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Abstract

Daisy graphs of a rooted graph G with the root r were recently intro-
duced as a generalization of daisy cubes, a class of isometric subgraphs of
hypercubes. In this paper we first address a problem posed in [A. Tara-
nenko, Daisy cubes: A characterization and a generalization, European J.
Combin. 85 (2020) #103058] and characterize rooted graphs G with the
root r for which all daisy graphs of G with respect to r are isometric in G,
assuming the graph G satisfies the rooted triangle condition. We continue
the investigation of daisy graphs G (generated by X) of a Hamming graph
H and characterize those daisy graphs generated by X of cardinality 2 that
are isometric in H. Finally, we give a characterization of isometric daisy
graphs of a Hamming graph Kk1

� · · ·�Kkn
with respect to 0n in terms of

an expansion procedure.
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1. Introduction and Preliminary Results

All graphs G = (V,E) in this paper are undirected and without loops or multiple
edges. The distance dG(u, v) between two vertices u and v is the length of a
shortest u, v-path, and the interval IG(u, v) between u and v consists of all the
vertices on all shortest u, v-paths, that is, IG(u, v) = {x ∈ V (G) | dG(u, x) +
dG(x, v) = dG(u, v)}. For a set U of vertices of a graph G we denote by 〈U〉G
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the subgraph of G induced by the set U . The index G may be omitted when the
graph will be clear from the context. A subgraph H of G is called isometric if
dH(u, v) = dG(u, v), for all u, v ∈ V (H).

The Cartesian product G = G1� · · ·�Gn of n graphs G1, . . . , Gn has the n-
tuples (x1, . . . , xn) as its vertices (with vertex xi from Gi) and an edge between
two vertices x = (x1, . . . , xn) and y = (y1, . . . , yn) if and only if, for some i,
the vertices xi and yi are adjacent in Gi, and xj = yj , for the remaining j 6= i
[6]. The Cartesian product of n copies of K2 is a hypercube or n-cube Qn. If
all the factors in a Cartesian product are complete graphs then G is called a
Hamming graph. The Hamming graph H = Kk1� · · ·�Kkn will be denoted by
Hk1,...,kn . Isometric subgraphs of hypercubes are called partial cubes and isometric
subgraphs of Hamming graphs are called partial Hamming graphs. Note, a tuple
(x1, . . . , xn) may be written in a shorter form as x1 · · ·xn.

For any positive integer n the set {1, . . . , n} is denoted by [n] and the set
{0, 1, . . . , n−1} by [n]0. Let k1, . . . , kn be positive integers and let V =

∏n
i=1[ki]0.

The Hamming distance, H(u, v), of two vectors u, v ∈ V is the number of coor-
dinates in which they differ. Note, a Hamming graph Hk1,...,kn is the graph
with the vertex set

∏n
i=1[ki]0, such that the Hamming distance and the distance

function of the graph coincide. Let v = v1 · · · vn ∈ V (Hk1,...,kn). If x1 · · ·xn ∈
IHk1,...,kn

(v, 0n), then xi ∈ {0, vi}, for any i ∈ [n].

A recent paper by Klavžar and Mollard [8] introduced a new family of graphs
called daisy cubes. The daisy cube Qn(X) is the subgraph of Qn induced by the
union of the intervals I(x, 0n) over all x ∈ X ⊆ V (Qn). Daisy cubes are shown
to be partial cubes (i.e., isometric subgraphs of hypercubes) and include some
other previously well known classes of cube-like graphs, e.g. Fibonacci cubes [7]
and Lucas cubes [11, 12]. Regarding daisy cubes, several results have already
appeared in the literature. Vesel [14] has shown that a cube-complement of a
daisy cube is also a daisy cube. Moreover, daisy cubes also appear in chemical
graph theory in connection with resonance graphs. Žigert Pleteršek has shown
in [16] that resonance graphs of the so-called kinky benzenoid systems are daisy
cubes and Brezovnik et al. [3] characterized catacondensed even ring systems of
which resonance graphs are daisy cubes.

Taranenko [13] characterized daisy cubes by means of special kind of periph-
eral expansions and thus proved that daisy cubes are tree-like partial cubes [2].
In the same paper a generalization of daisy cubes to arbitrary rooted graphs was
introduced. These graphs are called daisy graphs of rooted graphs with respect to
the root. A sufficient but not a necessary condition for a rooted graph G in which
every daisy graph of G with respect to the root is isometric in G was presented.
We improve this result with another sufficient condition for this and also prove
that both conditions together with an additional one provide a characterization
of such graphs. We present these and related results in Section 2. In Section 3
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we focus on daisy graphs of Hamming graphs (with respect to a chosen root),
called daisy Hamming graphs. Since hypercubes are a special case of Hamming
graphs and daisy cubes are a special case of daisy graphs, a natural question that
arises is: what properties do isometric daisy Hamming graphs have. Studying
the properties of these graphs we obtain a characterization of isometric daisy
Hamming graphs in terms of a specific kind of expansion.

We continue this section with some notations and preliminary results.

Definition. [9] Let G be a graph and (u, v, w) a triple of vertices of G. A triple
(x, y, z) of vertices of G is a pseudo-median of the triple (u, v, w) if it satisfies all
of the following conditions.

