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Resolving sets were originally designed to locate vertices of a graph one
at a time. For the purpose of locating multiple vertices of the graph si-
multaneously, {ℓ}-resolving sets were recently introduced. In this paper, we
present new results regarding the {ℓ}-resolving sets of a graph. In addition
to proving general results, we consider {2}-resolving sets in rook’s graphs
and connect them to block designs. We also introduce the concept of ℓ-
solid-resolving sets, which is a natural generalisation of solid-resolving sets.
We prove some general bounds and characterisations for ℓ-solid-resolving
sets and show how ℓ-solid- and {ℓ}-resolving sets are connected to each
other. In the last part of the paper, we focus on the infinite graph family of
flower snarks. We consider the ℓ-solid- and {ℓ}-metric dimensions of flower
snarks. In two proofs regarding flower snarks, we use a new computer-aided
reduction-like approach.
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1. Introduction

The graphs we consider are undirected and simple. They are also connected and
finite unless otherwise stated. The vertex set of a graph G is denoted by V (G) or
simply by V if the graph in question is clear from context. The distance between
vertices v and u, denoted by d(v, u), is the length of any shortest path between
v and u.

Consider a graph G with vertices V . Let S = {s1, . . . , sk} ⊆ V be nonempty.
The distance array of vertex v ∈ V with respect to the set S is defined as
DS(v) = (d(s1, v), . . . , d(sk, v)). If no two vertices have the same distance array,
the set S is called a resolving set ofG. This concept was introduced independently
by Slater [16] and Harary and Melter [9]. Resolving sets have applications in robot
navigation [14] and network discovery and verification [1], for example. For some
recent developments, see [6, 12, 13].

Resolving sets can be used to locate vertices of a graph one at a time. Our
research focuses on how we can locate multiple vertices simultaneously. To that
end, let us define the distance array of a vertex set X ⊆ V with respect to
S = {s1, . . . , sk} ⊆ V as

DS(X) = (d(s1, X), . . . , d(sk, X)),

where d(si, X) = minx∈X{d(si, x)} for all si ∈ S. For any singleton set {v} ⊆ V
we naturally have DS({v}) = DS(v). The following definition was introduced
in [15].

Definition 1. Let ℓ ≥ 1 be an integer. The set S ⊆ V (G) is an {ℓ}-resolving
set of G, if for all nonempty sets X,Y ⊆ V (G) such that X 6= Y , |X| ≤ ℓ and
|Y | ≤ ℓ we have DS(X) 6= DS(Y ).

When ℓ = 1, Definition 1 is equivalent to the definition of a resolving set.
Consider the graph H illustrated in Figure 1. The set R1 = {v2, v3, v7} is a

{1}-resolving set of H. The vertex v6 and the set X = {v8, v9} have the same
distance array DR1

(v6) = (2, 3, 1) = DR1
(X) with respect to the set R1. Thus,

the set R1 cannot distinguish X from v6. The set R2 = {v1, v2, v3, v4, v8, v9} is
a {2}-resolving set of H, and with it we can distinguish X from v6. Indeed, we
have DR2

(v6) = (3, 2, 3, 2, 2, 2) and DR2
(X) = (3, 2, 3, 2, 0, 0). Moreover, we can

uniquely determine the elements of X using DR2
(X).

We can also distinguish v6 from X with another type of resolving sets in-
troduced in [7]. The set S ⊆ V is a solid-resolving set of a graph G if for
all v ∈ V and nonempty X ⊆ V we have DS(v) 6= DS(X). For example, the
set S1 = {v1, v2, v3, v7, v8} is a solid-resolving set of the graph H. Indeed, we
have DS1

(v6) = (3, 2, 3, 1, 2) and DS1
(X) = (3, 2, 3, 1, 0). Solid-resolving sets give

unique distance arrays to all vertices. However, some sets of vertices with at
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least two elements may share the same distance array. Let Y = {v6, v8}. Now
DS1

(X) = (3, 2, 3, 1, 0) = DS1
(Y ), and thus the set S1 is not a {2}-resolving set

of H.
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(b) The set R2.

Figure 1. The graph H with a {1}-resolving set and a {2}-resolving set.

The concept of solid-resolving sets can be generalised for larger sets of ver-
tices. Consider again the graph H. We want to be able to distinguish sets with
up to two vertices as with a {2}-resolving set, but we want to also distinguish sets
with up to two vertices from sets with three or more vertices. In other words, the
aim is to locate the elements of sets with up to two vertices and detect if a set
contains at least three vertices. Our {2}-resolving set R2 can do the former but
not the latter; the sets U = {v5, v7} and W = {v5, v6, v7} have the same distance
array DR2

(U) = (2, 1, 2, 1, 1, 1) = DR2
(W ). As a solution to this problem, we

now present the following generalisation of solid-resolving sets.

Definition 2. Let ℓ ≥ 1 be an integer. The set S ⊆ V (G) is an ℓ-solid-resolving
set of G, if for all distinct nonempty sets X,Y ⊆ V (G) such that |X| ≤ ℓ we have
DS(X) 6= DS(Y ).

When ℓ = 1, the previous definition is exactly the same as the definition
of a solid-resolving set in [7]. The set S2 = {v1, v2, v3, v4, v6, v8, v9} is a 2-solid-
resolving set of H. We can distinguish the sets U and W from each other using
S2 since DS2

(U) = (2, 1, 2, 1, 1, 1, 1) and DS2
(W ) = (2, 1, 2, 1, 0, 1, 1).

The difference between Definitions 1 and 2 is significant but subtle; the set
Y can have any cardinality in Definition 2, but in Definition 1, we have the
restriction |Y | ≤ ℓ. If a set S satisfies Definition 2 for some ℓ ≥ 1, then S
also satisfies Definition 1 for the same ℓ. However, an {ℓ}-resolving set is not
necessarily an ℓ-solid-resolving set (as we saw in the graph H).

Since V (G) is an ℓ-solid-resolving set of G for any ℓ ∈ {1, . . . , |V (G)|}, it
is clear that an ℓ-solid-resolving set exists for any graph G and any integer ℓ ∈
{1, . . . , |V (G)|}. Similarly, for any G and ℓ ∈ {1, . . . , |V (G)|} the set V (G) is an
{ℓ}-resolving set. Therefore, we focus on determining the minimum cardinality
of an ℓ-solid- or {ℓ}-resolving set of a graph.
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The {ℓ}-metric dimension of G, denoted by βℓ(G), is the minimum cardi-
nality of an {ℓ}-resolving set of G. An {ℓ}-resolving set of cardinality βℓ(G) is
called an {ℓ}-metric basis of G. Similarly, the ℓ-solid-metric dimension of G,
denoted by βs

ℓ (G), is the minimum cardinality of an ℓ-solid-resolving set of G.
An ℓ-solid-resolving set of cardinality βs

ℓ (G) is called an ℓ-solid-metric basis of G.
We explore the basic properties of ℓ-solid- and {ℓ}-resolving sets in Section

2. In Section 3, we prove a general lower bound on the ℓ-solid-metric dimension
of a graph and characterise the graphs that attain this bound. In Section 4,
we consider Cartesian products of graphs. In particular, we consider the rook’s
graph Km�Kn, and it turns out that the {2}-metric dimension of a rook’s graph
is connected to combinatorial designs. Finally, in Section 5, we consider the ℓ-
solid- and {ℓ}-metric dimensions of flower snarks. The structure of a flower snark
allows us to prove bounds on the 1-solid- and {2}-metric dimensions by using a
new reduction-like approach. We also point out and correct an error in a proof
in [10] regarding the {1}-metric dimension of a flower snark.

