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Abstract

Let F be a family of graphs. The Turán number of F , denoted by
ex(n,F), is the maximum number of edges in a graph with n vertices which
does not contain any subgraph isomorphic to some graph in F . A star forest
is a forest whose connected components are all stars and isolated vertices.
Motivated by the results of Wang, Yang and Ning about the spanning Turán
number of linear forests [J. Wang and W. Yang, The Turán number for

spanning linear forests, Discrete Appl. Math. 254 (2019) 291–294; B. Ning
and J. Wang, The formula for Turán number of spanning linear forests,
Discrete Math. 343 (2020) #111924]. In this paper, let Sn,k be the set of all
star forests with n vertices and k edges. We prove that when 1 ≤ k ≤ n− 1,

ex(n,Sn,k) =
⌊

k2
−1

2

⌋

.
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1. Introduction

All graphs in this paper are finite, undirected and simple. Notations in this paper
are standard as [1]. For a graph G, let V (G) be the set of vertices, E(G) be the
set of edges and e(G) = |E(G)| be the number of edges. For v ∈ V (G), we
define N(v) to be the vertex set whose each vertex is adjacent to the vertex v.
Furthermore, for a vertex set S ⊂ V (G), we use N(S) to denote the vertex set
whose each vertex is in V (G) \ S and adjacent to at least one vertex in S. Let
N [v] = N(v)∪{v}. We denote the degree of a vertex v by d(v) and the maximum
degree of G by ∆(G). For a vertex set U ⊂ V (G), the subgraph of G induced
by U is denoted by G[U ]. For a subgraph H of a graph G, the graph G −H is
the subgraph induced by the vertex set V (G)\V (H), i.e., G[V (G)\V (H)]. A star
forest is a forest whose connected components are all stars and isolated vertices.
We denote the disjoint union of k copies of the graph F by k · F . Let H1 and
H2 be two disjoint graphs. The join of H1 and H2, denoted by H1 ∨ H2, is
the graph whose vertex set is V (H1 ∨ H2) = V (H1) ∪ V (H2) and edge set is
E(H1 ∨H2) = E(H1) ∪ E(H2) ∪ {xy : x ∈ V (H1), y ∈ V (H2)}. We use Kn and
En to denote the complete graph on n vertices and the empty graph on n vertices,
respectively. We use Ks,t to denote the complete bipartite graph with two sets
of vertices, one with s vertices and another with t vertices. We denote the star
graph on n vertices by Sn−1, i.e., Sn−1 = K1,n−1. For any positive integer n, let
[n] = {1, 2, 3, . . . , n}.

Let F be a family of graphs. A graph G is called F-free if G does not
contain any subgraph which is isomorphic with some F ∈ F . The Turán number,
denoted by ex(n,F), is the maximum number of edges in an F-free graph on n
vertices. When F contains only one graph F , we denote the Turán number of F
by ex(n, F ). Let EX(n, F ) denote an F-free graph on n vertices with ex(n, F )
edges. We call this graph an extremal graph for F . A traditional starting point
of extremal graph theory (a significant branch of graph theory) is the Mantel’s
theorem (see e.g. [1]) that the maximum number of edges in a K3-free graph on

n vertices is
⌊

n2

4

⌋

. Turán [15, 16] generalized this result to determine the value

ex(n,Kr+1) and showed that the unique extremal graph for Kr+1 is the complete
r-partite graph on n vertices whose all parts are as equal in size as possible (the
difference between any two parts is at most 1), denoted by Tr(n). Generally, we
call the graph Tr(n) a Turán graph. In 1959, Erdős and Gallai [3] determined
the value ex(n, (k + 1) · K2) and the extremal graph for it. In [14], Simonovits
showed that the unique extremal graph for k ·Kr+1 is Kk−1 ∨Tr(n− p+1) when
n is sufficiently large. Later, by considering the graph that consists of p disjoint
copies of any connected graph G on n vertices, Gorgol [5] gave a lower bound for
ex(m, p ·G).
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Theorem 1 [3]. When n ≥ 2k + 1,

ex(n, (k + 1) ·K2) = max

{(

2k + 1

2

)

,

(

n

2

)

−

(

n− k

2

)}

.