1. (i) There is a shortest u, v-path in G that contains both x and y;

(ii) There is a shortest v, w-path in G that contains both y and z;

(iii) There is a shortest u,w-path in G that contains both x and z;

2. d(x, y) = d(y, z) = d(x, z);

3. d(x, y) is minimal under the first two conditions.

The distance d(x, y) is called the size of the pseudo-median (x, y, z).

Pseudo-median of a triple (u, v, w) of size 0, is called a median of (u, v, w).
Let G be a graph and (u, v, w) a triple of vertices of G. A triple (x, y, z) of
vertices of G is a quasi-median of the triple (u, v, w) if it is a pseudo-median of
(u, v, w) and if (u, v, w) has no pseudo-median different from (x, y, z). Note that
any triple (u, v, w) of vertices u = u1 · · ·un, v = v1 · · · vn, w = w1 · · ·wn of a
Hamming graph Hk1,...,kn has a quasi-median (x, y, z), that can be obtained in
the following way. If ui, vi and wi are pairwise distinct, then xi = ui, yi = vi,
zi = wi. If ui, vi and wi are not all pairwise distinct with at least two of ui, vi, wi

equal to pi, then xi = yi = zi = pi. The size of this quasi-median is the number
of coordinates in which u, v and w are all distinct [9].

A binary expansion was first defined in [10] and a generalization of binary
expansion using more covering sets was first introduced in [9]. We will use the
definition of general expansion introduced by Chepoi [4], as follows.

Definition. [4] Let G be a connected graph and let W1,W2, . . . ,Wn be subsets
of V (G) such that

1. Wi ∩Wj 6= ∅, for all i, j ∈ [n];

2.
⋃n

i=1Wi = V (G);

3. There are no edges between sets Wi \Wj and Wj \Wi, for all i, j ∈ [n];

4. Subgraphs 〈Wi〉 , 〈Wi ∪Wj〉 are isometric in G, for all i, j ∈ [n].

Then to each vertex x ∈ V (G) we associate a set {i1, i2, . . . , it} of all indices
ij , where x ∈ Wij . A graph G′ is called an expansion of G relative to the sets
W1,W2, . . . ,Wn if it is obtained from G in the following way.
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1. Replace each vertex x of G with a clique with vertices xi1 , xi2 , . . . , xit ;

2. If an index is belongs to both sets {i1, . . . , it}, {i
′
1, . . . , i

′
l} corresponding to

adjacent vertices x and y in G, then let xisyis ∈ E(G′).

An expansion of G relative to the sets W1,W2, . . . ,Wn is called peripheral if
there exists i ∈ [n] such that Wi = V (G). The peripheral expansion of G relative
to the sets W1,W2, . . . ,Wn will be denoted by pe(G;W1, . . . ,Wn).

An illustration of an expansion can be seen in Figure 1. In the left-hand side
one can see a cycle C6 (with the vertices a, b, c, d, e and f) and three subsets of
vertices W1 = {a, b, c, d, e, f}, W2 = {a, b, c} and W3 = {c, d}. It is easy to verify
that W1,W2 and W3 satisfy the conditions of the definition of expansion. The
expansion of the cycle C6 with respect to the sets W1,W2 and W3 is obtained
in the following way. Since a and b both belong to W1 and W2, they are each
replaced with a clique on two vertices (a1 and a2, and b1 and b2, respectively).
The vertex c belongs to all three sets (W1,W2 and W3) and is therefore replaced
by a clique on three vertices (c1, c2 and c3). The vertex d belongs to W1 and W3

and is replaced with a clique on two vertices (d1 and d3). The vertices e and f
both belong to only one vertex set, namely W1, they are both replaced by e1 and
f1, respectively. Finally, edges between vertices with the same index are added,
if the corresponding vertices from the original graph are adjacent. The resulting
expansion is shown in the right-hand side of Figure 1. Note, since W1 = V (C6)
the depicted expansion is also a peripheral expansion.

b
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b1 d1
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d3
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Figure 1. A graph G (left-hand side) and its expansion (right-hand side) with respect to
the sets W1,W2 and W3.

Let G = (V,E) be a connected graph and uv ∈ E(G). We define the following
sets.
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Wuv = {x ∈ V (G) | d(u, x) < d(v, x)};

Uuv = {x ∈ Wuv | there exists z ∈ Wvu such that xz ∈ E(G)};

Fuv = {xz ∈ E(G) | x ∈ Uuv ∧ z ∈ Uvu}.

With these sets we can define Djoković relation ∼ as follows [5]. For uv, xy ∈
E(G)

uv ∼ xy if and only if x ∈ Wuv ∧ y ∈ Wvu.

It follows from the definition that Fuv is precisely the set of edges from E(G)
that are in relation ∼ with uv ∈ E(G). Note also that the relation ∼ is reflexive
and symmetric but not transitive in general. In [1] Brešar introduced relation △
on the edge set of a connected graph as follows.

Definition [1]. Let G be a connected graph and uv, xy ∈ E(G). Then uv △ xy
if and only if uv ∼ xy or there exists a clique with edges e, f ∈ E(G) such that
xy ∼ e and uv ∼ f .