2. General Results

2.1. The Connection Between ℓ-Solid- and {ℓ}-Resolving Sets

The following theorem gives a characterisation for ℓ-solid-resolving sets. Com-
pared to Definition 2, this characterisation provides a significantly easier way to
verify that a set is an ℓ-solid-resolving set.

Theorem 3. Let S ⊆ V and ℓ ≥ 1. The set S is an ℓ-solid-resolving set of G
if and only if for all x ∈ V and nonempty Y ⊆ V such that x /∈ Y and |Y | ≤ ℓ
there exists an element s ∈ S such that

(1) d(s, x) < d(s, Y ).

Proof. (⇒) Assume that S does not satisfy (1). There exists a vertex x ∈ V and
a set Y ⊆ V such that x /∈ Y , |Y | ≤ ℓ and d(s, x) ≥ d(s, Y ) for all s ∈ S. Now
DS(Y ) = DS(Y ∪ {x}) and S is not an ℓ-solid-resolving set of G by Definition 2.

(⇐) Assume then that S satisfies (1). Consider nonempty vertex sets X,Y ⊆
V such that |X| ≤ ℓ and X 6= Y . We have the following two cases.

1. Y 6⊂ X: Let y ∈ Y \X. Since S satisfies (1), there exists an element s ∈ S
such that d(s, y) < d(s,X). Now we have DS(X) 6= DS(Y ).

2. Y ⊂ X: Since X 6= Y , there exists a vertex x ∈ X such that x /∈ Y .
Furthermore, we have |Y | < |X| ≤ ℓ. According to (1), we have d(s, x) <
d(s, Y ) for some s ∈ S, and consequently DS(X) 6= DS(Y ).

Thus, the set S is an ℓ-solid-resolving set of G by Definition 2.
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Theorem 3 will be very useful throughout the article. This theorem also
implies the corresponding result for ℓ = 1 in [7, Thm 2.2]. A somewhat similar
result holds for {ℓ}-resolving sets as stated in the following lemma. Unlike in
Theorem 3, we now have only an implication and not an equivalence.

Lemma 4. Let S ⊆ V and ℓ ≥ 2. If S is an {ℓ}-resolving set of G, then for all

x ∈ V and Y ⊆ V such that x /∈ Y and |Y | ≤ ℓ− 1 there exists an element s ∈ S
for which we have

(2) d(s, x) < d(s, Y ).

Proof. Assume that S does not satisfy (2). There exists a vertex x ∈ V and
a set Y ⊆ V such that x /∈ Y , |Y | ≤ ℓ − 1 and d(s, x) ≥ d(s, Y ) for all s ∈ S.
Now DS(Y ) = DS(Y ∪ {x}) and since |Y | < |Y ∪ {x}| ≤ ℓ, the set S is not an
{ℓ}-resolving set of G.

Now, if S is an {ℓ + 1}-resolving set of G for some ℓ ≥ 1, then according to
Lemma 4 for all x ∈ V and Y ⊆ V such that x /∈ Y and |Y | ≤ ℓ there exists an
element s ∈ S such that d(s, x) < d(s, Y ). According to Theorem 3, the set S is
now also an ℓ-solid-resolving set, and the next result is immediate.

Theorem 5. Let S ⊆ V and ℓ ≥ 1.

(i) If S is an ℓ-solid-resolving set, then it is an {ℓ}-resolving set of G.

(ii) If S is an {ℓ+ 1}-resolving set, then it is an ℓ-solid-resolving set of G.

If we know that a set S is an ℓ-solid-resolving set of G, then to prove that
the set S is an {ℓ+1}-resolving set of G, it is sufficient to check that the distance
arrays of vertex sets of cardinality ℓ+1 are unique. Indeed, according to Definition
2 the distance arrays DS(X), where |X| ≤ ℓ, are unique. The only thing we need
to do to prove that S satisfies Definition 1 is to show that no two vertex sets of
cardinality ℓ+ 1 have the same distance array with respect to S.

2.2. Forced Vertices

A vertex v ∈ V (G) is called a forced vertex of an {ℓ}-resolving set (similarly,
ℓ-solid-resolving set) of G if it must be included in any {ℓ}-resolving set of G.
In other words, no subset of V (G) \ {v} is an {ℓ}-resolving set of G. The graph
we are considering is often clear from the context, and we may refer to a forced
vertex of that graph by saying simply that the vertex is forced for an ℓ-solid- or
{ℓ}-resolving set. The number of forced vertices of an ℓ-solid- or {ℓ}-resolving
set gives us an immediate lower bound on the corresponding metric dimension.

The concept of forced vertices was first introduced in [8], where the forced
vertices of {ℓ}-resolving sets were partially characterised. As was pointed out in
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[4], the set V \ {v} is a {1}-resolving set of a nontrivial connected graph G for all
v ∈ V . Thus, no such graph has forced vertices for a {1}-resolving set. In [7], the
forced vertices of 1-solid-resolving sets were fully characterised. In this section,
we prove characterisations for ℓ-solid- and {ℓ}-resolving sets for all ℓ.

We denote by N(v) the open neighbourhood of vertex v which is defined as
N(v) = {u ∈ V | d(v, u) = 1}. The closed neighbourhood of a vertex v ∈ V is
N [v] = N(v) ∪ {v} and the closed neighbourhood of a vertex set U is N [U ] =
⋃

u∈U N [u].

Theorem 6. Let ℓ ≥ 1. A vertex v ∈ V is a forced vertex of an ℓ-solid-resolving
set of G if and only if there exists a set U ⊆ V such that v /∈ U , |U | ≤ ℓ and

N(v) ⊆ N [U ].

Proof. (⇐) Assume that v and U are as described. The shortest path from any
s ∈ V \{v} to v goes through N(v). Since N(v) ⊆ N [U ], we have d(s, v) ≥ d(s, U)
for all s ∈ V \ {v}. Thus, DS(U) = DS(U ∪ {v}) for all subsets S ⊆ V \ {v}.

