DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

L.-P. Zhang

Lin-Peng Zhang

Northwestern Polytechnical University

email: lpzhangmath@163.com

L.G. Wang

Ligong Wang

Northwestern Polytechnical University

email: lgwangmath@163.com

0000-0002-6160-1761

J.L. Zhou

Jiale Zhou

Northwestern Polytechnical University

email: zjl0508math@mail.nwpu.edu.cn

Title:

The Turán number of spanning star forests

PDF

Source:

Discussiones Mathematicae Graph Theory 43(2) (2023) 303-312

Received: 2020-01-22 , Revised: 2020-09-26 , Accepted: 2020-09-26 , Available online: 2020-10-20 , https://doi.org/10.7151/dmgt.2368

Abstract:

Let $\mathcal{F}$ be a family of graphs. The Turán number of $\mathcal{F}$, denoted by $ex(n, \mathcal{F})$, is the maximum number of edges in a graph with $n$ vertices which does not contain any subgraph isomorphic to some graph in $\mathcal{F}$. A star forest is a forest whose connected components are all stars and isolated vertices. Motivated by the results of Wang, Yang and Ning about the spanning Turán number of linear forests [J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294; B. Ning and J. Wang, The formula for Turán number of spanning linear forests, Discrete Math. 343 (2020) 111924]. In this paper, let $\mathcal{S}_{n, k}$ be the set of all star forests with $n$ vertices and $k$ edges. We prove that when $1\le k\le n-1$, $ex(n,\mathcal{S}_{n, k})= \left\lfloor \frac{k^2-1}{2}\right\rfloor.$

Keywords:

spanning Turán problem, star forests, Loebl-Komlós-Sós type problems

References:

  1. B. Bollobás, Modern Graph Theory (Springer, New York, 2013).
    https://doi.org/10.1007/978-1-4612-0619-4
  2. P. Erdős, Z. Füredi, M. Loebl and V.T. Sós, Discrepancy of trees, Studia Sci. Math. Hungar. 30 (1995) 47–57.
  3. P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hung. 10 (1959) 337–356.
    https://doi.org/10.1007/BF02024498
  4. Z. Füredi and M. Simonovits, The history of degenerate $($bipartite$)$ extremal graph problems, in: Erdős Centennial, Bolyai Soc. Math. Stud. 25, (Springer, Berlin, Heidelberg 2013) 169–294.
    https://doi.org/10.1007/978-3-642-39286-3_7
  5. I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661–667.
    https://doi.org/10.1007/s00373-010-0999-5
  6. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlós-Sós conjecture I: The sparse decomposition, SIAM J. Discrete Math. 31 (2017) 945–982.
    https://doi.org/10.1137/140982842
  7. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlós-Sós conjecture II: The rough structure of LKS graphs, SIAM J. Discrete Math. 31 (2017) 983–1016.
    https://doi.org/10.1137/140982854
  8. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlós-Sós conjecture III: The finer structure of LKS graphs, SIAM J. Discrete Math. 31 (2017) 1017–1071.
    https://doi.org/10.1137/140982866
  9. J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein and E. Szemerédi, The approximate Loebl-Komlós-Sós conjecture IV: Embedding techniques and the proof of the main result, SIAM J. Discrete Math. 31 (2017) 1072–1148.
    https://doi.org/10.1137/140982878
  10. Y. Lan, T. Li, Y. Shi and J. Tu, The Turán number of star forests, Appl. Math. Comput. 348 (2019) 270–274.
    https://doi.org/10.1016/j.amc.2018.12.004
  11. S.-S. Li and J.-H. Yin, Two results about the Turán number of star forests, Discrete Math. 343 (2020) 111702.
    https://doi.org/10.1016/j.disc.2019.111702
  12. B. Lidický, H. Liu and C. Palmer, On the Turán number of forests, Electron. J. Combin. 20 (2013) #P62.
    https://doi.org/10.37236/3142
  13. B. Ning and J. Wang, The formula for Turán number of spanning linear forests, Discrete Math. 343 (2020) 111924.
    https://doi.org/10.1016/j.disc.2020.111924
  14. M. Simonovits, A method for solving extremal problems in graph theory, stability problems, in: Theory of Graphs, P. Erdős and G. Katona (Ed(s)), (Academic Press, New York 1968) 279–319.
  15. P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941) 436–452, in Hungarian.
  16. P. Turán, On the theory of graphs, Colloq. Math. 3 (1954) 19–30.
    https://doi.org/10.4064/cm-3-1-19-30
  17. J. Wang and W. Yang, The Turán number for spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294.
    https://doi.org/10.1016/j.dam.2018.07.014
  18. J.-H. Yin and Y. Rao, Turán number for $p\cdot S_r$, J. Combin. Math. Combin. Comput. 97 (2016) 241–245.

Close