DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

N.V. Shinde

Neeta Vikas Shinde

College of Engineering Pune Maharashtra

email: neetavshinde@gmail.com

S.A. Mane

Smruti Mane

Savitribai Phule Pune University

email: manesmruti@yahoo.com

B.N. Waphare

Baloo Waphare

Savitribai Phule Pune University

email: waphare@yahoo.com

Title:

Identifying codes in the direct product of a path and a complete graph

PDF

Source:

Discussiones Mathematicae Graph Theory 43(2) (2023) 463-486

Received: 2020-02-10 , Revised: 2020-11-05 , Accepted: 2020-11-05 , Available online: 2020-12-03 , https://doi.org/10.7151/dmgt.2380

Abstract:

Let $G$ be a simple, undirected graph with vertex set $V$. For any vertex $v \in V$, the set $N[v]$ is the vertex $v$ and all its neighbors. A subset $D \subseteq V(G)$ is a dominating set of $G$ if for every $v \in V(G)$, $N[v] \cap D \neq \emptyset$. And a subset $F \subseteq V(G)$ is a separating set of $G$ if for every distinct pair $u, v\in V(G)$, $N[u]\cap F \neq N[v] \cap F$. An identifying code of $G$ is a subset $C \subseteq V(G)$ that is dominating as well as separating. The minimum cardinality of an identifying code in a graph $G$ is denoted by $\gamma^{ID}(G)$. The identifying codes of the direct product $G_1 × G_2$, where $G_1$ is a complete graph and $G_2$ is a complete/ regular/ complete bipartite graph, are known in the literature. In this paper, we find $\gamma^{ID}(P_n × K_m)$ for $n\geq 3$, and $m\geq 3$ where $P_n$ is a path of length $n$, and $K_m$ is a complete graph on $m$ vertices.

Keywords:

identifying code, direct product, path, complete graph

References:

  1. C. Balbuena, C. Dalfó and B. Martínez-Barona, Characterizing identifying codes from the spectrum of a graph or digraph, Linear Algebra Appl. 570 (2019) 138–147.
    https://doi.org/10.1016/j.laa.2019.02.010
  2. Y. Ben-Haim and S. Litsyn, Exact minimum density of codes identifying vertices in the square grid, SIAM J. Discrete Math. 19 (2005) 69–82.
    https://doi.org/10.1137/S0895480104444089
  3. N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-dominating codes on chains and cycles, European J. Combin. 25 (2004) 969–987.
    https://doi.org/10.1016/j.ejc.2003.12.013
  4. N. Bertrand, I. Charon, O. Hudry and A. Lobstein, $1$-identifying codes on trees, Australas. J. Combin. 31 (2005) 21–35.
  5. C. Chen, C. Lu and Z. Miao, Identifying codes and locating-dominating sets on paths and cycles, Discrete Appl. Math. 159 (2011) 1540–1547.
    https://doi.org/10.1016/j.dam.2011.06.008
  6. G. Cohen, I. Honkala, M. Mollard, S. Gravier, A. Lobstein, C. Payan and G. Zémor, Improved identifying codes for the grid, Electron. J. Combin., Comments to Vol. 6 no. 1 (1999) #R19.
  7. M. Feng and K. Wang, Identifying codes of corona product graphs, Discrete Appl. Math. 169 (2014) 88–96.
    https://doi.org/10.1016/j.dam.2013.12.017
  8. M. Feng, M. Xu and K. Wang, Identifying codes of lexicographic product of graphs, Electron. J. Combin. 19 (2012) #P56.
    https://doi.org/10.37236/2974
  9. F. Foucaud, Identifying codes in special graph classes (Master's Thesis, Universite Bordeaux, 2009).
  10. F. Foucaud, R. Klasing, A. Kosowski and A. Raspaud, On the size of identifying codes in triangle-free graphs, Discrete Appl. Math. 160 (2012) 1532–1546.
    https://doi.org/10.1016/j.dam.2012.02.009
  11. W. Goddard and K. Wash, ID codes in Cartesian products of cliques, J. Combin. Math. Combin. Comput. 85 (2013) 97–106.
  12. S. Gravier, J. Moncel and A. Semri, Identifying codes of cycles, European J. Combin. 27 (2006) 767–776.
    https://doi.org/10.1016/j.ejc.2004.09.005
  13. S. Gravier, J. Moncel and A. Semri, Identifying codes of Cartesian product of two cliques of the same size, Electron. J. Combin. 15 (2008) #N4.
    https://doi.org/10.37236/879
  14. J. Hedetniemi, On identifying codes in the Cartesian product of a path and a complete graph, J. Comb. Optim. 31 (2016) 1405–1416.
    https://doi.org/10.1007/s10878-015-9830-9
  15. I. Honkala and A. Lobstein, On identifying codes in binary Hamming spaces, J. Combin. Theory Ser. A 99 (2002) 232–243.
    https://doi.org/10.1006/jcta.2002.3263
  16. S. Janson and T. Laihonen, On the size of identifying codes in binary hypercubes, J. Combin. Theory Ser. A 116 (2009) 1087–1096.
    https://doi.org/10.1016/j.jcta.2009.02.004
  17. V. Junnila and T. Laihonen, Optimal identifying codes in cycles and paths, Graphs Combin. 28 (2012) 469–481.
    https://doi.org/10.1007/s00373-011-1058-6
  18. M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory 44 (1998) 599–611.
    https://doi.org/10.1109/18.661507
  19. J.L. Kim and S.J. Kim, Identifying codes in q-ary hypercubes, Bull. Inst. Combin. Appl. 59 (2010) 93–102.
  20. M. Laifenfeld and A. Trachtenberg, Identifying codes and covering problems, IEEE Trans. Inform. Theory 54 (2008) 3929–3950.
    https://doi.org/10.1109/TIT.2008.928263
  21. T. Laihonen and J. Moncel, On graphs admitting codes identifying sets of vertices, Australas. J. Combin. 41 (2008) 81–91.
  22. A. Lobstein, Watching Systems, Identifying, Locating-Dominating and Discriminating Codes in Graphs (2014).
    http://www.infres.enst.fr/lobstein/debutBIBidetlocdom
  23. M. Lu, J. Xu and Y. Zhang, Identifying codes in the direct product of a complete graph and some special graphs, Discrete Appl. Math. 254 (2019) 175–182.
    https://doi.org/10.1016/j.dam.2018.06.027
  24. D.F. Rall and K. Wash, Identifying codes of the direct product of two cliques, European J. Combin. 36 (2014) 159–171.
    https://doi.org/10.1016/j.ejc.2013.07.002
  25. D.F. Rall and K. Wash, On minimum identifying codes in some Cartesian product graphs, Graphs Combin. 33 (2017) 1037–1053.
    https://doi.org/10.1007/s00373-017-1813-4
  26. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962) 47–52.
    https://doi.org/10.1090/S0002-9939-1962-0133816-6
  27. D. West, Introduction to Graph Theory (Prentice Hall of India, 2002).
  28. M. Xu, K. Thulasiraman and X.-D. Hu, Identifying codes of cycles with odd orders, European J. Combin. 29 (2008) 1717–1720.
    https://doi.org/10.1016/j.ejc.2007.09.006

Close