Note that the relation△ is also reflexive and symmetric but it is not necessar-
ily transitive. Brešar proved that the relation △ is transitive in partial Hamming
graphs [1]. He also proved that each △-class is a union of some ∼-classes. For
edges ab, cd ∈ E(G) the ∼-classes Fab and Fcd are in the same △-class if and only
if there is a clique containing edges a′b′ ∈ Fab and c′d′ ∈ Fcd.

2. Isometric Daisy Graphs

In [13] a generalization of daisy cubes was defined in the following way.

Definition [13]. Let G be a rooted graph with the root r. For X ⊆ V (G)
the daisy graph Gr(X) of the graph G with respect to r (generated by X) is the
subgraph of G where

Gr(X) = 〈{u ∈ V (G) | u ∈ IG(r, v) for some v ∈ X}〉 .

If H = Gr(X) is an isometric subgraph of G we say that H is an isometric

daisy graph of a graph G with respect to r. Note that it follows from the definition
of daisy graphs, that V (Gr(X)) =

⋃

v∈X IG(v, r). Moreover, if u ∈ V (Gr(X)),
then IG(u, r) ⊆ V (Gr(X)). Therefore any convex subgraph H of a rooted graph
G with root r, such that H contains r, is a daisy graph of G with respect to r.

In [13] Taranenko presented a sufficient condition for a rooted graph G with
the root r in which any daisy graph with respect to r is isometric. He also proved
that the mentioned condition is not necessary.
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Proposition 1 [13]. Let G be a rooted graph with the root r. If for any two

vertices of G, say u and v, it holds that there exists a pseudo-median of (u, v, r)
of size 0, then every daisy graph of G with respect to r is isometric in G.

We give another sufficient condition for a rooted graph G with respect to the
root r in which any daisy graph with respect to r is isometric and prove that both
conditions yield a characterization of rooted graphs G satisfying rooted triangle
condition in which all daisy graphs with respect to the root are isometric.

Theorem 2. Let G be a rooted graph with the root r. If for any two vertices of

G, say u and v, there exists a pseudo-median of size 1 of the triple of vertices u,
v and r, then every daisy graph of G with respect to r is isometric in G.

Proof. Let H be an arbitrary daisy graph of G with respect to r. Also, let u and
v be two arbitrary vertices of H, and let (x, y, z) be a pseudo-median of (u, v, r)
of size 1. Hence there exists a shortest u, v-path in G that contains x and y,
where x ∈ IG(u, r) and y ∈ IG(v, r). Thus IG(u, x) ⊆ IG(u, r) ⊆ V (H), as H is a
daisy graph of G with respect to r and analogously IG(v, y) ⊆ IG(v, r) ⊆ V (H).
Therefore dH(u, x) = dG(u, x) and dH(v, y) = dG(v, y). Since x and y lie on a
shortest u, v-path we get

dG(u, v) = dG(u, x) + dG(x, y) + dG(y, v)

= dG(u, x) + dG(y, v) + 1 = dH(u, x) + dH(y, v) + 1 ≥ dH(u, v).

Moreover, H is a subgraph of G and therefore dG(u, v) ≤ dH(u, v) and conse-
quently H is an isometric subgraph of G.

Definition. A graph G satisfies the triangle condition if for any three vertices
u, v, w ∈ V (G), such that d(v, w) = 1 and d(u, v) = d(u,w) ≥ 2, there exists a
vertex x ∈ V (G) adjacent to v and w with d(x, u) = d(u, v)− 1.

Definition. A rooted graph G with the root r satisfies the rooted triangle condi-
tion if for any two adjacent vertices v, w ∈ V (G), such that d(r, v) = d(r, w) ≥ 2
there exists a vertex x ∈ V (G) adjacent to v and w with d(x, r) = d(r, v)− 1.

Theorem 3. Let G be a rooted graph with the root r such that G satisfies the

rooted triangle condition. If every daisy graph of G with respect to r is isometric

in G, then for any u, v ∈ V (G) there exists a pseudo-median in G of size 0 or 1
for the triple u, v and r.

Proof. Let u and v be two arbitrary vertices of a rooted graph G with the
root r. Let H = Gr({u, v}). Hence V (H) = IG(u, r) ∪ IG(v, r). Since H is
an isometric subgraph of G, there exists a shortest u, v-path P in G which is
entirely contained in H. Denote P : u = u0, u1, . . . , uk−1, uk = v. As P ⊆ V (H),
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ui ∈ IG(u, r)∪ IG(v, r), for any i ∈ {0, 1, . . . , k}. If v ∈ IG(u, r), then (v, v, v) is a
pseudo-median of (u, v, r) of size 0 and the proof is completed. Similarly, (u, u, u)
is a pseudo-median of (u, v, r) of size 0 if u ∈ IG(v, r), and the proof is also
completed in this case. Hence we may assume that u /∈ IG(v, r) and v /∈ IG(u, r).
Let j ∈ [k]0 be the largest index such that uj ∈ IG(u, r). Hence ul ∈ IG(v, r)
for any l ∈ {j + 1, . . . , k}. If uj ∈ IG(v, r), then uj ∈ IG(u, r) ∩ IG(v, r) and
hence (uj , uj , uj) is a pseudo-median of (u, v, r) of size 0. Next, we assume that
uj /∈ IG(v, r). Since uj+1 /∈ IG(u, r), dG(uj , r) = dG(uj+1, r) = l. If l = 1, then
(uj , uj+1, r) is a pseudo-median of (u, v, r) of size 1. If l > 1, then by the rooted
triangle condition, there exists x ∈ V (G) that is adjacent to uj and uj+1 and
x ∈ IG(r, uj) ∩ IG(r, uj+1). Hence (uj , uj+1, x) is a pseudo-median of (u, v, r) of
size 1, which completes the proof.