(⇒) Assume then that v ∈ V and for all U ⊆ V such that v /∈ U and |U | ≤ ℓ
we have N(v) * N [U ]. Now there exists a vertex w ∈ N(v) \N [U ], and we have
d(w, v) < d(w,U). Since d(x, x) < d(x, Y ) for any x ∈ V and Y ⊆ V \ {x}, the
set V \{v} satisfies (1) and is thus an ℓ-solid-resolving set of G, which contradicts
the fact that v is forced for an ℓ-solid-resolving set.

According to Theorem 5 an {ℓ}-resolving set, where ℓ ≥ 2, is always an
(ℓ− 1)-solid-resolving set of the graph in question. Thus, if a vertex is forced for
(ℓ− 1)-solid-resolving sets of a graph, then it is also forced for the {ℓ}-resolving
sets of the same graph. The following theorem characterises all forced vertices of
an {ℓ}-resolving set of a graph, and shows that the forced vertices of {ℓ}-resolving
sets are in fact exactly the same as those of (ℓ− 1)-solid-resolving sets.

Theorem 7. Let ℓ ≥ 2. A vertex v ∈ V is a forced vertex of an {ℓ}-resolving
set of G if and only if there exists a set U ⊆ V such that v /∈ U , |U | ≤ ℓ− 1 and

N(v) ⊆ N [U ].

Proof. (⇐) Clear by Theorems 5 and 6.

(⇒) Assume then that v ∈ V and that for all U ⊆ V such that v /∈ U and
|U | ≤ ℓ− 1 we have N(v) * N [U ]. We will show that the set S = V \ {v} is an
{ℓ}-resolving set of G by showing how to determine the elements of a vertex set
X when the distance array DS(X) is known. Consider a nonempty set X ⊆ V ,
where |X| ≤ ℓ, and let DS(X) be known. We can easily determine the elements
of X ′ = X ∩S by considering the zeros in the distance array DS(X). If |X ′| = ℓ,
then X = X ′ and we have uniquely determined all elements of X. Otherwise,
we still need to determine whether v is in X since it is the only vertex of the
graph that is not in S. Since |X ′| ≤ ℓ − 1 and v /∈ X ′, there exists a vertex
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w ∈ N(v) \ N [X ′] according to our assumption. Now, d(w, v) < d(w,X ′) and
d(w,X) = d(w, v) if and only if v ∈ X.

To illustrate the previous theorems, consider again the graph H in Figure 1.
Since N(v1) = {v2, v3, v4} and N(v3) = {v1, v2, v4}, we have N(v1) ⊆ N [v3] and
N(v3) ⊆ N [v1]. By Theorems 6 and 7, the vertices v1 and v3 are forced vertices
of 1-solid- and {2}-resolving sets of H.

Consider then any connected graph G. If deg(v) ≤ ℓ for some vertex v
and integer ℓ ≥ 1, then N(v) ⊆ N [N(v)] and v is forced for ℓ-solid- and {ℓ+ 1}-
resolving sets of G by Theorems 6 and 7. In particular, if G is a tree, then a vertex
v is forced for ℓ-solid- and {ℓ+ 1}-resolving sets if and only if deg(v) ≤ ℓ. In [8],
it was shown that the forced vertices of an {ℓ}-resolving set of a tree indeed form
an {ℓ}-resolving set, when ℓ ≥ 2. Since any {ℓ+1}-resolving set is an ℓ-resolving
set and the forced vertices of these two types of resolving sets are exactly the
same, the ℓ-solid-resolving sets of a tree consist of only the corresponding forced
vertices. Thus, for any ℓ we can construct trees that have nontrivial ℓ-solid- and
{ℓ}-resolving sets.

3. Bounds and Characterisations

For the {1}-metric dimension of a graph there is the obvious lower bound β1(G) ≥
1. This lower bound is attained if and only if G = Pn [4, 14]. In this section, we
prove a lower bound on the ℓ-solid-metric dimension of a graph and characterise
the graphs attaining that bound. The lower bound βs

1(G) ≥ 2 on the 1-solid-
metric dimension of a graph was shown in [7]. The following theorem generalises
this lower bound for ℓ-solid-metric dimensions where ℓ ≥ 2.

Theorem 8. Let G be a graph with n vertices. When 1 ≤ ℓ ≤ n − 1, we have

βs
ℓ (G) ≥ ℓ+ 1.

Proof. Let S ⊆ V such that 1 ≤ |S| ≤ ℓ. Since ℓ ≤ n − 1, there exists at least
one vertex v which is not in S. Now, DS(S) = (0, . . . , 0) = DS(S ∪ {v}), and S
is not an ℓ-solid-resolving set of G according to Definition 2.

The following theorem characterises the graphs attaining the bound of The-
orem 8.

Theorem 9. Let G be a connected graph with n vertices and let 2 ≤ ℓ ≤ n − 1.
We have

βs
ℓ (G) = ℓ+ 1 if and only if n = ℓ+ 1 or G = K1,ℓ+1.

Proof. If n = ℓ+ 1, on the one hand, βs
ℓ (G) ≤ n = ℓ+ 1 and on the other hand

βs
ℓ (G) > ℓ, and thus βs

ℓ (G) = ℓ+ 1. Also, by Theorem 2.9 of [8], the star K1,ℓ+1
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with ℓ + 2 vertices satisfies βℓ+1(K1,ℓ+1) = ℓ + 1. Therefore ℓ < βs
ℓ (K1,ℓ+1) ≤

βℓ+1(K1,ℓ+1) = ℓ+ 1, and thus βs
ℓ (K1,ℓ+1) = ℓ+ 1.

Conversely, suppose that G is a connected graph such that |V | = n ≥ ℓ + 2
and βs

ℓ (G) = ℓ+ 1 and let S ⊆ V be an ℓ-solid-resolving set with ℓ+ 1 vertices.
The following properties hold.

1. The set S is independent: Suppose to the contrary that there exist s1, s2 ∈
S such that d(s1, s2) = 1. Since |V | ≥ ℓ+ 2, there exists u ∈ V \ S that satisfies
d(u, s1) ≥ 1 = d(s2, s1). Now, d(v, u) ≥ d(v, S \ {s1}) for all v ∈ S, and since
|S \{s1}| = ℓ, the set S is not an ℓ-solid-resolving set of G according to (1), when
x = u and Y = S \ {s1}.

2. We have deg(s) = 1 for every s ∈ S: Denote S = {s1, . . . , sℓ+1}. Since
G is connected and S is independent, each si has a neighbour in V \ S, say
vi ∈ N(si) for i = 1, . . . , ℓ + 1. Suppose to the contrary that deg(si) ≥ 2 for
some i. Assume without loss of generality that deg(s1) ≥ 2. There exists a
vertex v′1 ∈ N(s1), v

′

1 6= v1. Let A = {v1, . . . , vℓ}. Since S is an ℓ-solid-resolving
set of G, according to Theorem 3 we must have d(si, v

′

1) < d(si, A) for some
i ∈ {1, . . . , ℓ + 1}. However, we have d(si, A) = 1 for all i ∈ {1, . . . , ℓ}, and thus
d(sℓ+1, v

′

1) < d(sℓ+1, A). Specifically, we have d(sℓ+1, v
′

1) < d(sℓ+1, v1). Similarly,
for v1 and B = {v′1, v2, . . . , vℓ} we have d(sℓ+1, v1) < d(sℓ+1, B), and specifically
d(sℓ+1, v1) < d(sℓ+1, v

′

1), a contradiction. Thus, deg(s) = 1 for all s ∈ S.

