DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2023): 0.5

5-year Journal Impact Factor (2023): 0.6

CiteScore (2023): 2.2

SNIP (2023): 0.681

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

P. Dankelmann

Peter Dankelmann

University of Johannesburg

email: pdankelmann@uj.ac.za

M. DeVilbiss

Matthew DeVilbiss

Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago

email: mdevil2@uic.edu

D.J. Erwin

David J. Erwin

Laboratory for Discrete Mathematics and Theoretical Computer Science, Department of Mathematics and Applied Mathematics, University of Cape Town

email: david.erwin@uct.ac.za

K. Guest

Kelly Guest

Department of Mathematics, Tuskegee University

email: breadclaw@gmail.com

R. Matzke

Ryan Matzke

School of Mathematics, University of Minnesota

email: matzk053@umn.edu

Title:

On subgraphs with prescribed eccentricities

PDF

Source:

Discussiones Mathematicae Graph Theory 43(3) (2023) 685-702

Received: 2019-12-05 , Revised: 2021-02-02 , Accepted: 2021-02-02 , Available online: 2021-02-19 , https://doi.org/10.7151/dmgt.2396

Abstract:

A well-known result by Hedetniemi states that for every graph $G$ there is a graph $H$ whose center is $G$. We extend this result by showing under which conditions there exists, for a given graph $G$ in which each vertex $v$ has an integer label $\ell(v)$, a graph $H$ containing $G$ as an induced subgraph such that the eccentricity, in $H,$ of every vertex $v$ of $G$ equals $\ell(v)$. Such a labelled graph $G$ is said to be eccentric, and strictly eccentric if there exists such a graph $H$ such that no vertex of $H-G$ has the same eccentricity in $H$ as any vertex of $G$. We find necessary and sufficient conditions for a labelled graph to be eccentric and for a forest to be eccentric or strictly eccentric in a tree.

Keywords:

distance, eccentricity, subgraph, tree

References:

  1. F. Buckley, Z. Miller and P.J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981) 427–434.
    https://doi.org/10.1002/jgt.3190050413
  2. G. Chartrand and L. Lesniak, Graphs and Digraphs (Chapman and Hall, New York, 1996).
  3. G. Chartrand, M. Schultz and S.J. Winters, On eccentric vertices in graphs, Networks 28 (1996) 181–186.
    https://doi.org/10.1002/(SICI)1097-0037(199612)28:4<181::AID-NET2>3.0.CO;2-H
  4. P. Dankelmann, D.J. Erwin, W. Goddard, S. Mukwembi and H.C. Swart, Eccentric counts, connectivity and chordality, Inform. Process. Lett. 112 (2012) 944–947.
    https://doi.org/10.1016/j.ipl.2012.08.022
  5. P. Dankelmann, D.J. Erwin, W. Goddard, S. Mukwembi and H.C. Swart, A characterisation of eccentric sequences of maximal outerplanar graphs, Australas. J. Combin. 58 (2014) 376–391.
  6. P. Dankelmann, D. Erwin, and H. Swart, On digraphs with prescribed eccentricities, J. Combin. Math. Combin. Comput. 104 (2018) 143–160.
  7. D.J. Erwin and F. Harary, Destroying automorphisms by fixing nodes, Discrete Math. 306 (2006) 3244–3252.
    https://doi.org/10.1016/j.disc.2006.06.004
  8. D. Ferrero and F. Harary, On eccentricity sequences of connected graphs, AKCE Int. J. Graphs Comb. 6 (2009) 401–408.
  9. J. Gimbert and N. López, Eccentricity sequences and eccentricity sets in digraphs, Ars Combin. 86 (2008) 225–238.
  10. S. Gupta, M. Singh and A.K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002) 386–401.
    https://doi.org/10.1016/S0022-247X(02)00373-6
  11. A. Haviar, P. Hrnčiar and G. Monoszová, Minimal eccentric sequences with least eccentricity three, Acta Univ. M. Belii Ser. Math. 5 (1997) 27–50.
  12. M. Harminc and J. Ivančo, Note on eccentricities in tournaments, Graphs Combin. 10 (1994) 231–234.
    https://doi.org/10.1007/BF02986670
  13. L. Lesniak, Eccentric sequences in graphs, Period. Math. Hungar. 6 (1975) 287–293.
    https://doi.org/10.1007/BF02017925
  14. V. Mukungunugwa and S. Mukwembi, On eccentric distance sum and minimum degree, Discrete Appl. Math. 175 (2014) 55–61.
    https://doi.org/10.1016/j.dam.2014.05.019
  15. D. Mubayi and D.B. West, On the number of vertices with specified eccentricity, Graphs Combin. 16 (2000) 441–452.
    https://doi.org/10.1007/PL00007229
  16. R. Nandakumar, On Some Eccentric Properties of Graphs, Ph.D. Thesis (Indian Institute of Technology, New Delhi, 1986).
  17. O.R. Oellermann and S. Tian, Steiner $n$-eccentricity sequences of graphs, Recent Studies in Graph Theory (1989) 206–211.
  18. A. Tamir, The k-centrum multi-facility location problem, Discrete Appl. Math. 109 (2001) 293–307.
    https://doi.org/10.1016/S0166-218X(00)00253-5

Close