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Abstract

Let G be a simple, undirected graph with vertex set V . For any vertex
v ∈ V , the set N [v] is the vertex v and all its neighbors. A subset D ⊆ V (G)
is a dominating set of G if for every v ∈ V (G), N [v] ∩D 6= ∅. And a subset
F ⊆ V (G) is a separating set of G if for every distinct pair u, v ∈ V (G),
N [u] ∩ F 6= N [v] ∩ F . An identifying code of G is a subset C ⊆ V (G)
that is dominating as well as separating. The minimum cardinality of an
identifying code in a graph G is denoted by γID(G). The identifying codes
of the direct product G1 × G2, where G1 is a complete graph and G2 is a
complete/ regular/ complete bipartite graph, are known in the literature.
In this paper, we find γID(Pn ×Km) for n ≥ 3, and m ≥ 3 where Pn is a
path of length n, and Km is a complete graph on m vertices.
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1. Introduction

Identifying codes are studied in the various scientific disciplines such as informa-
tion theory, electrical engineering, mathematics, and computer science to design
efficient and reliable networks. This typically involves the removal of redundancy
and the correction or detection of errors in the networks. An identifying code C is
a dominating set having the property that any two vertices of the graph have dis-
tinct neighborhoods in C, thus every vertex is uniquely identified by its neighbors
within the dominating set. The notion of an identifying code was introduced by
Karpovsky et al. [18] with the original motivation of achieving fault diagnosis for
multiprocessor systems. Numerous papers dealt with identifying codes Balbuena
et al. [1], Ben-Haim and Litsyn [2], Bertrand et al. [3], Bertrand et al. [4], Chen
et al. [5], Cohen et al. [6], Foucaud [9], Foucaud et al. [10], Gravier et al. [12],
Honkala and Lobstein [15], Janson and Laihonen [16], Junnila and Laihonen [17],
Laifenfeld and Trachtenberg [20], Laihonen and Moncel [21], and Xu et al. [28].
Several results about different types of product graphs are known (see Feng and
Wang [7], Feng et al. [8], Goddard and Wash [11], Gravier et al. [13], Hedetniemi
[14], Kim and Kim [19], Rall and Wash [25]). Identifying codes of direct product
of graphs are studied for Km ×Kn by Rall and Wash [24], and Km × G, where
G is a regular/ complete bipartite graph by Lu et al. [23]. For more references,
we direct the reader to extensive bibliography maintained by Lobstein [22].

In this work, for a path Pn on n vertices, and a complete graph Km, on
m vertices, we find γID(Pn × Km) for n ≥ 3, and m ≥ 3. As P2 = K2 and
identifying codes of Km×Kn are studied by Rall and Wash [24], we assume that
n ≥ 3. While studying identifying codes in the direct product of a path and a
complete graph, we prove a set of necessary and sufficient conditions that are
used to determine whether a given set is an identifying code.

2. Preliminaries

A graph G is an ordered pair (V (G), E(G)) comprising a set of vertices or nodes
V (G) together with a set E(G) of edges, which are two-element subsets of V (G).
Given a vertex v ∈ V (G), its closed neighborhood, denoted by N [v], is made
up of the node v together with all its neighbors and its open neighborhood is
denoted by N(v) = N [v] \ {v}. For S ⊆ V (G), the open neighborhood of S is
N(S) =

⋃

v∈S N(v). Similarly, the closed neighborhood of S is N [S] = N(S)∪S.
A set D ⊆ V (G) is dominating if for any v ∈ V (G) \D there exists a vertex u ∈ D
such that the edge uv ∈ E(G). A set D ⊆ V (G) is said to be separating if for any
two distinct vertices u, v ∈ V (G), N [u]∩D 6= N [v]∩D. The symmetric difference
of two sets A and B is the set (A \B)∪ (B \A) and it is denoted by A△B. Thus,
A△B is the set of all those elements that belong either to A or to B but not to
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both. Two vertices u, v of a graph G are said to be separated by a subset D of
V (G) if the intersection of D with the symmetric difference of their neighborhood
is non-empty, that is, (N [u] ∩D)△(N [v] ∩D) = (N [u]△N [v]) ∩D 6= ∅. If a set
D is dominating as well as separating, then we say that D is an identifying code
of G. Naturally, identifying codes exist in a graph if and only if the graph is
twin-free, that is, for any two distinct vertices u, v ∈ V (G), N [u] 6= N [v]. The
minimum cardinality of an identifying code in a graph G is denoted by γID(G).
Given an identifying code C, vertices of C are called codewords.

There is no identifying code in Km, as it is not twin-free. A bipartite graph
is a graph whose vertices can be divided into two disjoint and independent sets
V1 and V2 such that every edge connects a vertex in V1 to one in V2. Vertex sets
V1 and V2 are usually called the parts/ cells of the graph.
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c b b b
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Figure 1. The graphs P4 and K3 Figure 2. An identifying code of P5 ×K5.

and their direct product P4 ×K3.

Given two graphs G and H, the direct product G×H (see Figure 1) is the graph
whose vertex set is the Cartesian product V (G)× V (H) and whose edge set is

E(G×H) = {(g1, h1)(g2, h2) : g1g2 ∈ E(G) and h1h2 ∈ E(H)}.

By dG(u, v), we denote the distance between the vertices u and v in a graph
G. Let V (Km) = {v0, v1, . . . , vm−1} and V (Pn) = {0, 1, 2, . . . , n − 1}. Let D
be a subset of V (Pn × Km). For 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1, we define
Ci = {(i, v) : v ∈ V (Km)} (ith column), R′

j = {(i, vj) : i ∈ V (Pn)} (jth row) (see
Figure 2), Di = Ci ∩D, Rj = R′

j ∩D, and ri(D) as follows.

r0(D) = {v : {(0, v), (1, v)} ∩D 6= ∅},
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ri(D) = {v : {(i− 1, v), (i, v), (i+ 1, v)} ∩D 6= ∅}, for 1 ≤ i ≤ n− 2,

rn−1(D) = {v : {(n− 2, v), (n− 1, v)} ∩D 6= ∅}.

Note that in all the given figures, the codewords are indicated by black circles.
The graphs with edges are illustrated in Figure 1. For ease, in all the remaining
figures, edges are avoided. For undefined terminology and notation, see West [27].

3. Necessary and Sufficient Conditions on a Set D to be an

Identifying Code of Pn ×Km

Before we proceed, we need some additional definitions, as well as some easy but
useful lemmas.

Lemma 1. A connected bipartite graph on at least three vertices is a twin-free

graph.

Proof. Let G be a connected bipartite graph with |V (G)| ≥ 3 and V (G) =
V1 ∪ V2. If u, v ∈ Vi (for i = 1, 2), then N [u] 6= N [v]. Let u ∈ V1 and v ∈ V2.
If N [u] = N [v] = {u, v}, then G would have more than two components. Now,
suppose there exists a vertex w, with w 6= u, v, such that w ∈ N [u]. Since G is
bipartite, w /∈ N [v]. Thus, G is twin-free.

Weichsel [26] proved the following result.

Theorem 2 [26]. Assume that G and H are finite, nontrivial connected graphs

in which loops are admitted. If at least one of G and H has an odd cycle, then

the direct product of G and H is connected.

By using Theorem 2, we state the following result.

Lemma 3. If G is a nontrivial, connected graph on at least three vertices such

that it has an odd cycle, then the direct product of G and Pn is connected.

Lemma 4. The direct product of any graph G on m vertices and a path Pn is a

bipartite graph.

Proof. Since Pn is bipartite, the graph Pn ×G is bipartite.

Lemma 5. If G is a nontrivial connected graph on at least three vertices such

that G has an odd cycle, then the direct product of G and a path Pn admits an

identifying code.