We now consider two cases.

Case 1. There exists u ∈ V \S and two different vertices s1, s2 ∈ S such that
d(u, s1) = d(u, s2) = 1. If |V \ S| ≥ 2, then let v ∈ V \ S be such that v 6= u. Let
X = (S \ {s1, s2}) ∪ {u} and Y = X ∪ {v}. We obtain that DS(X) = DS(Y ) =
(1, 1, 0, . . . , 0), a contradiction. This means that, in this case, V \ S = {u}, and
since u is not a forced vertex, deg(u) ≥ ℓ+ 1, and thus u is a neighbour of every
vertex in S. Finally, G = K1,ℓ+1 because S is independent.

Case 2. Every vertex in V \ S has at most one neighbour in S. As seen
above, we know that every vertex in S has exactly one neighbour in V \ S. We
denote S = {s1, . . . , sℓ+1} and A = {v1, . . . , vℓ+1} (|A| = ℓ + 1) where vi is the
unique neighbour of si, for 1 ≤ i ≤ ℓ+ 1, and note that ℓ+ 1 ≥ 3. The following
properties hold.

(a) The set A is independent. Suppose to the contrary that, say, v1 and v2
are neighbours. Thus, d(v1, s2) = 2. Define the sets X = (S \{s1, s2})∪{v1} and
Y = X ∪ {v3}. Clearly DS(X) = DS(Y ) = (1, 2, 0, . . . , 0), a contradiction.

(b) No pair of vertices of A has a common neighbour. Suppose to the contrary
(without loss of generality) that there exists w ∈ V that satisfies d(v1, w) =
d(v2, w) = 1. Then deg(w) ≥ 2 and w /∈ S. Moreover w /∈ A, because A is
independent. Let X = (S \ {s1, s2}) ∪ {w} and Y = X ∪ {v3}. Then DS(X) =
DS(Y ) = (2, 2, 0, . . . , 0), a contradiction.
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Note that every vi ∈ A has at least ℓ neighbours (ℓ ≥ 2) in V \ S, say
{vi,j | 1 ≤ j ≤ ℓ}, because it is not forced. The last property gives that vi,j 6= vi′,j′

for (i, j) 6= (i′, j′).
Assume, without loss of generality, that d(v1,1, sℓ+1) = min{d(v1,j , sℓ+1) | 1 ≤

j ≤ ℓ} and let X = {v1,1, v2,1, . . . , vℓ,1}. Then for all si ∈ S, where i 6= ℓ + 1,
we have d(si, X) = 2 ≤ d(si, v1,2) since A and S are both independent. Fur-
thermore, since d(v1,1, sℓ+1) ≤ d(v1,2, sℓ+1), we have d(sℓ+1, X) ≤ d(sℓ+1, v1,1) ≤
d(sℓ+1, v1,2). Thus, d(si, v1,2) ≥ d(si, X) for all si ∈ S, and S is not an ℓ-solid-
resolving set of G by Theorem 3, a contradiction.

Notice that the number of graphs that attain the lower bound βs
ℓ (G) ≥ ℓ+1 is

infinite when ℓ = 1 and finite when ℓ ≥ 2. Corresponding results for {ℓ}-resolving
sets can be found in [8].

Let us then consider infinite graphs, that is, graphs with infinitely many
vertices. In [2], it was shown that an infinite graph may have finite or infinite
{1}-metric dimension. We will show that the {ℓ}-metric dimension, where ℓ ≥ 2,
is infinite for any infinite graph. Moreover, the ℓ-solid-metric dimension of any
infinite graph is infinite. To prove these results, we will consider doubly resolving
sets.

Definition 10 [3]. Let G be a graph with |V (G)| ≥ 2. Two vertices v, w ∈ V (G)
are doubly resolved by x, y ∈ V (G) if d(v, x)− d(w, x) 6= d(v, y)− d(w, y). A set
of vertices S ⊆ V (G) doubly resolves G, and S is a doubly resolving set, if every
pair of distinct vertices v, w ∈ V (G) is doubly resolved by two vertices in S.

In [7], it was shown that a 1-solid-resolving set of G is a doubly resolving set
of G. According to Theorem 5 any {ℓ}-resolving set, where ℓ ≥ 2, and ℓ-solid-
resolving set is a 1-solid-resolving set. The following result is now immediate.

Corollary 11. If S ⊆ V (G) is an {ℓ}-resolving set (ℓ ≥ 2) or an ℓ-solid-resolving
set of G (ℓ ≥ 1), then S is a doubly resolving set of G.

Lemma 12 [2]. If G is an infinite graph, then any doubly resolving set of G is

infinite.

The following corollary is now immediate due to Corollary 11 and Lemma 12.

Corollary 13. If G is an infinite graph, then βℓ(G) = ∞, when ℓ ≥ 2, and

βs
ℓ (G) = ∞, when ℓ ≥ 1.

4. On Cartesian Products of Graphs

The Cartesian product of the graphs G and H is the graph G�H with the vertex
set {av | a ∈ V (G), v ∈ V (H)}. Distinct vertices av, bu ∈ V (G�H) are adjacent
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if a = b and v ∈ NH(u), or a ∈ NG(b) and v = u. We have dG�H(av, bu) =
dG(a, b)+ dH(v, u). To simplify notations, we may denote V instead of V (G�H)
and omit the subscriptG�H from the distance function. The projection ofX ⊆ V
onto G is the set {x1 ∈ V (G) | x1x2 ∈ X}. Similarly, the projection of X ⊆ V
onto H is the set {x2 ∈ V (H) | x1x2 ∈ X}.

Theorem 14. Let G and H be nontrivial connected graphs and ℓ ≥ 1.

1. If S is an ℓ-solid-resolving set of G�H, then the projection of S onto G
(respectively onto H) is an ℓ-solid-resolving of G (respectively of H).

2. If T is an ℓ-solid-resolving set of G and U is an ℓ-solid-resolving set of H,

then T × U is an ℓ-solid-resolving of G�H.

3. We have max{βs
ℓ (G), βs

ℓ (H)} ≤ βs
ℓ (G�H) ≤ βs

ℓ (G) · βs
ℓ (H).

Proof. 1. Let a ∈ V (G) and Y ⊆ V (G), |Y | ≤ ℓ, and let h0 ∈ V (H) be a fixed
vertex. Let ah0 ∈ V (G�H) and Y0 = Y × {h0}. Now |Y0| ≤ ℓ and there exists
s = gshs ∈ S such that

dG(gs, a) + dH(hs, h0) = d(gshs, ah0) < d(gshs, Y0)

= min{dG(gs, y) + dH(hs, h0) | y ∈ Y }

= min{dG(gs, y) | y ∈ Y }+ dH(hs, h0).