Theorem 2 [5]. Let G be any connected graph on n vertices, p be any pos-

itive integer and m be an integer such that m ≥ pn. Then ex(m, p · G) ≥

max

{

ex(m− pn+ 1, G) +

(

pn− 1

2

)

, ex(m− p+ 1, G) + (p− 1)m−

(

p

2

)}

.

In [12], Lidický et al. investigated the Turán number of a star forest and
determined the value ex(n, F ) when n is sufficiently large, where F =

⋃k
i=1 Sdi

and d1 ≥ d2 ≥ · · · ≥ dk. Yin and Rao [18] determined the value ex(n, k · Sl)
when n ≥ 1

2 l
2k(k − 1) + k − 2 + max{lk, l2 + 2l}, which improved the results

of Lidický et al. Later, Lan et al. [10] determined the value ex(n, k · Sl) when
n ≥ k(l2 + l + 1) − l

2(l − 3), which further improved these results. Recently, for
a fixed k, Li et al. [11] determined the Turán number ex(n, 2 · Sl) for all positive
integers n and l(≥ 4) and ex(n, 3 · Sl) for all positive integers n and l(≥ 3).

Recently, Ning and Wang [13] considered the forbidden family Ln,k of sub-
graphs (i.e., a family of all linear forests of order n with k edges) and determined
the exact value ex(n,Ln,k). The Hamiltonian completion number of a graph G
is the minimum number of edges to ensure that the graph G is Hamiltonian by
adding it. Their results determined also the maximum number of edges in a non-
Hamiltonian graph with fixed Hamiltonian completion number. Notice that the
order of the forbidden linear forest and the order n are dependent. Motivated by
their results, we determine the Turán number ex(n,Sn,k) by considering a family
of all star forests of order n with k edges, denoted by Sn,k.

Theorem 3 [13]. Let n, k be two positive integers and 1 ≤ k ≤ n− 1. Then

ex(n,Ln,k) = max

{(

k

2

)

,

(

n

2

)

−

(

n−
⌊

k−1
2

⌋

2

)

+ c

}

,

where c = 0 if k is odd, and c = 1 otherwise.

For convenience, we would like to give the definition of the almost d-regular
graph. We define the almost d-regular graph as a graph that contains one vertex
of degree d− 1 and all the other vertices have degree d.

Theorem 4. Let n, k be two positive integers and 1 ≤ k ≤ n− 1. Then

ex(n,Sn,k) =

⌊

k2 − 1

2

⌋

.

Moreover, the unique extremal graph contains a connected component of size k+1
and n−k−1 isolated vertices. And the connected component is the almost (k−1)-
regular graph or the (k − 1)-regular graph on k + 1 vertices.
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Considering the median degree of a graph G, Loebl, Komlós and Sós [2]
conjectured that every graph G of order n with at least n/2 vertices of degree
at least k contains each tree T of order k + 1 as a subgraph. This is a median
degree version of the famous Erdős-Sós conjecture. For more results about Loebl-
Komlós-Sós conjecture, we refer the reader to [6, 7, 8, 9].

Conjecture 5 (The Erdős-Sós Conjecture). Every graph G order n with average

degree greater than k − 1 contains each tree T of order k + 1 as a subgraph.

Conjecture 6 (The Loebl-Komlós-Sós Conjecture, [2]). Every graph G order n
with median degree greater than k − 1 contains each tree T of order k + 1 as a

subgraph.

Füredi and Simonovits called it Loebl-Komlós-Sós type problem or the Me-
dian problem [4] as follows: for a given graph G of order n, which m and d ensure
that if G has at least m vertices of degree ≥ d, then G contains some subgraph H.

One could analogously define such problems for families H of graphs. We
solved a problem of this type for H = Sn,k.

Theorem 7. If a simple graph G on n (n ≥ k + 2) vertices has at least 3k
2 + 2

vertices of degree at least
⌈

k
2

⌉

, then G contains some graph in Sn,k as its subgraph.