Proof. By Lemmas 3 and 4, Pn×G is a connected and bipartite graph. Also, by
Lemma 1, it is a twin-free graph. Hence, Pn ×G admits an identifying code.
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Lemma 6. The direct product of a complete graph Km (with m ≥ 3) and a path

Pn admits an identifying code.

Proof. The proof follows by Lemma 5.

Lemma 7. If a subset D of V (Pn×Km) is such that |Di| ≥ 2, for all 0 ≤ i ≤ n−1,
then D is dominating.

Proof. Any vertex, say (k, vj), of V (Pn ×Km) is adjacent to (k − (+)1, vq) for
0 ≤ k ≤ n− 1, 0 ≤ q, j ≤ m− 1, and q 6= j. Therefore, |Di| ≥ 2 for 0 ≤ i ≤ n− 1
gives D =

⋃n−1

i=0
Di as a dominating set of Pn ×Km.

In the following result, we provide a necessary condition on a set D to be an
identifying code of Pn ×Km.

Proposition 3.1. If D is an identifying code of Pn ×Km (with n,m ≥ 3), then
|ri(D)| ≥ m− 1 for 0 ≤ i ≤ n− 1.

Proof. Assume that |r0(D)| < m − 1, that is, there exist at least two ver-
tices, say v1, v2 ∈ V (Km), such that (0, v1), (1, v1), (0, v2), (1, v2) /∈ D. Then,
N [(0, v1)] ∩ D = N [(0, v2)] ∩ D, which is a contradiction to the fact that D is
identifying. Thus, |r0(D)| ≥ m − 1. By using a similar argument, we can prove
that |rn−1(D)| ≥ m− 1.

Now, assume that |ri(D)| < m − 1 for some 1 ≤ i ≤ n− 2, that is, there
exist at least two vertices, say v1, v2 ∈ V (Km), such that (i − 1, v1), (i, v1), (i +
1, v1), (i − 1, v2), (i, v2), (i + 1, v2) /∈ D. Then, N [(i, v1)] ∩ D = N [(i, v2)] ∩ D,
which is a contradiction to the fact that D is identifying. Thus, |ri(D)| ≥ m− 1
for 0 ≤ i ≤ n− 1.

Now, we provide a sufficient condition on a set D to be an identifying code
of Pn ×Km.

Proposition 3.2. If D ⊂ V (Pn ×Km) (for n ≥ 4, m ≥ 3) is such that |Di| ≥ 2
and |ri(D)| ≥ m − 1 for every 0 ≤ i ≤ n− 1, then D is an identifying code of
Pn ×Km.

Proof. By using Lemma 7, D is dominating. Because |Di| ≥ 2, columns Ci+1

and Ci−1 (if they exist) are dominated byD, thus two vertices in different columns
are separated if n ≥ 4. Now, assume that there exist two vertices (i, y) and (i, v)
such that N [(i, y)]∩D = N [(i, v)]∩D 6= ∅ for 0 ≤ i ≤ n−1. Since N [(i, y)]∩D =
N [(i, v)] ∩D and (i, y) and (i, v) are non-adjacent, both (i, y), (i, v) /∈ D. Also,
(i−1, y), (i+1, y), (i−1, v), (i+1, v) /∈ D (if they exist). Therefore, |ri(D)| < m−1,
which is a contradiction to our assumption that |ri(D)| ≥ m− 1. Thus, D is an
identifying code of Pn ×Km.
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4. Construction of an Identifying Code of Pn ×Km

In this section, we construct an identifying code of Pn × Km that gives us an
upper bound on γID(Pn ×Km).

For non-negative integers n,m, t, b, q with m,n ≥ 5, and 2 ≤ b ≤ m − 3, we
define D3q = {(3q, vj) : 0 ≤ j ≤ b − 1}, and D3q+1 = {(3q + 1, vj) : b+ 1 ≤
j ≤ m − 1}, so that |D3q ∪D3q+1| = m − 1. Using this, D is constructed in the
following manner.

1. For n = 6, D = {(1, vi), (4, vi) : 1 ≤ i ≤ m − 1} ∪ {(2, v1), (3, v1)} (see
Figure 3).

2. For n = 3t, t ≥ 3, D =
⋃t−1

q=0

(

D3q∪D3q+1

)

∪{(n−4, v0)}∪
(
⋃b−1

j=0
{(n−1, vj)}

)

(see Figure 4).

3. For n = 3t + 1, t ≥ 2, D =
⋃t−1

q=0
(D3q ∪D3q+1) ∪ {(n − 2, v0), (n − 2, v1)} ∪

(
⋃m−1

j=3
{(n− 1, vj)}

)

(see Figure 5).

4. For n = 3t+ 2, t ≥ 1, D =
⋃t

q=0

(

D3q ∪D3q+1

)

(see Figure 2, and 6).

Figures 2–6 illustrate the construction, for m = 5, and different values of n. Note
that in the above construction of D, b is the only parameter on which we will
play. For D to be dominating, we need b to be between 2 and m− 3. Later, we
shall see that the most interesting case is taking b as small as possible, that is,
b = 2. We will prove that D defined as above is an identifying code of Pn ×Km.

Figure 3. An identifying code of

P6 ×K5 with 10 codewords.

Figure 4. An identifying code of

P9 ×K5 with b = 2.

Figure 5. An identifying code of

P7 ×K5.

Figure 6. An identifying code of

P8 ×K5.

Theorem 8. For m,n ≥ 5, the set D is an identifying code of Pn ×Km. Hence,

for m,n ≥ 5, and t > 0,
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γID(Pn ×Km) ≤























2m if n = 6,

t(m− 1) + 3 if n = 3t, t ≥ 3,

(t+ 1)(m− 1) if n = 3t+ 1, t ≥ 2,

(t+ 1)(m− 1) if n = 3t+ 2, t ≥ 1.

Proof. It is easy to check that {(1, vi), (4, vi) : 1 ≤ i ≤ m− 1} ∪ {(2, v1), (3, v1)}
is an identifying code of P6 × Km (see Figure 3) of cardinality 2m. Therefore,
γID(P6 ×Km) ≤ 2m.

From now, assume that n 6= 6. First, we prove that all vertices of columns
C0, C1, and C2 are dominated and separated by D0, D1, and D3. Note that
D2 = ∅.

Since 2 ≤ b ≤ m− 3, |D0|, |D1| ≥ 2, which implies that all vertices of C1 are
dominated by D0 and all vertices of C0, and C2 are dominated by D1. Otherwise,
if b = 1, then (1, v0) is not dominated by D. Similarly, if b = m− 2/ m− 1, then
D is not identifying.

Now, we prove that any two vertices of C0 ∪C1 ∪C2, say (i, vj), and (k, vf ),
are separated (for 0 ≤ i, k ≤ 2, and 0 ≤ j, f ≤ m− 1).

Case 1. i = k. If one or both of {(i, vj), (k, vf )} lies in D, then they are
separated since they are non-adjacent to each other. Therefore, assume that both
are not in D.

Case 1.1. i = k = 0. If b ≤ f < j ≤ m − 1, then {(1, vj)} ⊆ (N [(0, vj)] △
N [(0, vf )]) ∩D.

Case 1.2. i = k = 1. If 0 ≤ f < j ≤ b, then {(0, vf )} ⊆ (N [(1, vj)] △
N [(1, vf )]) ∩D.

Case 1.3. i = k = 2. Similarly, the separation is done by D1 or D3. This
proves that any two vertices in one column are separated by D.

Case 2. i 6= k.