Therefore, dG(gs, a) < min{dG(gs, y) | y ∈ Y } = dG(gs, Y ), as desired.

2. Let ab ∈ V (G�H) and Y ⊆ V (G�H) such that |Y | ≤ ℓ. Then the
projections YG and YH of Y onto G and H, respectively, satisfy |YG|, |YH | ≤
ℓ. Therefore, there exist t ∈ T and u ∈ U such that dG(t, a) < dG(t, YG) =
min{dG(t, yg) | yg ∈ YG} and dH(u, b) < dH(u, YH) = min{dH(u, yh) | yh ∈ YH}.

Note that min{dG(t, yg) | yg ∈ YG} + min{dH(u, yh) | yh ∈ YH} ≤ min{
dG(t, α) + dH(u, β) | αβ ∈ Y } = min{d(tu, αβ) | αβ ∈ Y } = d(tu, Y ).

Finally, d(tu, ab) = dG(t, a) + dH(u, b) < min{dG(t, yg) | yg ∈ YG} +
min{dH(u, yh) | yh ∈ YH} ≤ d(tu, Y ), as desired.

3. The lower bound follows from 1. and the upper bound follows from 2.

Notice that in 2., it would be sufficient that the set U satisfies the condition
(1) with equality, that is, for all x ∈ V (H) and nonempty Y ⊆ V (H) such that
x /∈ Y and |Y | ≤ ℓ there exists u ∈ U such that dH(u, x) ≤ dH(u, Y ).

Theorem 15. Let G and H be nontrivial connected graphs and ℓ ≥ 2.

1. If S is an {ℓ}-resolving set of G�H, then the projection of S onto G (respect-
ively onto H) is an {ℓ}-resolving of G (respectively of H).

2. If S is an {ℓ}-resolving set of G (respectively of H) and S′ is an ℓ-solid-
resolving set of H (respectively of G), then S × S′ (respectively S′ × S) is a

{ℓ}-resolving set of G�H.
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3. We have max{βℓ(G), βℓ(H)}≤βℓ(G�H)≤min{βℓ(G)·βs
ℓ (H), βs

ℓ (G)·βℓ(H)}.

Proof. 1. Let S be an {ℓ}-resolving set ofG�H, andX and Y be subsets of V (G)
such that X 6= Y , 1 ≤ |X| ≤ ℓ and 1 ≤ |Y | ≤ ℓ. Define X0 = X × {h0} and Y0 =
Y × {h0}, where h0 ∈ H. Clearly, we have X0 6= Y0, |X| = |X0| and |Y | = |Y0|.
Hence, there exists a vertex s = gshs ∈ S such that d(s,X0) 6= d(s, Y0). Therefore,
as d(s,X0) = dG(gs, X) + dH(hs, h0) and d(s, Y0) = dG(gs, Y ) + dH(hs, h0), we
obtain that dG(gs, X) 6= dG(gs, Y ). Thus, the projection of S onto G is an {ℓ}-
resolving set of G. Analogously, it can be shown that the projection of S onto H
is an {ℓ}-resolving set of H.

2. Let S be an {ℓ}-resolving set of G and S′ be an ℓ-solid-resolving set of H.
Assume that X,Y ⊆ V (G�H) are such that X 6= Y , 1 ≤ |X| ≤ ℓ and 1 ≤ |Y | ≤
ℓ. Denote X = {g1h1, . . . , gkhk} and Y = {g′1h

′

1, . . . , g
′

k′h
′

k′}, where k = |X|,
k′ = |Y |, gi, g

′

i ∈ V (G) and hi, h
′

i ∈ V (H). Further denote XG = {g1, . . . , gk} and
YG = {g′1, . . . , g

′

k′}, and XH = {h1, . . . , hk} and YH = {h′1, . . . , h
′

k′}. The proof
now divides into the following two cases.

• Suppose that XG 6= YG. Now there exists a vertex s ∈ S such that dG(s,XG) 6=
dG(s, YG). Without loss of generality, we may assume that dG(s, g1) = dG(s,XG)
< dG(s, YG). Observe that by the condition (1) there exists s′ ∈ S′ such that
dH(s′, h1) < dH(s′, h) for any h ∈ YH \ {h1} since |YH \ {h1}| ≤ ℓ; we agree that
if YH \ {h1} = ∅, then any s′ ∈ S′ meets the required (empty) condition (similar
agreement is also made in the case with XG = YG). Thus, we have a vertex
s′ ∈ S satisfying dH(s′, h1) = dH(s′, YH). Therefore, we obtain that d(ss′, X) ≤
d(ss′, g1h1) = dG(s, g1) + dH(s′, h1) < dG(s, YG) + dH(s′, YH) ≤ d(ss′, Y ).

• Suppose that XG = YG. Since X 6= Y , we have X△Y = (X \ Y )∪ (Y \X) 6= ∅
and, without loss of generality, we may assume that g1h1 ∈ X△Y . By the
condition (2), there exists s ∈ S such that dG(s, g1) < dG(s, g) for any g ∈
YG \ {g1} since |YG \ {g1}| ≤ ℓ − 1. Analogously, by (1), there exists s′ ∈ S′

such that dH(s′, h1) < dH(s′, h′) for any h′ ∈ YH \ {h1} since |YH \ {h1}| ≤ ℓ.
For any g′ih

′

i ∈ Y we have g′i 6= g1 or h′i 6= h1 since g1h1 /∈ Y . Now d(ss′, X) ≤
d(ss′, g1h1) = dG(s, g1) + dH(s′, h1) < dG(s, g

′

i) + dH(s′, h′i) = d(ss′, g′ih
′

i) for any
g′ih

′

i ∈ Y . Hence, we have shown that d(ss′, X) < d(ss′, Y ).

Thus, S×S′ is an {ℓ}-resolving set of G�H. The other claim can be proven
analogously.

3. The lower bound follows from 1. and the upper bound follows from 2.

4.1. The Rook’s Graph Km�Kn

The graph Km�Kn can be illustrated as a grid, see Figure 2. A column of
Km�Kn is the set {vu | u ∈ V (Kn)} for some fixed v ∈ V (Km). Similarly, a row

of Km�Kn is the set {vu | v ∈ V (Km)} for some fixed u ∈ V (Kn). Two vertices
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are adjacent if and only if they are on the same row or column. Moreover, if two
distinct vertices x and y are on different rows and columns, we have d(x, y) = 2.

Consider any Km�Kn where m,n ≥ 2. Let x, y and z be distinct vertices
such that x and y are on the same column, and x and z are on the same row. Any
neighbour of x is in the closed neighbourhood of either y or z. Thus, we have
N(x) ⊆ N [{y, z}]. According to Theorems 6 and 7, x is a forced vertex for ℓ-
solid-resolving sets when ℓ ≥ 2 and {ℓ}-resolving sets when ℓ ≥ 3. Consequently,
βs
ℓ (Km�Kn) = mn for all ℓ ≥ 2 and βℓ(Km�Kn) = mn for all ℓ ≥ 3.

