DMGT

ISSN 1234-3099 (print version)

ISSN 2083-5892 (electronic version)

https://doi.org/10.7151/dmgt

Discussiones Mathematicae Graph Theory

Journal Impact Factor (JIF 2022): 0.7

5-year Journal Impact Factor (2022): 0.7

CiteScore (2022): 1.9

SNIP (2022): 0.902

Discussiones Mathematicae Graph Theory

Article in volume


Authors:

A. Hakanen

Anni Hakanen

University of Turku

email: anehak@utu.fi

V. Junnila

Ville Junnila

email: viljun@utu.fi

T. Laihonen

Tero Laihonen

email: terolai@utu.fi

M.L. Puertas

Maria Luz Puertas

University of Almería

email: mpuertas@ual.es

Title:

On the metric dimensions for sets of vertices

PDF

Source:

Discussiones Mathematicae Graph Theory 43(1) (2023) 245-275

Received: 2020-03-10 , Revised: 2020-09-15 , Accepted: 2020-09-15 , Available online: 2020-10-20 , https://doi.org/10.7151/dmgt.2367

Abstract:

Resolving sets were originally designed to locate vertices of a graph one at a time. For the purpose of locating multiple vertices of the graph simultaneously, $\{\ell\}$-resolving sets were recently introduced. In this paper, we present new results regarding the $\{\ell\}$-resolving sets of a graph. In addition to proving general results, we consider $\{2\}$-resolving sets in rook's graphs and connect them to block designs. We also introduce the concept of $\ell$-solid-resolving sets, which is a natural generalisation of solid-resolving sets. We prove some general bounds and characterisations for $\ell$-solid-resolving sets and show how $\ell$-solid- and $\{\ell\}$-resolving sets are connected to each other. In the last part of the paper, we focus on the infinite graph family of flower snarks. We consider the $\ell$-solid- and $\{\ell\}$-metric dimensions of flower snarks. In two proofs regarding flower snarks, we use a new computer-aided reduction-like approach.

Keywords:

resolving set, metric dimension, resolving several objects, block design, rook's graph, flower snark

References:

  1. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák and L.S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006) 2168–2181.
    https://doi.org/10.1109/JSAC.2006.884015
  2. J. Cáceres, M.C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, On the metric dimension of infinite graphs, Discrete Appl. Math. 160 (2012) 2618–2626.
    https://doi.org/10.1016/j.dam.2011.12.009
  3. J. Cáceres, M.C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423–441.
    https://doi.org//10.1137/050641867
  4. G. Chartrand, L. Eroh, M.A. Johnson, and O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99–113.
    https://doi.org/10.1016/S0166-218X(00)00198-0
  5. C.J. Colbourn and J.H. Dinitz, (Ed(s)), Handbook of Combinatorial Designs, Second Edition, in: Discrete Math. Appl. (Chapman & Hall/CRC, 2007).
    https://doi.org/10.1201/9781420010541
  6. A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, The k-metric dimension of the lexicographic product of graphs, Discrete Math. 339 (2016) 1924–1934.
    https://doi.org/10.1016/j.disc.2015.12.024
  7. A. Hakanen, V. Junnila and T. Laihonen, The solid-metric dimension, Theoret. Comput. Sci. 806 (2020) 156–170.
    https://doi.org/10.1016/j.tcs.2019.02.013
  8. A. Hakanen and T. Laihonen, On $\{\ell\}$-metric dimensions in graphs, Fund. Inform. 162 (2018) 143–160.
    https://doi.org/10.3233/FI-2018-1718
  9. F. Harary and R. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191–195.
  10. M. Imran, S. Bokhary, A. Ahmad and A. Semaničová-Feňovčiková, On classes of regular graphs with constant metric dimension, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013) 187–206.
    https://doi.org/10.1016/S0252-9602(12)60204-5
  11. R. Isaacs, Infinite families of nontrivial trivalent graphs which are not tait colorable, Amer. Math. Monthly 82 (1975) 221–239.
    https://doi.org/10.1080/00029890.1975.11993805
  12. C.X. Kang, I.G. Yero and E. Yi, The fractional strong metric dimension in three graph products, Discrete Appl. Math. 251 (2018) 190–203.
    https://doi.org/10.1016/j.dam.2018.05.051
  13. A. Kelenc, N. Tratnik and I.G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math. 251 (2018) 204–220.
    https://doi.org/10.1016/j.dam.2018.05.052
  14. S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217–229.
    https://doi.org/10.1016/0166-218X(95)00106-2
  15. T. Laihonen, The metric dimension for resolving several objects, Inform. Process. Lett. 116 (2016) 694–700.
    https://doi.org/10.1016/j.ipl.2016.06.002
  16. P.J. Slater, Leaves of trees, in: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 14 (1975) 549–559.

Close