Case 2.1. Assume that dPn
(i, k) = 1. (i, vj) ∈ Ci and (k, vf ) ∈ Ck for i, k ∈

{0, 1, 2}. If (i, vj) ∈ C0 and (k, vf ) ∈ C1, then they are separated since |r0(D)| =
m − 1. If (i, vj) ∈ C1 and (k, vf ) ∈ C2, then they are separated since (k, vf ) is
adjacent to vertices in D3 that are non-adjacent to (i, vj).

Case 2.2. Assume that dPn
(i, k) = 2. Assume also that (i, vj) ∈ C0 and

(k, vf ) ∈ C2. They are separated since (k, vf ) is adjacent to vertices in D3, which
are non-adjacent to (i, vj).

Thus, all vertices of columns C0, C1, C2 are dominated and separated by
D0, D1, D3. By continuing the idea applied above, all vertices of C3, C4, C5

are identified by D3, D4, D6, and so on. It is easy to see that these groups of 3
columns must also be separated from one another (C2 from C3 or C2 from C4,
for instance).
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Case A. n = 3t, t ≥ 3. We have similarly applied the same idea to C0,
C1, C2, . . . , Cn−6, Cn−5, Cn−4. Here, the vertices in the last column Cn−1 are
selected as

⋃b−1

j=0
{(n− 1, vj)} and for separation of Cn−1 and Cn−3 one vertex is

selected as (n−4, v0). Thus, D =
⋃t−1

q=0
(D3q∪D3q+1)∪{(n−4, v0)}∪

(
⋃b−1

j=0
{(n−

1, vj)}
)

and |D| = t(m− 1) + b+ 1. In this case, we get the best value of |D| for
b = 2, that is, t(m− 1) + 3. Thus, γID(Pn ×Km) ≤ t(m− 1) + 3.

Case B. n = 3t + 1, t ≥ 2. We have similarly applied the same idea to
C0, C1, C2, . . . , Cn−4, Cn−3, Cn−2. Here, for the purpose of separation we modify
the selection of vertices of the last two columns Cn−2 and Cn−1 as {(n−2, v0), (n−
2, v1)} and

⋃m−1

j=3
{(n − 1, vj)}. So, D =

⋃t−1

q=0

(

D3q ∪D3q+1

)

∪ {(n − 2, v0), (n −

2, v1)}∪
(
⋃m−1

j=3
{(n−1, vj)}

)

. Thus, |D| = (t+1)(m−1). Thus, γID(Pn×Km) ≤
(t+ 1)(m− 1).

Case C. n = 3t + 2, t ≥ 1. Here also, we have similarly applied the same
idea to C0, C1, C2, . . . , Cn−5, Cn−4, Cn−3. To identify columns Cn−2 and Cn−1,
the vertices of D3t ∪ D3t+1 are selected. So, D =

⋃t
q=0

(D3q ∪ D3q+1). Thus,

|D| = (t+ 1)(m− 1). Thus, γID(Pn ×Km) ≤ (t+ 1)(m− 1).

5. Lower Bounds on the Size of an Identifying Code of Pn ×Km

In this section, we study lower bounds on the size of an identifying code of Pn×Km

(for m ≥ 5, and n ≥ 5). We frequently use Proposition 3.1 to find a lower bound
on |Di| (for 0 ≤ i ≤ n− 1).

Theorem 9. For m,n ≥ 5, and t > 0, γID(Pn × Km) ≥ (t + 1)(m − 1) if
n = 3t+ 1, and n = 3t+ 2.

Proof. Let D be an identifying code of Pn ×Km.

When n = 3t + 1, we write n = 2 + 3(t − 1) + 2. If we make a bunch
of three consecutive columns together, then there are t − 1 such bunches for
t > 1. Moreover, there are four extra columns, say two in the beginning and
two at the end. Now, by Proposition 3.1, |r0(D)| ≥ m − 1 gives |D0| + |D1| ≥
m− 1, |rn−1(D)| ≥ m − 1 gives |Dn−2| + |Dn−1| ≥ m− 1 and also, we get
|D3h−1| + |D3h| + |D3h+1| ≥ m− 1(for 1 ≤ h ≤ t− 1). Thus, when n = 3t + 1
and n ≥ 7, γID(Pn ×Km) ≥ (m− 1)+ (t− 1)(m− 1)+ (m− 1) = (t+1)(m− 1).

Now, consider n = 3t+2. In this case, we have t bunches (of three consecutive
columns together) and two extra columns in the beginning. Now, by Proposition
3.1, |r0(D)| ≥ m − 1 gives |D0| + |D1| ≥ m− 1, and also, we get |D3h−1| +
|D3h| + |D3h+1| ≥ m− 1(for 1 ≤ h ≤ t). Thus, when n = 3t + 2 and n ≥ 5,
γID(Pn ×Km) ≥ (m− 1) + t(m− 1) = (t+ 1)(m− 1).
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Figures 7–16 illustrate identifying codes of P15 ×K6.

Figure 7. An identifying code of
P15 ×K6 with 29 codewords.

Figure 8. An identifying code of
P15 ×K6 with 31 codewords.

Figure 9. An identifying code of
P15 ×K6 with 28 codewords.

Figure 10. An identifying code of
P15 ×K6 with 29 codewords.

Figure 11. An identifying code of
P15 ×K6 with 29 codewords.

Figure 12. An identifying code of
P15 ×K6 with 29 codewords.

Figure 13. An identifying code of
P15 ×K6 with 28 codewords.

Figure 14. An identifying code of
P15 ×K6 with 30 codewords.

Figure 15. An identifying code of
P15 ×K6 with 31 codewords.

Figure 16. An identifying code of
P15 ×K6 with 33 codewords.
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Now, in the following result, we provide different identifying codes when n = 3t,
for t ≥ 2. This constructive method also gives us the lower bound on the size of
an identifying code in the direct product Pn ×Km(for m ≥ 5, and n ≥ 6).

Theorem 10. For m,n ≥ 5 and positive integer t, in the direct product Pn×Km,

γID(P6 ×Km) ≥ 2m and γID(Pn ×Km) ≥ t(m− 1) + 3 when n = 3t, for n ≥ 9.

Proof. Let D be an identifying code of Pn × Km. Therefore, by Proposition
3.1, |ri(D)| ≥ m − 1 for 0 ≤ i ≤ n − 1. By using the idea applied in Theorem
9, |D| ≥ t(m − 1). To prove that |D| ≥ t(m − 1) + 3, it is enough to prove,
for instance, that in at least three bunches of three consecutive columns, each
bunch contains at least m codewords. Here, we consider the cases, depending
upon the cardinality of D0 and, then, we will move on step by step towards |Di|,
for 1 ≤ i ≤ n.

Case 1. If |D0| = 0, then |D1| ≥ m − 1. If |D1| = m (see Figure 7 for an
example), then D2 = ∅. To separate columns C0 and C2, at least two codewords
must lie in D3. Since |r3(D)| ≥ m − 1, |D4| must be greater than m − 3. Thus,
from column C5 onward, we apply the idea used in Theorem 8. If n = 3t, for
n ≥ 9, then |D| ≥ (0+m+0)+(2+m−3+0)+(2+m−3+0)+ · · ·+(2+m−3+
1)+(2+m−3+2) = t(m−1)+4. Thus, in this case, the first bunch and the last
two bunches have at least m codewords and the remaining t− 3 bunches have at
least m−1 codewords. If n = 6, then |D| ≥ (0+m+1)+(2+m−3+2) = 2m+2.

Now, let |D1| = m − 1. Thus, if (1, v0) /∈ D, to dominate it at least one
vertex of type (2, vj), for j 6= 0, must lie in D, say (2, v1). Therefore, |D2| ≥ 1.
Now, to separate columns C0 and C2, D3 must be non-empty.