The 1-solid- and {1}-metric dimensions of Km�Kn were considered in [7]
and [3], respectively. Thus, the only ℓ-solid- or {ℓ}-metric dimension of Km�Kn

yet to be determined is the {2}-metric dimension. In what follows, we show
a characterisation for the {2}-resolving sets of Km�Kn. As it turns out, this
characterisation provides us an exciting connection between combinatorial designs
and {2}-resolving sets of Km�Kn.

A quadruple of Km�Kn is the set {av, au, bv, bu} where a, b ∈ V (Km) and
v, u ∈ V (Kn) are distinct. For example, in K7�K7 illustrated in Figure 2, the
set {v1u1, v1u3, v4u1, v4u3} is a quadruple, and we can see that these four vertices
lie on the corners of a rectangle.

u1

u2

u3

u4

u5

u6

u7

v1 v2 v3 v4 v5 v6 v7

Figure 2. The graph K7�K7, where vi ∈ V (K7) and ui ∈ V (K7). The black squares

from a {2}-resolving set of K7�K7.

Lemma 16. Let m,n ≥ 2. If the set S is a {2}-resolving set of Km�Kn, then

each quadruple contains at least one element of S.

Proof. Let Q = {av, au, bv, bu} ⊆ V (Km�Kn) be a quadruple that does not
contain any elements of S. Let us denote X = {av, bu} and Y = {au, bv}. Since
N [X] = N [Y ], we have d(s,X) = 1 if and only if d(s, Y ) = 1 for all s ∈ S.
Consequently, DS(X) = DS(Y ) and S is not a {2}-resolving set of Km�Kn, a
contradiction.
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In the following theorem, we show that there are two types of {2}-resolving
sets of Km�Kn.

Theorem 17. Let m,n ≥ 2. If the set S is a {2}-resolving set of Km�Kn, then

1. the set {v} ∪ (V \N(v)) is a subset of S for some v ∈ V or

2. each row and column contains at least two elements of S and each quadruple

contains at least one element of S.

Proof. Suppose first that for some a ∈ V (Km) the column C = {au | u ∈
V (Kn)} does not contain elements of S. Let av ∈ C and bv ∈ V \ C for some
v ∈ V (Kn). Since the column C does not contain any elements of S, we have
N(av) ∩ S ⊆ N [bv]. Consequently, d(s, av) ≥ d(s, bv) for all s ∈ S, and the set
S is not a {2}-resolving set of Km�Kn according to Lemma 4. Thus, if S is a
{2}-resolving set of Km�Kn, then each column (and row, by symmetry) contains
at least one element of S.

Suppose then that C ∩S = {au}. Let b ∈ V (Km) \ {a} and t ∈ V (Kn) \ {u}.
Consider the sets X = {bu, bt} and Y = {bu, at}. For some cv ∈ S, we have
d(cv,X) 6= d(cv, Y ). As bu is in both X and Y , we have d(cv, bt) 6= d(cv, at).
Since at and bt are on the same row, cv is either on the column C or the column
D = {bw | w ∈ V (Kn)}. The only element of S in C is au. However, the element
bu is in both X and Y , and we have d(au,X) = d(au, Y ) = 1. Thus, cv must be
in D. The column D contains the element bu, and thus d(cv,X) = d(cv, Y ) = 1
if cv 6= bt. Therefore, we have cv = bt and bt ∈ S. Since this holds for all b 6= a
and t 6= u, we have that w ∈ S for all w ∈ V \N(au).

In conclusion, if S is a {2}-resolving set of Km�Kn and some column (or
row) contains only one element of S, the set {v} ∪ (V \N(v)) is a subset of S for
some v ∈ V . If each row and column contains at least two elements of S, each
quadruple contains at least one element of S according to Lemma 16.

If {v} ∪ (V \ N(v)) is a proper subset of S for some v ∈ V , then S is a
{2}-resolving set of Km�Kn. The proof is straightforward but quite technical.
The set S contains almost all vertices of the graph. When the graph Km�Kn

is sufficiently large, the condition 2. of Theorem 17 has potential to produce
significantly smaller {2}-resolving sets. To show that a set satisfying 2. is a
{2}-resolving set of Km�Kn, we need the following lemma.

Lemma 18. Let m ≥ n ≥ 6 and S ⊆ V (Km�Kn). If each quadruple contains

at least one element of S, then there exists at most one row and one column that

contain at most two elements of S.

Proof. Suppose to the contrary that there exist some r, t ∈ V (Kn), r 6= t, such
that the rows R = {vr | v ∈ V (Km)} and T = {vt | v ∈ V (Km)} both contain at
most two elements of S. Consider the two rows as partitioned into pairs {vr, vt},
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where v ∈ V (Km). The rows R and T contain at most four elements of S in
total. However, we have m ≥ 6 pairs, and thus there are at least two pairs, say
{ar, at} and {br, bt}, that do not contain an element of S. Now the quadruple
{ar, at, br, bt} does not contain an element of S, a contradiction. The claim holds
for columns by symmetry.

Theorem 19. Let m ≥ n ≥ 6 and S ⊆ V (Km�Kn). If each row and column

contains at least two elements of S and each quadruple contains at least one

element of S, then the set S is a {2}-resolving set of Km�Kn.

Proof. To prove that S is a 1-solid-resolving set, it suffices to check that (1)
holds for any x ∈ V \ S. To that end, let x ∈ V \ S and y ∈ V , y 6= x. Both
the row and column that contain x also contain at least two elements of S. The
closed neighbourhood of y contains all these four elements if and only if y = x.
Thus, for any x ∈ V \ S and y ∈ V there exists s ∈ S such that d(s, x) < d(s, y).
According to Theorem 3, the set S is a 1-solid-resolving set of Km�Kn.

Let us then consider distinct sets X,Y ⊆ V (Km�Kn) such that |X| = |Y | =
2. If for some x ∈ X \ Y and y ∈ Y \ X we have {x, y} ∩ S 6= ∅, then clearly
DS(X) 6= DS(Y ).

Suppose that for some x ∈ X \ Y and y ∈ Y \ X we have {x, y} ∩ S = ∅.
According to Lemma 18 at least one of x and y has three elements of S on its
row or column. Assume without loss of generality that x is on the row R and R
contains at least three elements of S. If Y ∩R = ∅, then for at least one s ∈ S∩R
we have d(s,X) = 1 < d(s, Y ). Thus, DS(X) 6= DS(Y ).

