
4,4 , which belong to K1, are maximal V −−8 -

minor-free graphs with eight vertices. Therefore, G is a minor of K+3,1
4,4 or K+3,2

4,4

and is also V −−8 -minor-free. So G with eight vertices belongs to K.

Case 4. G is planar. According to Lemma 9, G is isomorphic to AW6, which
belongs to K.
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