Case 1.1. Assume that (3, v1) ∈ D. Thus, |D3| ≥ 1. Now, we need |r3(D)| ≥
m − 1 and |r4(D)| ≥ m − 1. So, if |D3| = 1, we get |D4| ≥ m − 2 and |D5| ≥ 0.
Similarly, if |D3| ≥ 2, we get |D4| ≥ m − 3 and |D5| ≥ 0. Now, to dominate
(4, v1), at least one of (3, vf ), (4, v1), (5, vf ) for 0 ≤ f ≤ m− 1 and f 6= 1 must lie
in D. If (4, v1) ∈ D (see Figure 8), then in the first three bunches, there are m
codewords when n ≥ 9. So, |D| ≥ t(m− 1) + 3. And if n = 6, then |D| ≥ 2m.

If say (5, v0) (see Figure 9) lies in D, then the first two bunches have m
codewords. Then, D6 = ∅. As |r6(D)|, |r7(D)| ≥ m − 1, |D7| ≥ m − 2 and
|D8| ≥ 1, say {(7, vi) : 2 ≤ i ≤ m − 1} ⊆ D and (8, v0) ∈ D. To dominate
(7, v0) either D6 6= ∅ or |D8| ≥ 2, which implies that third bunch also contains
m codewords when n ≥ 9. Therefore, |D| ≥ t(m − 1) + 3. And if n = 6, then
|D| ≥ 2m.

If say (3, v0) (see Figure 10) lies in D, |D3| ≥ 2 and we need |D4| ≥ m − 3.
For n = 6, we select (5, v0), (5, v1) ∈ D, which implies that |D| ≥ 2m+ 1. Thus,
for n 6= 9, if (3, v0) lies in D, then only m−3 vertices of D4 are enough to identify
vertices of columns C3, C4, C5. Now, continue in this manner. Thus, from column
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C6 onward we apply the idea used in Theorem 8. We get that if n = 3t, for n ≥ 9,
then |D| ≥ (0 +m− 1 + 1) + (2 +m− 3 + 0) + (2 +m− 3 + 0) + · · ·+ (2 +m−
3 + 1) + (2 +m− 3 + 2) = t(m− 1) + 4.

Case 1.2. If (3, v1) /∈ D, then to separate columns C0 and C2, at least
two codewords must lie in D3, say (3, v0), (3, v2) ∈ D. Since |r3(D)| ≥ m − 1,
|D4| ≥ m− 4. If |D4| = m− 4, say {(4, vi) : 3 ≤ i ≤ m− 2} ⊂ D, then for m ≥ 6,
one of (5, v1), (5, vm−1) must lie in D since |r4(D)| ≥ m− 1 (see Figure 11), say
(5, v1) ∈ D. Similarly, we get the pattern (0+(m−1)+1)+(2+(m−4)+1)+(2+
(m−4)+1)+ · · ·+(2+(m−4)+1)+(2+(m−4)+4) = t(m−1)+4. Therefore,
|D| ≥ t(m − 1) + 4. If m = 5, then |D4| = m − 3, if |D4| = m − 4 = 1, that is
(4, v3) ∈ D, then (3, v3) and (1, v0) are not separated by D. If |D4| = m− 3, say
{(4, vi) : 3 ≤ i ≤ m − 1} ⊂ D, then D5 = ∅ (see Figure 12). In a similar way,
we get the pattern (0 + (m − 1) + 1) + (2 + (m − 3) + 0) + (2 + (m − 3) + 0) +
· · · + (2 + (m − 3) + 0) + (2 + (m − 3) + 1) + (2 + (m − 3) + 2) = t(m − 1) + 4.
Therefore, |D| ≥ t(m− 1) + 4.

Case 2. Consider |D0| = 1 (see Figure 13). Assume that (0, v0) ∈ D. Then,
|D1| ≥ m− 2, say {(1, vi) : 2 ≤ i ≤ m− 1} ⊆ D.

Case 2.1. To dominate (1, v0), say (2, v1) ∈ D. Therefore, |D2| ≥ 1. Now,
to separate vertices of columns C0 and C2, |D3| ≥ 1, say (3, v0), lie in D. Now
onward by continuing the idea of Theorem 8 we get, |D| ≥ (1+m−2+1)+(1+m−
2+1)+· · ·+(1+m−2+1)+(1+m−2+3). Therefore, |D| ≥ tm+2 ≥ t(m−1)+4
for all t ≥ 2. We will get D with same cardinality if (3, v1) is selected instead of
(3, v0). If we select (3, vf ), f /∈ {0, 1}, then to separate C0 and C2, at least two
vertices of C3 must lie in D. In this case, |D| ≥ (1 +m− 2 + 1) + (2 +m− 3 +
0) + · · ·+ (2 +m− 3 + 0) + (2 +m− 3 + 1) + (2 +m− 3 + 2) = t(m− 1) + 4.

Case 2.2. To dominate (1, v0), if (1, v0) ∈ D, then |D1| ≥ m − 1. Then,
to separate vertices of columns C0 and C2, (3, v0) must lie in D. Now onward
by continuing the idea of Theorem 8 we get, |D| ≥ (1 +m − 1 + 0) + (1 +m −
1 + 0) + · · · + (1 +m − 1 + 0) + (1 +m − 1 + 1) + (1 +m − 1 + 0). Therefore,
|D| ≥ tm+ 1 ≥ t(m− 1) + 3 for all t ≥ 2.

Case 3. |D0| = b, for 2 ≤ b ≤ m− 3 (m 6= 5), and b is an integer.
In this case, we getD as in Case A of Theorem 8 where |D| = t(m−1)+b+1 ≥

t(m− 1) + 3.

Case 4. If |D0| = m−2, then |D1| ≥ 1 (see Figure 14). Assume that {(0, vj) :
0 ≤ j ≤ m−3} ⊆ D and (1, vm−2) ∈ D1. To dominate (0, vm−2), one more vertex
of C1 must lie in D. Therefore, |D1| ≥ 2. Since |r1(D)|, |r2(D)|, |r3(D)| ≥ m− 1,
we obtain |D2| ≥ 0, |D3| ≥ m − 3, |D4| ≥ 2, and |D5| ≥ 0. From now on, by
continuing the idea of Theorem 8 we get |D| ≥ (m−2+2+0)+(m−3+2+0)+· · ·+
(m−3+2+1)+(m−3+2+m−3). Therefore, |D| ≥ (t+1)(m−1) ≥ t(m−1)+4.
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Case 5. If |D0| = m − 1, then |D1| ≥ 0 (see Figure 15). Assume that
{(0, vj) : 0 ≤ j ≤ m − 2} ⊆ D. To dominate (0, vm−1), say (1, vm−2), which lies
in D, therefore, |D1| ≥ 1. Now, the fact that |r2(D)|, |r3(D)|, |r4(D)| ≥ m− 1
gives |D3| ≥ m − 2, |D4| ≥ 1, and |D5| ≥ 0 (for n 6= 6). Assume that {(3, vj) :
0 ≤ j ≤ m − 3} ⊆ D and (4, vm−2) ∈ D. To separate (2, vm−2) and (4, vm−1)
and to dominate (3, vm−2), (4, vm−1) must lie in D. Therefore, we get |D4| ≥ 2.
For n = 6, we choose {(5, vj) : 0 ≤ j ≤ m − 4} ⊆ D and (2, v0) to make D
identifying. For n ≥ 9, |r7(D)| ≥ m− 1 and we obtain |D6| ≥ m − 3, |D7| ≥ 2,
and |D8| ≥ 0. From now on, we apply the idea used in Theorem 8. We get the
following results. If n = 3t, for n ≥ 9, then |D| ≥ (m − 1 + 1 + 0) + (m − 2 +
2 + 0) + (m − 3 + 2 + 0) + · · · + (m − 3 + 2 + 1) + (m − 3 + 2 +m − 3). Thus,
|D| ≥ t(m− 1) +m ≥ t(m− 1) + 5.