From the proof of Theorem 3 we get the following.

Corollary 4. Let G be a rooted graph with the root r such that G satisfies the

rooted triangle condition and let {u, v} ⊆ V (G). If H = Gr({u, v}) is isometric

in G, then there exists a pseudo-median in G of size 0 or 1 for the triple u, v
and r.

Proposition 1, Theorem 2 and Theorem 3 give the following characterization
of rooted graphs G with the root r satisfying the rooted triangle condition, such
that every daisy graphs of G with respect to r is isometric in G.

Corollary 5. Let G be a rooted graph with the root r such that G satisfies the

rooted triangle condition. Every daisy graph of G with respect to r is isometric

in G, if and only if for any u, v ∈ V (G) there exists a pseudo-median of size 0 or

1 of the triple of vertices u, v and r.

Lemma 6. If H is a Hamming graph, then H satisfies the triangle condition.

Proof. Let u = (u1, . . . , un) and v = (v1, . . . , vn) be two adjacent vertices of H
and w = (w1, . . . , wn) ∈ V (H) such that d(u,w) = d(v, w) = k, with k ≥ 2. Since
uv ∈ E(H), there exists i ∈ {1, . . . , n} such that vi 6= ui and vj = uj , for all
j 6= i. Moreover, since d(w, u) = d(w, v) = k, it follows that wi 6= ui and wi 6= vi.
Let x = (u1, . . . , ui−1, wi, ui+1, . . . , un). Clearly, xu ∈ E(H) and xv ∈ E(H) and
x ∈ IH(u,w) ∩ IH(v, w). The assertion follows.

Lemma 6 and Corollary 5 imply the following.

Corollary 7. Let H be a Hamming graph with the root r. Every daisy graph of

H with respect to r is isometric in H, if and only if for any u, v ∈ V (H) there

exists a pseudo-median of size 0 or 1 for the triple u, v and r.
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The above results refer to rooted graphs G for which all daisy graphs with
respect to the root are isometric. Now we chose one daisy graph H of G with
respect to the root of G and study when is H isometric in G.

Note that one can easily deduce from the proofs of Proposition 1 and Theo-
rem 2 that if G is a rooted graph with the root r and H a daisy graph of G with
respect to r such that for any u and v in H, there exists a pseudo-median of size
0 or 1 of the triple of vertices u, v and r, then H is isometric in G. It is clear that
the reverse statement is not necessarily true. For example, let G be the cycle C6

and u and r two antipodal vertices of C6 = u, x1, x2, r, y1, y2, u. Then Gr({u})
is the whole graph G and thus isometric in G, but there clearly exists a triple of
vertices in G, for example (x1, y2, r) having no pseudo-median of size 0 or 1 in G.

Problem 8. Let G be a rooted graph with the root r. Characterize daisy graphs
of G with respect to r (generated by X) that are isometric in G.

Let G be a rooted graph with the root r. For X = {v} ⊆ V (G) the above
problem is equivalent to the characterization of intervals IG(v, r) that are isomet-
ric in G.

In the rest of this section we will consider Hamming graphs and study prop-
erties of isometric daisy subgraphs. Thus let H = Hk1,...,kn be a Hamming graph
with the root r = 0n. Let G = Hr(X) be a daisy graph of H with respect to r
(generated by X). Note that if |X| = 1, then G is a daisy cube. Moreover, if
x = x1 · · ·xn is the vertex of X, then G ∼= Qn({y1 · · · yn}), where yi = min {xi, 1},
for any i ∈ {1, . . . , n}. For |X| = 2 we have the following characterization of iso-
metric daisy graphs of a Hamming graph.

Theorem 9. Let H = Hk1,...,kn be a Hamming graph with the root 0n and let

G = H0n(X) be a daisy graph of H generated by the set X = {x, y} of cardinality

2. Then G is an isometric subgraph of H if and only if there exists a pseudo-

median of (x, y, 0n) of size 0 or 1 in G.

Proof. Let G = H0n({x, y}). Denote x = x1 · · ·xn, y = y1 · · · yn and r = 0n =
r1 · · · rn.

Suppose first, G is an isometric subgraph of H. By Lemma 6, the graph H
satisfies the triangle condition and consequently also the rooted triangle condi-
tion. Using the same line of thought as in the proof of Theorem 3 one can easily
check that there exists a pseudo-median of (x, y, 0n) of size 0 or 1 in G.