2. The Proof of Theorem 4

Proof. We prove this result mainly by induction on k. First, if k = 1, then we
know that Sn,1 contains only one edge, i.e., Sn,1 = K2 ∪ En−2. Notice that if a
graph G contains at least one edge, it must contain Sn,1 as its subgraph. Then we

have that ex(n,Sn,1) = 0 =
⌊

12−1
2

⌋

and the unique extremal graph is En. If k = 2,

we can see that Sn,2 = {S2 ∪ En−3, 2 ·K2 ∪ En−4}. Notice that the graph which
does not contain any graph in Sn,2 as its subgraph must have maximum degree
at most 1. If there are two edges in distinct connected components of G, then we
can find a copy of 2·K2 in G, a contradiction. Thus, we have that ex(n,Sn,2) ≤ 1.
And, the graph K2∪En−2 does not contain any graph in Sn,2 as its subgraph and

e(K2∪En−2) = 1. Then ex(n,Sn,2) = 1 =
⌊

22−1
2

⌋

and the unique extremal graph

is K2∪En−2. We can see that Sn,3 = {S3 ∪ En−4, S2 ∪K2 ∪ En−5, 3 ·K2 ∪ En−6}
when k = 3. It is easy to know that the graph which does not contain any graph
in Sn,3 as its subgraph must have maximum degree at most 2. Also, we can see
that there are at most two connected components in a extremal graph for Sn,3

which is denoted by G. If there are exactly two connected components in G,
then both of two connected components contain only an edge, thus e(G) = 2.
If there is only one connected component in G, then we have that ∆(G) ≤ 2.
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If ∆(G) = 1, then e(G) = 1. If ∆(G) = 2 and v is a vertex in G with degree
2, then let N(v) = {v1, v2}. If v1v2 is an edge of G, then e(G) = 3. If v1v2 is
not an edge of G, then v1 and v2 can only be adjacent to the same vertex in
V (G) \ {v, v1, v2} and this fourth vertex is the last in the connected component.
Otherwise, we can find a copy of S2 ∪K2 in G, a contradiction. Thus, we have

that ex(n,Sn,3) = 4 =
⌊

32−1
2

⌋

and K2,2 ∪ En−4 is the unique extremal graph.

Now, we assume that the result holds for all k
′

< k. In the following, we will
show that the result holds for k. From the above analyses, we can see that the
extremal graph has maximum degree k−1 when k ∈ {1, 2, 3}. We claim that this
conclusion holds for k. In order to prove that the claim is true, we first would like
to construct an extremal graph for Sn,k, denoted by G, and then to prove any
graph G′ with ∆(G′) = k− 1 which contains no Sn,k as its subgraph can contain
at most e(G) edges. Then we would like to show that all other graphs with
maximum degree less than k − 1 have less edges than the constructed graph G.

The constructed extremal graph is as follows. G contains only one connected
component containing an edge which is the almost (k − 1)-regular graph or the
(k − 1)-regular graph on k + 1 vertices. We denote the connected component of
G by G1. Notice that if G contains any graph in Sn,k, then all edges of it must
be contained in G1. There is only one graph in Sn,k which contains only one
connected component, that is Sk ∪En−k−1 and the only connected component is
Sk. Since any graph in Sn,k other than Sk ∪ En−k−1 has at least two connected
components which contain at least k+2 vertices, G1 cannot contain any of them
as a subgraph. If G is not Sn,k-free, then G1 must contain Sk as its subgraph.
It is easy to deduce that G1 does not contain Sk as its subgraph since G1 is the
almost (k− 1)-regular graph or the (k− 1)-regular graph on k+1 vertices. Thus
G is Sn,k-free.

Next, we will prove that any graph G′ with ∆(G′) = k − 1 which does
not contain any graph in Sn,k as its subgraph can contain at most e(G) edges.
Without loss of generality, we assume that d(v) = k − 1 for v ∈ V (G′) and let
N(v) = {v1, v2, . . . , vk−1}. Notice that there are no edges in G′[V (G′) \ N [v]],
otherwise we can find a Sk−1 ∪K2 ∪En−k−2 ∈ Sn,k in G′, a contradiction. Thus,
all edges of G′ must be contained in the connected component which contains all
vertices in N(v). Any vi can be adjacent to at most one vertex in V (G′) \N [v],
thus there are at most k − 1 edges between N(v) and V (G′) \ N [v]. For any
vi ∈ N(v), if there is an edge between the vertex vi and the vertex set V (G′)\N [v],
then by the definition of ∆, there exist at most k − 3 edges between the vertex
vi and the vertex set N(v). Therefore, if there are y ≤ k − 1 edges between the
two vertex sets N(v) and V (G′)\N [v], then at least

⌈

y
2

⌉

edges are missing inside
N(v). Therefore, the total number of edges is
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(1) e(G′) ≤

(

k

2

)

−
⌈y

2

⌉

+ y ≤

⌊

k2 − 1

2

⌋

.