If n = 6, then |D| ≥ (m − 1 + 1 + 1) + (m − 2 + 2 + m − 3). Thus, |D| ≥
3m− 2 ≥ 2m.

Case 6. Consider |D0| = m (see Figure 16). Since |r2(D)| ≥ m − 1 and
|D1| = 0, |D2| = 0, |D3| ≥ m− 1, say {(3, vj) : 0 ≤ j ≤ m− 2} ⊆ D.

Case 6.1. If |D3| = m, then D4 = ∅, and to separate columns C2 and C4,
we need |D5| ≥ 2. Since |r5(D)| ≥ 5, |D6| ≥ m− 3. From now on, we apply the
idea used in Theorem 8. We get the following results. If n = 3t, for n ≥ 9, then
|D| ≥ (m+0+0)+(m+0+2)+(m−3+0+2)+· · ·+(m−3+0+2)+(m−3+0+m) =
t(m− 1) + 2 +m.

Case 6.2. If |D3| = m− 1, then for n = 6, we choose {(3, vj) : 0 ≤ j ≤ m−2},
{(5, vj) : 0 ≤ j ≤ m − 2}, and (4, vm−2) in D. Thus, |D| ≥ m + (m − 1) + 1 +
(m− 1) ≥ 2m.

For n = 3t, for n ≥ 9, to dominate (3, vm−1), say (4, vm−2) ∈ D. To separate
columns C2 and C4, say (5, vm−2) ∈ D (here, we proceed as in Case 1.2). So,
|D| ≥ (m+0+0)+ (m− 1+1+1)+ (m− 2+1+0)+ (m− 2+2+0)+ (m− 3+
2+ 0)+ · · ·+ (m− 3+ 2+ 0)+ (m− 3+ 2+ 1)+ (m− 3+ 2+m− 3). Therefore
|D| ≥ (t+ 1)(m− 1) + 3.

If n = 6, then |D| ≥ (m+ 0 + 0) + (m− 1 + 1 +m). Therefore, |D| ≥ 3m.

After comparing all the cases, we observe that in Case 3 (for n ≥ 9), if we take
b = 2, we get the smallest value of |D|. Hence, γID(Pn×Km) ≥ t(m−1)+3 when
n = 3t, for n ≥ 9. Similarly, by using Case 1.1, we conclude that γID(P6 ×Km)
≥ 2m.

6. Identifying Codes of P3 ×Km and P4 ×Km

In this section, we study the identifying codes of Pn ×Km for small values of n.
While studying identifying codes of P3 ×Km, we will discuss the necessary and
sufficient conditions as well.
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First, we prove a necessary condition for a subset D of V (P3 × Km), for
m ≥ 3, to be an identifying code.

Theorem 11. For m ≥ 3, if a subset D of V (P3×Km) is identifying, then all the

sets Rj are non-empty. Moreover, at most one row with one codeword, say Ri,

is such that (0, vi) ∈ Ri or (2, vi) ∈ Ri and, hence, |Rj | ≥ 2, (for 0 ≤ j ≤ m− 1,
and j 6= i). Thus, γID(P3 ×Km) ≥ 2m− 1.

Proof. Assume that there exists one Ri, say R0, such that |R0| = 0, that is,
(0, v0), (1, v0), (2, v0) /∈ D. Then, N [(0, v0)] ∩D = N [(2, v0)] ∩D. Therefore, all
Ri must be non-empty. In fact, if there is any Ri with |Ri| = 1, then it must
contain either (0, vi) or (2, vi). Otherwise if it is (1, vi), then, N [(0, vi)] ∩ D =
N [(2, vi)] ∩D.

Now, suppose there exist two Ri, say R1 and R2, such that |R1| = |R2| = 1.
Then, either (0, v1) ∈ D or (2, v1) ∈ D. Similarly, either (0, v2) ∈ D or (2, v2) ∈D.

Case 1. If (0, v1), (0, v2) ∈ D. That is, (1, v1), (2, v1), (1, v2), (2, v2) /∈ D,
which gives N [(2, v1)] ∩D = N [(2, v2)] ∩D.

Case 2. If (2, v1), (2, v2) ∈ D. This case is similar to Case 1 by symmetry.

Case 3. If (0, v1), (2, v2) ∈ D. That is, (1, v1), (2, v1), (0, v2), (1, v2) /∈ D,
which gives N [(2, v1)] ∩D = N [(0, v2)] ∩D.

Therefore, there is at most one Ri, which contains only one codeword. Hence,
all the remaining Ri have at least two elements of D.

Thus, γID(P3 ×Km) ≥ 2m− 1.

The above condition is necessary but not sufficient for example, see Figure 18.

We now prove a sufficient condition for a subset D of V (P3×Km), for m ≥ 3,
to be an identifying code.

Theorem 12. For m ≥ 3, if a subset D of V (P3 ×Km) is such that for exactly

one i, |Ri| = 1, which contains either (0, vi) or (2, vi), |Rj | ≥ 2 (for 0 ≤ j ≤
m− 1, and j 6= i) and |Df | ≥ 2 for 0 ≤ f ≤ 2, then D is identifying.

Proof. By using Lemma 7, D is dominating. Without loss of generality, assume
that |R0| = 1, say (0, v0) ∈ R0 and |Rf | ≥ 2 for 1 ≤ f ≤ m− 1. Let (i, vj), (k, vl)
be any two vertices of P3 ×Km.

Case 1. i = k. If both or one of (i, vj) and (k, vl) belong to D, then they
are separated by D since they are non-adjacent. Therefore, assume that (i, vj),
(k, vl) /∈ D.

Case 1.1. i = k = 0. For 1 ≤ j < l ≤ m − 1, (1, vl), (1, vj) ∈ (N [(i, vj)] △
N [(k, vl)]) ∩D.
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Case 1.2. i = k = 2. For 0 ≤ j < l ≤ m− 1, (1, vl) ∈ (N [(i, vj)]△N [(k, vl)])
∩D.

Case 1.3. i = k = 1. For 0 ≤ j < l ≤ m − 1, (0, vl), (0, vj), (2, vl) ∈
(N [(i, vj)]△N [(k, vl)]) ∩D.

Case 2. i 6= k.

Case 2.1. dP3
(i, k) = 1. If vj = vl, then they are separated since N [(i, vj)] ∩

N [(k, vl)] = ∅. If vj 6= vl, then for i = 0 and k = 1, one vertex in D2 separates
them. If vj 6= vl, then for i = 2 and k = 1, one vertex in D0 separates them.

Case 2.2. dP3
(i, k) = 2. Without loss of generality, assume that i = 0 and

k = 2. If both or one of (0, vj) and (2, vl) belong to D, then they are separated by
D since they are non-adjacent. Therefore, assume that (0, vj), (2, vl) /∈ D, which
implies that j 6= l. In this case, (1, vj) or (1, vl) ∈ (N [(0, vj)]△N [(2, vl)]) ∩D.

Thus, D is separating and, hence, identifying.

Figure 17. An identifying

code of P3 ×K5.

Figure 18. An example
showing that a necessary
condition for P3 ×Km

is not sufficient.

Figure 19. An identifying

code of P4 ×K5.

We now obtain γID(P3 ×Km) and γID(P4 ×Km).

Theorem 13. For m ≥ 3, γID(P3 ×Km) = 2m− 1.

Proof. By Theorem 11, γID(P3 × Km) ≥ 2m− 1. For m = 3, D = {(0, v0),
(0, v1), (1, v1), (1, v2), (2, v2)} is an identifying code of P3 ×K3 of cardinality 5.