For the converse suppose that there is a pseudo-median of size 0 or 1 of
(x, y, 0n) in G. Since the size of the pseudo-median in a Hamming graph is the
number of coordinates in which x, y and r are all distinct, there is at most one
coordinate in which x, y and r are all pairwise distinct. To simplify, permute
factors of H such that x has the first i − 1 coordinates equal to 0 and all other
coordinates different from 0 (i.e., i − 1 is the number of coordinates of x that
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are equal to 0), and if there exists a coordinate in which x, y and r are pairwise
distinct, let this be the ith coordinate. Since (x, y, r) has a pseudo-median of size
0 or 1, yj ∈ {xj , 0}, for any valid index j > i.

Let u = u1 · · ·un and v = v1 · · · vn be two arbitrary vertices of G. Note,
V (G) = IH(x, 0

n) ∪ IH(y, 0
n). We will prove that there exists a u, v-path in G

with dG(u, v) = H(u, v) = dH(u, v).

Suppose first that u, v ∈ IH(x, 0
n) (the case when u, v ∈ IH(y, 0

n) is proved
in a similar way). Then uj = vj = 0, for any j < i, and for any j ≥ i, it holds
that uj ∈ {xj , 0} and vj ∈ {xj , 0}. We construct u, v-path of length H(u, v)
in G in the following way. Start in u and continue with u(1) which is obtained
from u by replacing the first coordinate of u, say uj , in which u and v differ,
with vj . Since vj 6= uj and u, v ∈ IH(x, 0

n), {vj , uj} = {xj , 0} and consequently
u(1) ∈ IH(x, 0

n) ⊆ V (G). We continue in the same way step by step, such that

at the step k we replace the first coordinate of u(k), say u
(k)
j , in which u(k) and v

differ, with vj . Since all the vertices u(k), for any valid k, are contained in V (G)
and the constructed path P is of length H(u, v), P is a u, v-path of G of length
dH(u, v).

Finally, let u ∈ IH(x, 0
n) and v ∈ IH(y, 0

n) \ IH(x, 0
n).

Let ID be the set of indices in which u and v differ. We will also use the
following sets. The set IM = {i′ ∈ ID | ui′ 6= 0 ∧ vi′ 6= 0}, this is an empty set,
if (x, y, r) has a pseudo-median of size 0, otherwise it contains the index i. Let
Iu = {i′ ∈ ID | ui′ = 0} and Iv = {i′ ∈ ID | vi′ = 0}. Note that IM , Iu and Iv
form a partition of ID.

We construct a u, v-path in the following way. The first part of the path
is constructed by using all the indices from the set Iv = {i1, i2, . . . , i|Iv |}. Let

u(0) = u be the first vertex of this path. The next vertex of the path, u(1), is

obtained from u(0) by replacing the coordinate u
(0)
i1

with 0. The vertex u(2), is

obtained from u(1) by replacing the coordinate u
(1)
i2

with 0. Assume we have

already obtained the vertex u(j), then we obtain the vertex u(j+1) from u(j) by

replacing the coordinate u
(j)
ij+1

with 0. We do this for every index in Iv, so the last

vertex we obtain is u(|Iv |). It is easy to see, that these vertices indeed form a path
(two consecutive vertices differ in exactly one coordinate). Since we only change
coordinates to 0, it is also clear that every vertex constructed so far belongs to
IH(u, 0

n) ⊆ IH(x, 0
n) ⊆ V (G).

If IM is not an empty set, we form the next vertex in our path, say v(0), from

u(|Iv |) by replacing the coordinate u
(|Iv |)
i to vi. Again, since v(0) and v differ only

in indices of the set Iu and the values of coordinates at those indices in v(0) is 0,
it is clear that v(0) ∈ IH(v, 0

n) ⊆ IH(y, 0
n) ⊆ V (G). If IM is an empty set, we

denote the vertex u(|Iv |) by v(0).

We continue with the construction of our u, v-path by using all the indices



430 T. Dravec and A. Taranenko

from the set Iu = {j1, j2, . . . , j|Iu|}. The next vertex of the path, v(1), is obtained

from v(0) by replacing the coordinate v
(0)
j1

with vj1 . The vertex v(2), is obtained

from v(1) by replacing the coordinate v
(1)
j2

with vj2 . Assume we have already

obtained the vertex v(k), then we obtain the vertex v(k+1) from v(k) by replacing

the coordinate v
(k)
jk+1

with vjk+1
. We do this for every index in Iu, so the last

vertex we obtain is v(|Iu|). It is easy to see, that these vertices indeed form a
path (two consecutive vertices differ in exactly one coordinate). Since we only
change coordinates, say at index j′, from 0 to vj′ , it is also clear that every vertex
constructed in this part of the path belongs to IH(v, 0

n) ⊆ IH(y, 0
n) ⊆ V (G).

Note, that the vertex v(|Iu|) is actually the vertex v. The fact, that the sets IM , Iu
and Iv form a partition of ID implies that the length of the constructed path is
H(u, v). This concludes our proof.