We can explain the first inequality of Equation (1) as follows. The first two terms
are an upper bound on the number of edges inside N [v], and the last term is the
number of other edges by definition.

Notice that the extremal graph can contain only one vertex in V (G′) \N [v]
which is adjacent to every vertex in N(v). Assume that there are two vertices
which are adjacent to the vertex set N(v), denoted by vx, vy. Then we have
that dN(v)(vx) + dN(v)(vy) = k − 1. Since G′[N(v)] is an almost (k − 3)-regular
graph, we can find a copy of S2 ∪ Sk−2, a contradiction. Thus, we know that the
constructed graph G is the unique extremal graph G′ for ∆(G′) = k − 1.

Our third step is to prove the following conclusion. All other graphs with
maximum degree less than k − 1 contain less edges than G.

First, we claim that the extremal graph for Sn,k contains only one connected
component. Assume that there are two connected components in the extremal
graph for Sn,k and there is one connected component such that the largest star
forest in it has x edges. By the induction hypothesis, we have that the extremal

graph contains at most
⌊

(x+1)2−1
2

⌋

+
⌊

(k−x)2−1
2

⌋

≤
⌊

(k)2−1
2

⌋

edges. Thus we have

that the extremal graph for Sn,k contains only one connected component. Let
H be an extremal graph for Sn,k that contains only one connected component
H ′ containing an edge which has maximum degree 3 ≤ ∆(H ′) = t < k − 1. Let
d(u) = t and N(u) = {u1, u2, . . . , ut}. In the following, we divide the edge set of
the graph H into two parts: the edges of the graph H[V (H ′) \ N [u]] and other
edges. We denote the graph which is induced by the second set of edges by H1.

Case 1. H1 contains no star forest with more than t edges. Any ui can be
adjacent to at most one vertex in V (H ′) \N [u], otherwise we can find a copy of
S2∪St−1, a contradiction. Each vertex ui can be adjacent to at most t−1 vertices
in N(u) − ui for i ∈ [1, t]. For any ui ∈ N(u), if there is an edge between the
vertex ui and the vertex set V (H1)\N [u], then by the definition of ∆, there exist
at most t− 2 edges between the vertex ui and the vertex set N(u). Therefore, if
there are z ≤ t edges between the two vertex sets N(u) and V (H1) \N [u], then
at least

⌈

z
2

⌉

edges are missing inside N(u). Therefore, the total number of edges
is

(2) e(H1) ≤

(

t+ 1

2

)

−
⌈z

2

⌉

+ z ≤

⌊

t(t+ 2)

2

⌋

.

We can explain the first inequality of Equation (2) as follows. The first two terms
are an upper bound on the number of edges inside N [u], and the last term is the
number of other edges by definition.
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Then by the induction hypothesis and Equation (2),

(3)

e(H) = e(H ′) ≤

⌊

(k − t)2 − 1

2

⌋

+

⌊

t(t+ 2)

2

⌋

=

⌊

k2 − 1 + 2t2 + 2t− 2kt

2

⌋

≤

⌊

k2 − 1

2

⌋

= e(G).

Case 2. H1 contains a star forest with y + t − 1 edges. But H1 contains no
star forest with more than y + t − 1 edges. Similarly, any ui can be adjacent to
at most y vertices in V (H ′) \N [u], otherwise we can find a copy of Sy+1 ∪ St−1,
a contradiction. Therefore, there are at most ty edges between the set N(u) and
the set V (H ′)\N [u]. We assume that ui is adjacent to yi vertices in V (H ′)\N [u]
for i ∈ [1, t]. Then

(4)

e(H1) ≤

⌊

∑t
i=1(t− 1− yi)

2

⌋

+

t
∑

i=1

yi + t

≤

⌊

t(t− 1− y)

2

⌋

+ t(y + 1).