For m ≥ 4, by using Theorem 12, it can be easily observed that, a sub-
set D = {(0, v0), (0, v1), (1, v2), . . . , (1, vm−1), (2, v1), (2, v2), . . . , (2, vm−1)} is an
identifying code of P3×Km of cardinality 2m−1. Thus, γID(P3×Km) = 2m−1
(see Figure 17).

Theorem 14. For m ≥ 5, γID(P4 ×Km) = 2m− 2.

Proof. In P4 × Km, by Proposition 3.1, the conditions |r0(D)| ≥ m − 1 and
|r3(D)| ≥ m−1 give γID(P4×Km) ≥ 2m− 2. Also, by Proposition 3.2, the subset
D = {(0, v0), (0, v1), (2, v0), (2, v1)} ∪

⋃m−2

i=2
{(1, vi), (3, vi)} is an identifying code

of P4 × Km of cardinality 2m − 2. Thus, γID(P4 × Km) = 2m − 2 (see Figure
19).

Remark. For m ≥ 5, the number of codewords required to identify P4 ×Km is
one less than that needed to identify P3 ×Km.
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7. Identifying Codes of Pn ×K4 and Pn ×K3.

In this section, we provide identifying codes of Pn ×K4 and necessary condition
on a subset D to be an identifying code of Pn ×K4 and Pn ×K3. By using this
condition, we derive a lower bound on γID(Pn ×K4) and that of Pn ×K3.

In the following result, we provide a subset D of V (P4×K4). It can be easily
observed that the set D is dominating and separating.

Theorem 15. γID(P4 ×K4) = 7.

Proof. By using Proposition 3.1, γID(P4 × K4) ≥ 6. It can be easily verified
that a set of any six vertices of P4 ×K4 satisfying the necessary condition does
not separate all vertices of P4×K4. So, γ

ID(P4×K4) ≥ 7. The set D = {(0, v0),
(0, v1), (1, v2), (1, v3), (2, v1), (2, v2), (2, v3)} is an identifying code of P4 × K4 of
cardinality 7 (see Figure 20).

Figures 20–29 illustrate identifying codes of Pn×K4 for different values of n.

Figure 20. An identifying

code of P4 ×K4.

Figure 21. An identifying

code of P5 ×K4.

Figure 22. An identifying

code of P6 ×K4.

Figure 23. An identifying

code of P7 ×K4.

Figure 24. An identifying

code of P8 ×K4.

Figure 25. An identifying

code of P9 ×K4.

Figure 26. An identifying code

of P10 ×K4.

Figure 27. An identifying code

of P15 ×K4.

Figure 28. An identifying code
of P16 ×K4.

Figure 29. An identifying code
of P17 ×K4.
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Theorem 16. For n ≥ 5,

γID(Pn ×K4) ≤































4t if n = 3t, t ≥ 2,

4t+ 2 if n = 3t+ 1, t = 2, 3,

4t+ 1 if n = 3t+ 1, t ≥ 4,

4t+ 4 if n = 3t+ 2, t = 1,

4t+ 3 if n = 3t+ 2, t ≥ 2.

Proof. It is easy to check that following codes are identifying of Pn ×K4.

Case 1. For n = 3t, with n ≥ 6, {(0, v1), (1, v2), (1, v3), (2, v0), (3, v0), (4, v2),
(4, v3), (5, v1), (7, v2), (7, v3), (8, v0), (8, v1), (10, v2), (10, v3), (11, v0), (11, v1), . . . ,
(3t−2, v2), (3t−2, v3), (3t−1, v0), (3t−1, v1)} is an identifying code of cardinality
4t (see Figure 22, 25, and 27).

Case 2. For n = 7, {(0, v1), (1, v2), (1, v3), (2, v0), (3, v0), (4, v2), (4, v3), (5, v1),
(6, v0), (6, v2)} is an identifying code of cardinality 10 (see Figure 23).

For n = 10, {(0, v1), (1, v2), (1, v3), (2, v0), (3, v0), (4, v2), (4, v3), (5, v1), (6, v3),
(7, v2), (7, v3), (8, v0), (8, v1), (9, v2)} is an identifying code of cardinality 14 (see
Figure 26).

For n = 3t + 1, with n ≥ 13, {(0, v1), (1, v2), (1, v3), (2, v0), (3, v0), (4, v2),
(4, v3), (5, v1), (7, v2), (7, v3), (8, v0), (8, v1), . . . , (3t−5, v2), (3t−5, v3), (3t−4, v0),
(3t−4, v1), (3t−3, v3), (3t−2, v3), (3t−1, v0), (3t−1, v1), (3t, v2)} is an identifying
code of cardinality 4t+ 1 (see Figure 28).

Case 3. For n = 5, {(1, v0), (1, v1), (1, v2), (1, v3), (3, v0), (3, v1), (3, v2), (3, v3)}
is an identifying code of cardinality 8 (see Figure 21).

For n = 8, {(0, v1), (1, v2), (1, v3), (2, v0), (3, v1), (3, v2), (4, v2), (5, v3), (6, v0),
(6, v1), (7, v2)} is an identifying code of cardinality 11 (see Figure 24).

For n = 3t + 2, with n ≥ 11, {(0, v1), (1, v2), (1, v3), (2, v0), (3, v0), (4, v2),
(4, v3), (5, v1), (7, v2), (7, v3), (8, v0), (8, v1), . . . , (3t−2, v2), (3t−2, v3), (3t−1, v0),
(3t−1, v1), (3t, v1), (3t, v3), (3t+1, v2)} is an identifying code of cardinality 4t+3
(see Figure 29).

Theorem 17. If a subset D of V (Pn×K4), for n ≥ 5, is a minimum identifying

code, then |ri(D)| ≥ 3 for 0 ≤ i ≤ n − 1 and |D3q ∪D3q+1 ∪ D3q+2| ≥ 4 for all

0 ≤ q <
⌊

n
3

⌋

.

Proof. If n = 5, 6, 7, and 8, it is easy to check that the result holds (see Figure
21–24). Therefore, in this proof, we assume that n ≥ 9.

The proof of |ri(D)| ≥ 3 follows from Proposition 3.1. Since |ri(D)| ≥ 3 (for
0 ≤ i ≤ n−1), |D3q ∪D3q+1∪D3q+2| ≥ 3 for all 0 ≤ q <

⌊

n
3

⌋

. In Theorem 16, we
constructed an identifying code B in Pn×K4 such that |B3q∪B3q+1∪B3q+2| = 4
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for all 0 ≤ q <
⌊

n
3

⌋

. Therefore, to prove that for an identifying code D in Pn×K4,
|D3q ∪D3q+1 ∪D3q+2| ≥ 4 for all 0 ≤ q <

⌊

n
3

⌋

, it is enough to prove that if there
exists one q such that |D3q ∪D3q+1∪D3q+2| = 3, then either D is not identifying,
or D is identifying with cardinality more than that of Theorem 16. Thus, assume
that there exists one q such that 0 ≤ q <

⌊

n
3

⌋

and |D3q ∪ D3q+1 ∪ D3q+2| = 3.
If q = 0 or q =

⌊

n
3

⌋

− 1, then D is not even dominating. So, assume that
1 ≤ q ≤

⌊

n
3

⌋

− 2.
In each of the following cases, k1 + k2 + k3 = 3, where either |D3q| = k1,

|D3q+1| = k2, and |D3q+2| = k3 or |D3q| = k3, |D3q+1| = k2, and |D3q+2| = k1.
We apply the same technique for the construction of D in both cases. Here, we
discuss only one of them. Moreover, while placing vertices of D3q∪D3q+1∪D3q+2,
|r3q+1(D)| ≥ 3 is considered in every case.

r1(D) r4(D) r3q+1(D) r
3⌊n

3
⌋−2

(D)

C1 C3q−2 C3q+1 C3q+4 C
3⌊n

3
⌋−2

Figure 30. An identifying code of P3t ×K4.