In section 3 we give a constructive characterization of isometric daisy graphs
of a Hamming graph. The above characterization of isometric daisy graphs of a
Hamming graph generated by a set of cardinality at most 2, rises the question
about a non-constructive characterization of isometric daisy graphs of a Hamming
graph generated by a set of cardinality at least 3. Note, this is a specific case of
Problem 8.

3. Characterization of Isometric Daisy Hamming Graphs

Let G′ be a daisy graph of a Hamming graph H′ = Hk1,...,kn−1
with respect to

0n−1. Let G be a peripheral expansion of G′ relative to W ′
0 = V (G′),W ′

1, . . . ,W
′
k.

If for any i ∈ {1, . . . , k}, the graph 〈W ′
i 〉H′ is a daisy graph of H′ with respect to

0n−1, then the peripheral expansion pe
(

G′;W ′
0, . . . ,W

′
k

)

is called daisy peripheral

expansion of G′ relative to W ′
0, . . . ,W

′
k.

In this section we prove that isometric daisy graphs of a Hamming graph
are precisely the graphs that can be obtained from K1 by a sequence of daisy
peripheral expansions.

Theorem 10. Let H = Hk1,...,kn be a Hamming graph with the root 0n. If G is an

isometric daisy graph of H with respect to the root 0n, then the daisy peripheral

expansion of G relative to the sets V (G) = W0, . . . ,Wl, is an isometric daisy

graph of H′ = Kl+1�H with respect to 0n+1.

Proof. Let G′ be the daisy peripheral expansion of G relative to W0,W1, . . . ,Wl.
Therefore, G′ consists of a disjoint union of a copy of G = 〈W0〉 and a copy
of 〈Wi〉, for any i ∈ {1, . . . , l}. We define the labels of the vertices of G′ as
follows. Prepend i to each vertex of G′ corresponding to the copy of 〈Wi〉, for all
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i ∈ {0, . . . , l}. Hence the labels of the vertices of G′ are vectors of length n + 1
and the first coordinate is an integer from {0, . . . , l}.

First, we prove that two vertices of G′ are adjacent if and only if the cor-
responding vectors differ in exactly one position. Since G′ is the expansion of
G relative to W0, . . . ,Wl, it follows from the definition of expansion that two
vertices u′ = u1 · · ·unun+1 and v′ = v1 · · · vnvn+1 of G′ are adjacent in G′ if and
only if u = u2 · · ·un+1 and v = v2 · · · vn+1 are adjacent in G and both belong to
the same set Wi, or if u = u2 · · ·un+1 = v = v2 · · · vn+1 and u belongs to two
different sets Wu1

and Wv1 . The last condition directly implies that u′ and v′

differ in exactly one coordinate, namely the first coordinate. If u = u2 · · ·un+1

and v = v2 · · · vn+1 are adjacent in G and contained in the same set Wi, then
u and v differ in exactly one coordinate. But then, since they are both in Wi,
u1 = v1 = i and hence u′ and v′ differ in exactly one coordinate. Hence G′ is an
induced subgraph of H′ = Kl+1�H.

In the second step we prove that G′ is a daisy graph of H′ with respect
to 0n+1. Let v′ = v0v1 · · · vn ∈ V (G′) and let x′ = x0 · · ·xn ∈ IH′(v′, 0n+1).
Hence xi ∈ {0, vi}, for any i ∈ {0, . . . , n}. Since v′ = v0v1 · · · vn, it follows that
v = v1 · · · vn ∈ Wv0 . We know that the graph 〈Wv0〉 is a daisy graph of H with
respect to 0n and x = x1 · · ·xn ∈ IH(v, 0

n), therefore x ∈ V (〈Wv0〉). Hence if
x′ = 0x1 · · ·xn, then x′ is in the copy of G in G′. If x′ = v0x1 · · ·xn, then x′

is in the copy of 〈Wv0〉 in G′. In both cases we deduce that x′ ∈ V (G′), which
completes this part of the proof.

It remains to prove that G′ is an isometric subgraph of H′. Let u′ = u0 · · ·un
and v′ = v0 · · · vn be two arbitrary vertices of G′.

If u0 = v0, then u = u1 · · ·un ∈ Wu0
and v = v1 · · · vn ∈ Wu0

. Since G′ is an
expansion of G, relative to W0, . . . ,Wl, the definition of expansion implies that
〈Wu0

〉 is isometric in G. As G is isometric in H,

d〈Wu0〉
(u, v) = dG(u, v) = dH(u, v) = H(u, v).

Hence

dG′(u′, v′) = d〈Wu0〉
(u, v) = H(u, v) = H(u′, v′) = dH′(u′, v′),

where the penultimate equality holds because u0 = v0.
Finally, consider the case where u0 6= v0. Hence u = u1 · · ·un ∈ Wu0

and
v = v1 · · · vn ∈ Wv0 . Since 〈Wu0

∪Wv0〉 is isometric in G (by the definition of
expansion), there exists a shortest u, v-path P : u = u0, u1, . . . , uk = v in G (note
that each ui is a vertex in G and hence has the form ui = ui1 · · ·u

i
n) which is

entirely contained in 〈Wu0
∪Wv0〉 . Since G is isometric in H, we get

d〈Wu0
∪Wv0〉

(u, v) = dG(u, v) = dH(u, v) = H(u, v).
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Let i ∈ {0, . . . , k} be the smallest index such that ui ∈ Wv0 . Since there are
no edges between Wu0