Then by the induction hypothesis and Equation (4),

(5)

e(H) ≤

⌊

t(t− 1− y)

2

⌋

+ t(y + 1) +

⌊

(k − y − t+ 1)2 − 1

2

⌋

=

⌊

y2 + (4t− 2k − 2)y

2

⌋

+

⌊

k2 + 2t2 − t+ 1− 2kt+ 2k

2

⌋

.

Further, we analyze two subcases as follows.

Subcase 2.1. t ≤
⌊

k−1
2

⌋

+ 1. Considering the term y and 2 ≤ y ≤ t − 1,
we can see that the right part of the above inequality about y is a parabola
with an upward opening, which obtains a value of 0 at points y = 0 and y =
2k + 2 − 4t. If t − 1 ≥ 2k + 2 − 4t (i.e., t ≥ (2k + 3)/5), then e(H) can at-
tains its maximum value at y = t− 1. Otherwise, e(H) can attain its maximum
value at y = 2. When t ≥ (2k + 3)/5, we can calculate the maximum num-

ber of edges as
⌊

k2+7t2−9t+4−4kt+4k
2

⌋

. And the maximum number of edges is
⌊

k2+2t2+7t+1−2kt−2k
2

⌋

when t < (2k + 3)/5. The two values are both less than

e(G) =
⌊

k2−1
2

⌋

. Thus, we prove the above conclusion when t ≤
⌊

k−1
2

⌋

+ 1.

Subcase 2.2.
⌊

k−1
2

⌋

+ 1 < t ≤ k − 1. It is easy to know that 2 ≤ y ≤ k − t.
By a simple calculation for Equation (5), we know that the maximum value of
the right part of Equation (5) can be obtained when y = k − t. Substituting
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y = k − t into Equation (5), we obtain that the maximum value is
⌊

kt+t
2

⌋

. We
can obtain that it is smaller than e(G) by a simple calculation. Thus we prove
that the conclusion holds for all k.

Thus, our claim is true that the extremal graph has maximum degree k − 1.
This completes our proof.

3. The Proof of Theorem 7

Proof. To prove this conclusion, we just need to prove that there are at most
3k
2 +1 vertices of degree at least

⌈

k
2

⌉

if G contains no graph in Sn,k as its subgraph.

We define d as the smallest number that is at least
⌈

k
2

⌉

and there is a vertex
of degree exactly d. Without loss of generality, let v ∈ V (G), d(v) = d and
N(v) = {v1, v2, . . . , vd}. Notice that every vertex not in N [v] nor in N(N(v)) has
degree at most k−d−1, otherwise we can find a copy of Sd∪Sk−d∪En−k−2 ∈ Sn,k,
a contradiction. Thus we know that every vertex which has degree at least

⌈

k
2

⌉

can be contained only in N [v] or N(N(v)). Every vertex in N(v) has at most
k − d neighbors in V (G) \N [v]. Thus we know that there are at most d(k − d)
edges between the vertex set N(v) and N(N(v)).

Claim 8. There are at most 3k
2 − d vertices in N(N(v)) which have degree at

least d.

In the following proof, we call a vertex which has degree at least
⌈

k
2

⌉

as the
large degree vertex.

Proof. Suppose that there are at least 3k
2 −d+1 large degree vertices in N(N(v)).

By Theorem 4, there are at most
⌊

(k−d)2−1
2

⌋

edges in G[V (G) \N [v]]. It follows

that the large degree vertices in N(N(v)) are incident to at least
(

3k
2 − d + 1

)

d
edges, but there are at most (k − d)2 − 1 incidences inside G[V (G) \N [v]], thus
at least

(

3k
2 − d + 1

)

d − ((k − d)2 − 1) = 7kd
2 − 2d2 − k2 + d + 1 incidences are

by edges between N(v) and N(N(v)). Thus, the number of edges between N(v)
and N(N(v)) must be no less than 7kd

2 − 2d2 − k2 + d+ 1, which is greater than
d(k − d). This contradicts with the fact that there are at most d(k − d) edges
between the vertex set N(v) and N(N(v)). Thus, we have that there are at most
3k
2 − d vertices in G which have degree at least d.

Combining Claim 8 and the fact that there are at most d+1 vertices in N [v]
which have degree at least d, we conclude that there are at most 3k

2 +1 vertices of

degree at least
⌈

k
2

⌉

if G contains no graph in Sn,k as its subgraph. This completes
our proof.
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