Case 1. |D3q| = 3, |D3q+1| = 0, and |D3q+2| = 0, say (3q, v0), (3q, v1), (3q, v2)
∈ D (see Figure 30). In this case, to dominate (3q, v3) at least one of {(3q−1, vi) :
0 ≤ i ≤ 2} must lie in D, say (3q − 1, v2) ∈ D. To separate columns C3q−1

and C3q+1, either (3q − 2, v2) ∈ D or |D3q−2| ≥ 2. If (3q − 2, v2) ∈ D, then
|D3q−3| ≥ 2 since |r3q−2(D)| ≥ 3, which implies that |D3q−3 ∪D3q−2 ∪D3q−1| ≥
4. If (3q − 2, v2) /∈ D, then to separate C3q−1 and C3q+1, |D3q−2| ≥ 2, say
{(3q−2, v1), (3q−2, v3)} ⊆ D. To dominate (3q−2, v2), |D3q−3| ≥ 1, which implies
that |D3q−3 ∪ D3q−2 ∪ D3q−1| ≥ 4. By continuing in this manner, we get that
|D3s−3∪D3s−2∪D3s−1| ≥ 4 for all 1 ≤ s ≤ q−1 and |D0∪D1∪D2| ≥ 5. Similarly,
since |r3q+2(D)| ≥ 3, |D3q+3| ≥ 3, say {(3q + 3, vi) : 0 ≤ i ≤ 2} ⊆ D. Then, to
dominate (3q + 3, v3), |D3q+4| ≥ 1, say (3q + 4, v2) ∈ D. To separate columns
C3q+2 and C3q+4, |D3q+5| ≥ 1, which implies that |D3q+3 ∪D3q+4 ∪D3q+5| ≥ 5.
By continuing in this manner, we get that |D3s ∪ D3s+1 ∪ D3s+2| ≥ 4 for all

q+2 ≤ s ≤
⌊

n
3

⌋

−2. If n = 3t, for n ≥ 12, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7

and, therefore, |D| ≥ 4t + 4. If n = 9, |D| ≥ 15. If n = 3t + 1, for n ≥ 10, then
|D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

| ≥ 7, and |D| ≥ 4t+4. If n = 3t+2, for n ≥ 11, then
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∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 4, |rn−1(D)| ≥ 4, in which case |D| ≥ 4t+ 5.

Case 2. |D3q| = 0, |D3q+1| = 3, and |D3q+2| = 0, say (3q + 1, v0), (3q +
1, v1), (3q + 1, v2) ∈ D. In this case (3q + 1, v3) is not dominated by D.

Case 3. |D3q| = 1, |D3q+1| = 2, and |D3q+2| = 0, say (3q, v0), (3q+1, v1), (3q+
1, v2) ∈ D. In this case (3q + 1, v0) is not dominated by D.

r1(D) r4(D) r3q+1(D) r
3⌊n

3
⌋−2

(D)

C1 C3q−2 C3q+1 C3q+4 C
3⌊n

3
⌋−2

Figure 31. An identifying code of P3t+1 ×K4.

Case 4. |D3q| = 1, |D3q+1| = 1, and |D3q+2| = 1, say (3q, v0), (3q+1, v1), (3q+
2, v2) ∈ D. By following the procedure used in Case 1 (see Figure 31),
|D0 ∪D1 ∪D2| ≥ 7, |D3s ∪D3s+1 ∪D3s+2| ≥ 4 for 1 ≤ s ≤ q− 1 and q+ 1 ≤ s ≤
⌊

n
3

⌋

− 2. If n = 3t, for n ≥ 9, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7, and |D| ≥

4t + 5. If n = 3t + 1, for n ≥ 10, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7, and

|D| ≥ 4t+ 5. If n = 3t+ 2, for n ≥ 11, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 4,

and |rn−1(D)| ≥ 4, in which case |D| ≥ 4t+ 6.

r1(D) r4(D) r3q+1(D) r
3⌊n

3
⌋−2

(D)

C1 C3q−2 C3q+1 C3q+4 C
3⌊n

3
⌋−2

Figure 32. An identifying code of P3t+2 ×K4.
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Case 5. |D3q| = 2, |D3q+1| = 1, and |D3q+2| = 0, say (3q, v0), (3q, v1), (3q +
1, v2) ∈ D. By following the procedure used in Case 1 (see Figure 32),
|D0 ∪D1 ∪D2| ≥ 7, |D3s ∪D3s+1 ∪D3s+2| ≥ 4 for 1 ≤ s ≤ q− 1 and q+ 1 ≤ s ≤
⌊

n
3

⌋

− 2. If n = 3t, for n ≥ 9, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7, and |D| ≥

4t + 5. If n = 3t + 1, for n ≥ 10, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7, and

|D| ≥ 4t+ 5. If n = 3t+ 2, for n ≥ 11, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 4,

and |rn−1(D)| ≥ 4, in which case |D| ≥ 4t+ 6.

r1(D) r4(D) r3q+1(D) r
3⌊n

3
⌋−2

(D)

C1 C3q−2 C3q+1 C3q+4 C
3⌊n

3
⌋−2

Figure 33. An identifying code of P3t ×K4.

Case 6. |D3q| = 2, |D3q+1| = 0, and |D3q+2| = 1, say (3q, v0), (3q, v1), (3q +
2, v2) ∈ D. By following the procedure used in Case 1 (see Figure 33),
|D0 ∪D1 ∪D2| ≥ 6, |D3s ∪D3s+1 ∪D3s+2| ≥ 4 for 1 ≤ s ≤ q− 1 and q+ 1 ≤ s ≤
⌊

n
3

⌋

− 2. If n = 3t, for n ≥ 9, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7, and |D| ≥

4t + 4. If n = 3t + 1, for n ≥ 10, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 7, and

|D| ≥ 4t+ 4. If n = 3t+ 2, for n ≥ 11, then
∣

∣

∣
D⌊n

3
⌋−3

∪D⌊n

3
⌋−2

∪D⌊n

3
⌋−1

∣

∣

∣
≥ 4,

and |rn−1(D)| ≥ 4, in which case |D| ≥ 4t+ 5.

Theorem 18. For n ≥ 5,

γID(Pn ×K4) ≥































4t if n = 3t, t ≥ 2,

4t+ 2 if n = 3t+ 1, t = 2, 3,

4t+ 1 if n = 3t+ 1, t ≥ 4,

4t+ 4 if n = 3t+ 2, t = 1,

4t+ 3 if n = 3t+ 2, t ≥ 2.

Proof. Assume that D is a minimum identifying code of Pn × K4. Then, by

Theorem 17, |ri(D)| ≥ 3 for 0 ≤ i ≤ n−1 and
∣

∣

∣

⋃3q+2

j=3q Dj

∣

∣

∣
≥ 4 for all 0 ≤ q <

⌊

n
3

⌋

.
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Case 1. If n = 3t, for n ≥ 6, then |D| ≥ 4t.

Case 2. If n = 3t + 1, for n ≥ 7. In this case, if 0 ≤ |Dn−2| ≤ 2, then
|Dn−1| ≥ 1 since |rn−1(D)| ≥ 3. Thus, |D| ≥ 4t+ 1. It is easy to check that for
t = 2, and 3, |D| ≥ 4t+ 2.

Case 2.1. If |Dn−2| = 3, then the necessary condition rn−1(D) is satisfied.
So, Dn−1 may remain empty.

Case 2.1.1. Assume that (n − 2, v0), (n − 2, v1), (n − 2, v2), (n − 3, v3) ∈ D.
To separate vertices of columns Cn−1 and Cn−3, |Dn−4| ≥ 1. To cover (n−2, v3),
either |Dn−1| ≥ 1 or |Dn−3| ≥ 2. Thus, |D| ≥ 4t+ 2.