\ Wv0 and Wv0 \ Wu0
, ui ∈ Wu0

. Then the path u′ =
u0

′

, u1
′

, . . . , ui
′

, vi
′

, . . . , vk
′

= v′, where ul
′

= u0u
l, for any l ∈ {0, . . . , i} and

vl
′

= v0u
l, for any l ∈ {i, . . . , k}, is a u′, v′-path in G′. Hence

dG′(u′, v′) ≤ dG(u, v) + 1 = H(u, v) + 1 = H(u′, v′) = dH′(u′, v′),

where the penultimate equality holds because u0 6= v0. Since G′ is a subgraph of
H′, the assertion follows.

Let G be an isometric daisy graph of a Hamming graph H = Hk1,...,kn with
respect to 0n, where H is the smallest possible. We introduce the following
terminology which will be used throughout this section. For any j ∈ [n] we
define the following sets.

W j
i = {u = u1 · · ·un ∈ V (G) | uj = i}, for any i ∈ [kj ]0;

U j
i =

{

x ∈ W j
i | ∃y ∈ W j

0 : xy ∈ E(G)
}

, for any i ∈ [kj ]0;

U j
0i =

{

x ∈ W j
0 | ∃y ∈ W j

i : xy ∈ E(G)
}

, for any i ∈ {1, . . . , kj − 1};

U j
0 =

kj−1
⋃

i=1

U j
0i.

Also, for any j ∈ [n] and any i ∈ [kj ]0 denote by eji the vertex of the Hamming
graph H labeled by 0j−1i0n−j .

Lemma 11. Let G be an isometric daisy graph of a Hamming graph H = Hk1,...,kn

with respect to 0n, where H is the smallest possible. For any j ∈ [n] and any

i ∈ [kj ]0, if W
j
i 6= ∅, then there exists uv ∈ E(G) such that W j

i = Wuv.

Proof. Let j ∈ [n] and i ∈ [kj ]0 be arbitrary, with W j
i 6= ∅, and x = x1 · · ·xn ∈

W j
i . Hence xj = i. Since G is a daisy graph of H with respect to 0n and

x′ = 0j−1i0n−j ∈ IH(0
n, x), it follows that x′ ∈ V (G). Since x′j = i, x′ ∈ W j

i .
Then Wx′0n contains exactly all the vertices of G, that are closer to x′ than 0n,
i.e., all vertices of G with j-th coordinate equal to i. Hence Wx′0n = W j

i .

For the edge uv of a partial Hamming graph, the sets Wuv have many nice
properties [1, 4, 15]. Since our graph G is a partial Hamming graph, it follows
from Lemma 11 that the sets W j

i also have these properties.

Lemma 12. Let G be an isometric daisy graph of a Hamming graph H = Hk1,...,kn

with respect to 0n, where H is the smallest possible. For any △-class F of G,

there exists an edge f ∈ F with 0n as an endpoint.

Proof. Let F be an arbitrary △-class of G and uv ∈ F , where u = u1 · · ·un and
v = v1 · · · vn. Hence, ui 6= vi, for some i ∈ [n], and uj = vj , for any j ∈ [n] \ {i}.
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First, suppose that one of ui and vi equals 0, say ui. It follows that 0
n ∈ Wuv.

Since eivi ∈ IH(v, 0
n) and G is a daisy graph of H with respect to 0n, it follows

that eivi ∈ V (G). Since the ith coordinate of eivi is vi, the vertex eivi ∈ Wvu.
Hence, 0neivi ∼ uv and therefore 0neivi ∈ F .

Finally, suppose neither ui nor vi equals 0. Since x = u1 · · ·ui−10ui+1 · · ·un ∈
IH(u, 0

n) and G is a daisy graph of H with respect to 0n, the vertex x ∈ V (G).
Note that u, v and x induce K3 in G. Hence, vx△ uv and consequently the edge
vx belongs to F . Now, consider the vertex eivi , which belongs to IH(v, 0

n) and
therefore is a vertex of G. Similarly to the first case, we deduce that eivi ∈ Wvx.
Clearly, 0n ∈ Wxv and 0neivi is an edge of G. It follows that 0neivi ∼ xv and
therefore 0neivi ∈ F .

From the definition of the relation △ it follows that the △-class Fj generated

by the edge 0neji , for some i 6= 0, contains exactly all edges between U j
k and U j

l ,
for any 0 ≤ k < l ≤ kj − 1. Thus using Lemma 12 we deduce the following.

Corollary 13. Let G be an isometric daisy graph of a Hamming graph H =
Hk1,...,kn with respect to 0n, where H is the smallest possible. There are exactly n
△-classes F1, . . . , Fn of E(G), where for any j ∈ [n] the △-class Fj is generated

by the edge 0neji , for some 0 < i ≤ kj − 1.

