DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

T. Dravec

Tanja Dravec

University of Maribor
Faculty of Natural Sciences and Mathematics

email: tanja.dravec@um.si

A. Taranenko

Andrej Taranenko

University of Maribor
Faculty of Natural Sciences and Mathematics

email: andrej.taranenko@um.si

Title:

Daisy Hamming graphs

PDF

Source:

Discussiones Mathematicae Graph Theory 43(2) (2023) 421-436

Received: 2020-05-27 , Revised: 2020-10-20 , Accepted: 2020-10-20 , Available online: 2020-11-16 , https://doi.org/10.7151/dmgt.2373

Abstract:

Daisy graphs of a rooted graph $G$ with the root $r$ were recently introduced as a generalization of daisy cubes, a class of isometric subgraphs of hypercubes. In this paper we first address a problem posed in [A. Taranenko, Daisy cubes: A characterization and a generalization, European J. Combin. 85 (2020) #103058] and characterize rooted graphs $G$ with the root $r$ for which all daisy graphs of $G$ with respect to $r$ are isometric in $G$, assuming the graph $G$ satisfies the rooted triangle condition. We continue the investigation of daisy graphs $G$ (generated by $X$) of a Hamming graph $\mathcal{H}$ and characterize those daisy graphs generated by $X$ of cardinality 2 that are isometric in $\mathcal{H}$. Finally, we give a characterization of isometric daisy graphs of a Hamming graph $K_{k_1}\Box \cdots \Box K_{k_n}$ with respect to $0^n$ in terms of an expansion procedure.

Keywords:

daisy graphs, expansion, isometric subgraphs

References:

  1. B. Brešar, Partial Hamming graphs and expansion procedures, Discrete Math. 237 (2001) 13–27.
    https://doi.org/10.1016/S0012-365X(00)00362-9
  2. B. Brešar, W. Imrich and S. Klavžar, Tree-like isometric subgraphs of hypercubes, Discuss. Math. Graph Theory 23 (2003) 227–240.
    https://doi.org/10.7151/dmgt.1199
  3. S. Brezovnik, N. Tratnik and P. Žigert Pleteršek, Resonance graphs of catacondensed even ring systems, Appl. Math. Comput. 374 (2020) 125064.
    https://doi.org/10.1016/j.amc.2020.125064
  4. V.D. Chepoi, Isometric subgraphs of Hamming graphs and d-convexity, Cybernet. Systems Anal. 24 (1988) 6–11.
    https://doi.org/10.1007/BF01069520
  5. D.Ž. Djoković, Distance-preserving subgraphs of hypercubes, J. Combin. Theory Ser. B 14 (1973) 263–267.
    https://doi.org/10.1016/0095-8956(73)90010-5
  6. R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, 2nd Edition (CRC Press, Boca Raton, 2011).
    https://doi.org/10.1201/b10959
  7. S. Klavžar, Structure of Fibonacci cubes: A survey, J. Comb. Optim. 25 (2013) 505–522.
    https://doi.org/10.1007/s10878-011-9433-z
  8. S. Klavžar and M. Mollard, Daisy cubes and distance cube polynomial, European J. Combin. 80 (2019) 214–223.
    https://doi.org/10.1016/j.ejc.2018.02.019
  9. H.M. Mulder, The Interval Function of a Graph, in: Mathematical 429 Centre Tracts 132 (Mathematisch Centrum, Amsterdam, 1980).
  10. H.M. Mulder, The structure of median graphs, Discrete Math. 24 (1978) 197–204.
    https://doi.org/10.1016/0012-365X(78)90199-1
  11. E. Munarini, C.P. Cippo and N.Z. Salvi, On the Lucas cubes, Fibonacci Quart. 39 (2001) 12–21.
  12. A. Taranenko, A new characterization and a recognition algorithm of Lucas cubes, Discrete Math. Theor. Comput. Sci. 15 (2013) 31–39.
  13. A. Taranenko, Daisy cubes: A characterization and a generalization, European J. Combin. 85 (2020) 103058.
    https://doi.org/10.1016/j.ejc.2019.103058
  14. A. Vesel, Cube-complements of generalized Fibonacci cubes, Discrete Math. 342 (2019) 1139–1146.
    https://doi.org/10.1016/j.disc.2019.01.008
  15. E. Wilkeit, Isometric embeddings in Hamming graphs, J. Combin. Theory Ser. B 50 (1990) 179–197.
    https://doi.org/10.1016/0095-8956(90)90073-9
  16. P. Žigert Pleteršek, Resonance graphs of kinky benzenoid systems are daisy cubes, MATCH Commun. Math. Comput. Chem. 80 (2018) 207–214.

Close