Case 2.1.2. Assume that (n − 2, v0), (n − 2, v1), (n − 2, v2), (n − 3, v2) ∈ D.
To separate vertices of columns Cn−1 and Cn−3, (n− 4, v2) ∈ D. Thus, |Dn−4 ∪
Dn−3 ∪Dn−2| ≥ 5. Similarly, |D3q ∪D3q+1 ∪D3q+2| ≥ 4 for all 1 ≤ q ≤

⌊

n
3

⌋

− 1.
Similarly, |D0 ∪D1 ∪D2| ≥ 6. So, |D| ≥ 4t+ 3.

Case 2.1.3. Assume that (n − 2, v0), (n − 2, v1), (n − 2, v2), (n − 4, v2) ∈ D.
To cover (n− 2, v3), |Dn−1| ≥ 1, say (n− 1, v2). Thus, |D3q ∪D3q+1 ∪D3q+2| ≥ 4
for all 1 ≤ q ≤

⌊

n
3

⌋

. Similarly, |D0 ∪D1 ∪D2| ≥ 6. So, |D| ≥ 4t+ 3.

Case 2.2. |Dn−2| = 4. Then, |Dn−1| ≥ 0. To separate vertices of columns
Cn−1 and Cn−3, |Dn−4| ≥ 2. Thus, |Dn−4 ∪Dn−3 ∪Dn−2| ≥ 6. So, |D| ≥ 4t+ 2.

Case 3. If n = 3t+ 2, for n ≥ 5, then |D| ≥ 4t+ |rn−1(D)| ≥ 4t+ 3. When
t = 1, it can be easily checked that a set of any seven vertices of P5×K4 satisfying
the necessary condition (Theorem 17) is not separating all vertices of P5 × K4.
Therefore, when t = 1, |D| ≥ 8.

Now, we will discuss the case of Pn×K3. Figures 34–39 illustrate identifying
codes of Pn ×K3 for different values of n.

Figure 34. An identifying code

of P4 ×K3.

Figure 35. An identifying code

of P5 ×K3.

Figure 36. An identifying code
of P16 ×K3.

Figure 37. An identifying code
of P17 ×K3.
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Figure 38. An identifying code
of P18 ×K3.

Figure 39. An identifying code
of P14 ×K3.

By using the idea applied in Theorem 17, we state the following result without
proof.

Theorem 19. If a subset D of V (Pn×K3), for n ≥ 4, is a minimum identifying

code, then |ri(D)| ≥ 2 for 0 ≤ i ≤ n−1 and |Dq∪Dq+1∪Dq+2∪Dq+3∪Dq+4| ≥ 6
for all 0 ≤ q ≤ n− 5.

By Theorem 19 and by using the idea applied in Theorem 18, we state the
following result without proof.

Theorem 20. For n ≥ 4,

γID(Pn ×K3) ≥











5 if n = 4,

6t if n = 5t, t ≥ 1,

6t+ i+ 1 if n = 5t+ i, t ≥ 1, 1 ≤ i ≤ 4.

Theorem 21. For n ≥ 4,

γID(Pn ×K3) ≤











5 if n = 4,

6t if n = 5t, t ≥ 1,

6t+ i+ 1 if n = 5t+ i, t ≥ 1, 1 ≤ i ≤ 4.

Proof. It is easy to check that the given codes are identifying in Pn ×K3.

Case 1. If n = 5t, then D =
⋃t−1

j=0
{(5j + 1, v0), (5j + 1, v1), (5j + 1, v2), (5j +

3, v0), (5j + 3, v1), (5j + 3, v2)} is an identifying code of cardinality 6t (see Fig-
ure 35).

Case 2. If n = 5t + 1, then D =
⋃t−2

j=0
{(5j + 1, v0), (5j + 1, v1), (5j + 1, v2),

(5j + 3, v0), (5j + 3, v1), (5j + 3, v2)} ∪ {(5t− 4, v0), (5t− 4, v1), (5t− 4, v2), (5t−
2, v1), (5t− 2, v2), (5t− 1, v1), (5t− 1, v2), (5t, v0)} is an identifying code of cardi-
nality 6t+ 2 (see Figure 36).

Case 3. If n = 5t+2, thenD =
⋃t−1

j=0
{(5j+1, v0), (5j+1, v1), (5j+1, v2), (5j+

3, v0), (5j+3, v1), (5j+3, v2)}∪{(5t+1, v0), (5t+1, v1), (5t+1, v2)} is an identifying
code of cardinality 6t+ 3 (see Figure 37).

Case 4. If n = 5t+3, thenD =
⋃t−1

j=0
{(5j+1, v0), (5j+1, v1), (5j+1, v2), (5j+

3, v0), (5j + 3, v1), (5j + 3, v2)} ∪ {(5t − 1, v0), (5t, v0), (5t + 1, v0), (5t + 1, v1)} is
an identifying code of cardinality 6t+ 4 (see Figure 38).
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Case 5. If n = 5t+4, thenD =
⋃t−1

j=0
{(5j+1, v0), (5j+1, v1), (5j+1, v2), (5j+

3, v0), (5j+3, v1), (5j+3, v2)}∪{(5t+1, v0), (5t+1, v1), (5t+2, v1), (5t+2, v2), (5t+
3, v2)} is an identifying code of cardinality 6t+ 5 (see Figure 34, and 39).

We summarize our results in the following table.

n m γID(Pn ×Km)

n = 3 m ≥ 3 2m− 1[Theorem 6.1, 6.3]

n = 4 m ≥ 5 2m− 2[Theorem 6.4]

n = 6 m ≥ 5 2m[Theorem 4.1, 5.2]

n = 3t, n ≥ 9 m ≥ 5 n
3 (m− 1) + 3[Theorem 4.1, 5.2]

n = 3t+ 1, n ≥ 7 m ≥ 5 (
⌊

n
3

⌋

+ 1)(m− 1)[Theorem 4.1, 5.1]

n = 3t+ 2, n ≥ 5 m ≥ 5 (
⌊

n
3

⌋

+ 1)(m− 1)[Theorem 4.1, 5.1]

n = 4 m = 4 7[Theorem 7.1]

n = 5 m = 4 8[Theorem 7.2, 7.4]

n = 7 m = 4 10[Theorem 7.2, 7.4]

n = 10 m = 4 14[Theorem 7.2, 7.4]

n = 3t, n ≥ 6 m = 4 4n
3

[Theorem 7.2, 7.4]

n = 3t+ 1, n ≥ 13 m = 4 4
⌊

n
3

⌋

+ 1[Theorem 7.2, 7.4]

n = 3t+ 2, n ≥ 8 m = 4 4
⌊

n
3

⌋

+ 3[Theorem 7.2, 7.4]

n = 5t, n ≥ 5 m = 3 6n
5

[Theorem 7.6, 7.7]

n = 5t+ i, n ≥ 4, 1 ≤ i ≤ 4 m = 3 6
⌊

n
5

⌋

+ i+ 1[Theorem 7.6, 7.7]

Concluding remarks. In this work, we studied identifying codes in Pn ×Km.
If one goes to infinity (in n and m), the density of a minimum identifying code
is 1/3 in Pn ×Km, 2/3 in P3 ×Km, 1/2 in P4 ×Km, 1/3 in Pn ×K4, and 2/5 in
Pn ×K3. It is interesting to observe that, Lu et al. [23] found the density of a
minimum identifying code in Cn ×Km for n ≥ 5 and m ≥ 6, where Cn is a cycle
of length n, and it is 1/3 if one goes to infinity (in n and m).
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