Let G be an isometric daisy graph of a Hamming graph H = Hk1,...,kn with
respect to 0n, where H is the smallest possible. Let j ∈ [n] and i ∈ [kj ]0. A

subgraph 〈W j
i 〉 of a graph G is called peripheral if U j

i = W j
i . The △-class F

generated by the edge 0nejl , for some 0 < l ≤ kj − 1, of the graph G is called

peripheral if U j
l′ = W j

l′ , for any l′ ∈ {1, . . . , kj − 1}.

Lemma 14. If G is an isometric daisy graph of a Hamming graph H = Hk1,...,kn

with respect to 0n, where H is the smallest possible, then every △-class F of the

graph G is peripheral.

Proof. Let F be an arbitrarily chosen △-class of G, such that 0nejl ∈ F . Let
i ∈ {1, . . . , kj − 1} be arbitrary. To prove the assertion, we will show that any

vertex of W j
i has a neighbour in W j

0 (which means W j
i = U j

i ). Take any x =

x1 · · ·xn ∈ W j
i , hence xj = i. Now, consider x′ = x1 · · ·xj−10xj+1 · · ·xn. Note,

that x′ ∈ IH(0
n, x) ⊆ V (G) and therefore x′ ∈ W j

0 . Since xx′ ∈ E(G), the asser-
tion follows.

Lemma 15. Let G be an isometric daisy graph of a Hamming graph H = Hk1,...,kn

with respect to 0n, where H is the smallest possible. For every j ∈ [n] and any i ∈
[kj ]0 the subgraph 〈W j

i 〉 of the graph G is a daisy graph of H′ = Hk1,...,kj−1,kj+1,...,kn

with respect to 0n−1.

Proof. Define Xj
i =

{

x1 · · ·xj−1xj+1 · · ·xn | x1 · · ·xn ∈ W j
i

}

. Let r : W j
i → Xj

i
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be the projection defined by r : x1 · · ·xn 7→ x1 · · ·xj−1xj+1 · · ·xn, which is clearly

bijection between W j
i and Xj

i .

Let u = u1 · · ·un−1 ∈ Xj
i be arbitrary and w ∈ IH′(0n−1, u). We claim

that w ∈ Xj
i . Since u ∈ Xj

i , it follows from the definition of Xj
i that u′ =

u1 · · ·uj−1iuj · · ·un−1 ∈ W j
i . Since w ∈ IH′(0n−1, u), it follows that wl = ul

or wl = 0, for all 1 ≤ l ≤ n − 1. Let w′ = w1 · · ·wj−1iwj · · ·wn−1. Since
w′ ∈ IH(0

n, u′), it follows that w′ ∈ V (G) and as the ith coordinate of w′ is i, the
vertex w′ belongs to W j

i . By the definition of Xj
i , w ∈ Xj

i . Therefore 〈Xj
i 〉H′ is

a daisy graph of H′ with respect to 0n−1. Since 〈W j
i 〉H

∼= 〈Xj
i 〉H′ , the assertion

follows.

In [1] the contraction of a partial Hamming graph G was defined in the
following way. Let uv ∈ E(G) and let △-class with respect to uv ∈ E(G),
denote it by △uv, be the union of k distinct ∼-classes Fxixj

. A graph G′ is a
contraction of a partial Hamming graph G with respect to the edge uv ∈ E(G)
if each clique induced by edges belonging to △uv is contracted to a single vertex.
For all i ∈ [k], let W ′

i be the set of vertices in G′ that corresponds to Wxi
= {w ∈

V (G) | d(w, xi) < d(w, xj), for any j 6= i}. Brešar proved that the expansion of
G′ relative to W ′

1, . . . ,W
′
k is exactly the graph G [1].

Theorem 16. Let G be an isometric daisy graph of a graph H = Hk1,...,kn with

respect to 0n, where H is the smallest possible. Then there exists a daisy graph

G′ ⊆ G such that G can be obtained from G′ by a daisy peripheral expansion.

Proof. Let F be an arbitrary△-class of the graph G. By Corollary 13 there exist
j ∈ [n] and i ∈ {1, . . . , kj − 1} such that F is generated by the edge 0neji . Let the
graph G′ be obtained from the graph G by a contraction with respect to the edge
0neji . For any l ∈ [kj ]0, denote by Xl the set of vertices in G′ that corresponds

to W j
l in G. By the definition of a contraction, the graph G is the expansion of

G′ relative to sets X0, . . . , Xkj−1. By Lemma 14, it follows that F is a peripheral

△-class. Using the fact that F is generated by the edge 0neji , it follows from

the definition of peripheral classes, that U j
i′ = W j

i′ , for any i′ ∈ {1, . . . , kj − 1}

(every vertex of W j
i′ has a neighbour in W j

0 ). Since
⋃kj−i

i=0 Xi = V (G) (definition
of expansion) we obtain that X0 = V (G′). By Lemma 15, it follows that the
subgraphs 〈Xi〉G′ are daisy graphs which proves that G is obtained from G′ by
daisy peripheral expansion.

From Theorem 10 and Theorem 16 we immediately obtain the following char-
acterization.

Theorem 17. A graph G is an isometric daisy graph of a graph H = Hk1,...,kn

with respect to 0n, where H is the smallest possible, if and only if it can be obtained

from the one vertex graph by a sequence of daisy peripheral expansions.
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