Suppose that Y ∩ R 6= ∅, and let y1 ∈ Y ∩ R. Since x /∈ Y , the vertex y1
cannot be on the same column as x. The column C that contains x contains at
least two elements of S, say c1, c2 ∈ C ∩ S. We have d(c1, x) = d(c2, x) = 1 and
d(c1, y1) = d(c2, y1) = 2. Let y2 ∈ Y , y2 6= y1. If y2 /∈ C, then d(c1, y2) = 2 or
d(c2, y2) = 2, and thus DS(X) 6= DS(Y ).

Suppose y2 ∈ C. Only one of y1 and y2 can be in S. Suppose y1 ∈ S. If
y1 /∈ X, then DS(X) 6= DS(Y ). Suppose y1 ∈ X. The row T that contains y2
also contains at least two elements of S, say t1, t2 ∈ T ∩ S. Since y2 /∈ S, t1 6= y2
and t2 6= y2, and thus t1, t2 /∈ C. Now d(t1, X) = 2 or d(t2, X) = 2 since only one
of t1 and t2 can be on the same column as y1. Thus, DS(X) 6= DS(Y ). Similarly,
if y2 ∈ S, we can prove that there is a vertex s ∈ S in the same column as y1
such that d(s, y1) = 1 < d(s,X).

Suppose y1 /∈ S and y2 /∈ S. If the element x′ ∈ X \ {x} is in the intersection
of the column containing y1 and the row containing y2, the elements x, x′, y1 and
y2 form a quadruple. According to our assumption one of these elements is in S,
and consequently DS(X) 6= DS(Y ). If x′ is not on the same column as y1 or on
the same row as y2 (both of which contain two elements of S), we clearly have
DS(X) 6= DS(Y ).
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According to Theorem 19, the set illustrated as black squares in Figure 2 is
a {2}-resolving set of K7�K7. The following theorem can be used to obtain a
lower bound on the {2}-metric dimension of Km�Kn. Indeed, the left side of
Equation (3) decreases as the size of the {2}-resolving set S increases. Thus, this
gives a lower bound on |S|.

Theorem 20. Let m ≥ n ≥ 2. If S is a {2}-resolving set of Km�Kn, and q and

r are integers such that |S| = qm+ r with 0 ≤ r < m, then

(3) r

(

n− (q + 1)

2

)

+ (m− r)

(

n− q

2

)

≤

(

n

2

)

.

Proof. Assume first that S is an arbitrary subset of V (Km�Kn) and q and r
are integers such that |S| = qm + r with 0 ≤ r < m. Denote the columns of
Km�Kn by C1, . . . , Cm. For i = 1, . . . ,m, let xi be the number of elements of
S in the column Ci, i.e., xi = |S ∩ Ci|. Using this notation, each column Ci

contains
(

n−xi

2

)

pairs of vertices not belonging to S. Furthermore, the number of
such pairs of vertices over all the columns is equal to

(4)
m
∑

i=1

(

n− xi
2

)

.

Assume that the set S′ gives the minimum value of the sum (4) among the
sets with |S| elements. Let us then show that no column of S′ contains less than
q elements. Suppose to the contrary that there is a column Ci with |S′ ∩ Ci| =
k1 < q. Since |S′| = qm+ r, there exists a column Cj with |S′∩Cj | = k2 ≥ q+1.
Now we have

(

k1
2

)

+

(

k2
2

)

=

(

k1
2

)

+

(

k2 − 1

2

)

+ (k2 − 1) >

(

k1
2

)

+ k1 +

(

k2 − 1

2

)

=

(

k1 + 1

2

)

+

(

k2 − 1

2

)

.

Hence, the elements of S′ in the columns Ci and Cj can be redistributed to
obtain a set with the same number of elements as S′ and with a smaller sum (4)
(a contradiction). Similarly, it can be shown that no column contains at least
q+2 elements of S′. Indeed, if such a column, say Ci with |S′ ∩Ci| = k1 ≥ q+2,
exists, then there is a column Cj with |S′ ∩ Cj | = k2 ≤ q and as above we have

(

k1
2

)

+

(

k2
2

)

=

(

k1 − 1

2

)

+ (k1 − 1) +

(

k2
2

)

>

(

k1 − 1

2

)

+

(

k2
2

)

+ k2

=

(

k1 − 1

2

)

+

(

k2 + 1

2

)
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leading to a contradiction. Hence, we may assume that each column contains at
least q and at most q + 1 elements of S′. Therefore, as |S′| = |S| = qm + r,
there exist r columns containing q + 1 elements and m− r columns containing q
elements of S′. Thus, we obtain that

m
∑

i=1

(

n− xi
2

)

≥ r

(

n− (q + 1)

2

)

+ (m− r)

(

n− q

2

)

.

Observe that the right side of this inequality decreases as the number of elements
of S increases.

Assume then that S is a {2}-resolving set of Km�Kn (instead of being ar-
bitrary). Now, due to Lemma 16, no two columns have two same rows without
elements of S. This implies (by the pigeon hole principle) that

r

(

n− (q + 1)

2

)

+ (m− r)

(

n− q

2

)

≤

(

n

2

)

.

Thus, the claim follows.

The conditions of Theorem 19 can also be interpreted as a certain type of
design as explained in the following remark. For more on combinatorial designs,
see [5] (specifically, parts I and IV).

Remark 21. Let X be a set with n elements and B be a collection of m subsets
called blocks of X such that (i) any block has at most n − 2 elements, (ii) each
element of X is included in at most m − 2 blocks and (iii) any pair of elements
of X is included in at most one block of B. Each block of B represents a column
of Km�Kn; more precisely, the elements of a block correspond to the elements
of a column not belonging to S. Observe that maximizing the total number of
elements in the blocks of B minimizes the corresponding {2}-resolving set S of
Km�Kn. Although the designs satisfying (i), (ii) and (iii) have not earlier been
studied, some usual designs work nicely for our purposes.

• Let n = m = 7 and X = {1, . . . , 7}. A collection B1 = {{1, 2, 4}, {1, 3, 7},
{1, 5, 6}, {2, 3, 5}, {2, 6, 7}, {3, 4, 6}, {4, 5, 7}} is a (balanced incomplete block) de-
sign such that each block has 3 elements, each element is included in 3 blocks
and any pair of elements of X is included in exactly one block of B1. When we
interpret B1 as explained above, we obtain a {2}-resolving set of K7�K7 with 28
elements (see Figure 2). Moreover, by Theorem 20, no smaller {2}-resolving set
exists. Hence, we have β2(K7�K7) = 28.

• Let n = 10, m = 12 and X = {1, . . . , 10}. A collection B2 = {{1, 2, 3, 4}, {1, 5,
6, 7}, {1, 8, 9, 10}, {2, 5, 8}, {2, 6, 9}, {2, 7, 10}, {3, 5, 10}, {3, 6, 8}, {3, 7, 9},{4, 5, 9},
{4, 6, 10}, {4, 7, 8}} is a (pairwise balanced) design such that each block has 3
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or 4 elements, each element is included in 3 or 4 blocks and any pair of ele-
ments of X is included in exactly one block of B2. Hence, we obtain a {2}-
resolving set of K10�K12 with 81 elements. Therefore, by Theorem 20, we have
β2(K10�K12) = 81.

Analogously, any {2}-resolving set S of Km�Kn can be interpreted as a
certain type of design. Indeed, construct a design with m blocks each formed by
the elements of a column not belonging to S. By Lemma 16, each such design
satisfies the previous condition (iii) and some other minor constraints depending
on whether 1. or 2. of Theorem 17 holds.

5. Flower Snarks

Flower snarks were first introduced by Isaacs in [11]. Flower snarks were one
the first infinite graph families of 3-regular graphs proven to have no proper 3-
edge-coloring. In [10], flower snarks were shown to have a constant {1}-metric
dimension. Let us define flower snarks with the following construction.

Construction. Let n = 2k + 1 be an odd integer, n ≥ 5.

1. First we draw n copies of the star K1,3. We denote by Ti = {ai, bi, ci, di} the
vertices of the ith star, where the leaves of the star are ai, ci and di.

2. We connect the vertices ai by drawing the cycle a1a2 · · · ana1.

3. We connect the remaining leaves of the stars by drawing the cycle
c1c2 · · · cnd1d2 · · · dnc1.

The resulting graph is the flower snark Jn with 4n vertices.

Probably the most common way to draw a flower snark is illustrated in Fig-
ure 3(a) for J5. The graph J5 (and all flower snarks in general) can be drawn as
in Figure 3(b). From this figure it is easy to see that the graph has many auto-
morphisms and that the vertices ci and di do not have any essential differences.

Any shortest path from v ∈ Ti to u ∈ Tj can be divided into three parts; the
parts inside Ti and Tj , and the part from Ti to Tj . The part from Ti to Tj is
usually the obvious, except for c1 and ck+2 (and isomorphic cases). For example,
one shortest path between b1 and b4 in J5 is b1a1a5a4b4. However, the unique
shortest path between c1 and c4 is c1c2c3c4.

In [10], it was shown that β1(Jn) = 3 when n ≥ 5. However, the proof
for the upper bound β1(Jn) ≤ 3 is erroneous. The authors claim that the set
W = {c1, d1, dk} is a resolving set of Jn since all vertices have unique distance
arrays with respect to W . However, we have DW (a1) = (2, 2, k + 1) = DW (bn)
and DW (ak) = (k + 1, k + 1, 2) = DW (bk+1). Thus, the set W is not a resolving
set of Jn. Despite this, their result holds. We can replace dk with dk+1 in W ,
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after which it is straightforward to correct the proof and verify that the new set
is indeed a resolving set of Jn.

Our goal is to determine the ℓ-solid- and {ℓ}-metric dimensions of flower
snarks. To that end, we first consider the forced vertices of flower snarks. Con-
sider any flower snark Jn. Since n ≥ 5, Jn is a 3-regular graph of girth at least
5. Now, for all v ∈ V and U ⊆ V , v /∈ U , if N(v) ⊆ N [U ], then the set U has
at least three elements. Thus, no vertex of Jn is forced for {ℓ1}-resolving sets
or ℓ2-solid-resolving sets where ℓ1 ≤ 3 and ℓ2 ≤ 2. For all other ℓ-solid- and
{ℓ}-resolving sets all vertices are forced vertices; for all v ∈ V we can choose
U = N(v), and we naturally have N(v) ⊆ N [U ]. Thus, we have the following
theorem.

Theorem 22. Let n be an odd integer, n ≥ 5. We have βℓ(Jn) = 4n when ℓ ≥ 4
and βs

ℓ (Jn) = 4n when ℓ ≥ 3.

As for the remaining metric dimensions, we begin by considering {3}-resolving
sets since, quite surprisingly, the difficulty of the proofs increases as the value of
ℓ decreases.
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a4

a5

b1

b2

b3
b4

b5

c1

c2

c3

c4
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(a) The graph J5.
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d1
d2

d3d4
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(b) The graph J5.

ai

bi−1 bi bi+1

ci di

· · · · · ·

· · · · · ·

(c) A portion of Jn.

Figure 3.

5.1. The {3}-Metric Dimension of Jn

We begin by proving two technical lemmas. In these lemmas, we consider certain
sets of vertices with at most three elements. Any {3}-resolving set should be able
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to distinguish these sets from each other. However, as we will see, there are very
few vertices able to do that. In Figure 3(c), we have illustrated a part of a flower
snark, which will help in visualising the sets of vertices discussed in the lemmas.
Notice that if i = 1, then bi−1 = bn, and if i = n, then bi+1 = b1.

Lemma 23. Let i ∈ {1, . . . , n} and

B = {bi−1, bi+1}, X = B ∪ {ai}, Y = B ∪ {ci}, Z = B ∪ {di}.

We have

(i) d(s,X) 6= d(s,B) if and only if s ∈ {ai, bi},

(ii) d(s, Y ) 6= d(s,B) if and only if s ∈ {ci, bi},

(iii) d(s, Z) 6= d(s,B) if and only if s ∈ {di, bi}.

Proof. Let v ∈ V \ Ti and u ∈ Ti. Any shortest path v − u goes through either
Ti−1 or Ti+1. Thus, either d(v, u) ≥ d(v, bi−1) or d(v, u) ≥ d(v, bi+1), and we have
d(v,X) = d(v, Y ) = d(v, Z) = min{d(v, bi−1), d(v, bi+1)} = d(v,B).

Consider then the elements of Ti. The distances from each element s ∈ Ti to
each of the sets B, X, Y and Z are presented in the following table.

s d(s,B) d(s,X) d(s, Y ) d(s, Z)

bi 3 1 1 1

ai 2 0 2 2

ci 2 2 0 2

di 2 2 2 0

Lemma 24. Let i ∈ {1, . . . , n} and

X = {ai, bi−1, bi+1}, Y = {ci, bi−1, bi+1}, Z = {di, bi−1, bi+1}.

We have

(i) d(s,X) 6= d(s, Y ) if and only if s ∈ {ai, ci},

(ii) d(s,X) 6= d(s, Z) if and only if s ∈ {ai, di},

(iii) d(s, Y ) 6= d(s, Z) if and only if s ∈ {ci, di}.

Proof. Follows from the proof of Lemma 23.

In the following theorem, the exact values of β3(Jn) are determined for all
n ≥ 5.

Theorem 25. Let n ≥ 5 be an odd integer. We have β3(Jn) = 3n.
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Proof. β3(Jn) ≥ 3n: Let S be a {3}-resolving set of Jn. Any set of two vertices
of Ti contains an element of S by Lemmas 23 and 24. Thus, |S ∩ Ti| ≥ 3 for all
i = 1, . . . , n, and the lower bound β3(Jn) ≥ 3n follows.

β3(Jn) ≤ 3n: Let S = V \ {bi | i = 1, . . . , n} (see Figure 4(a)) and let X ⊆ V
such that |X| ≤ 3. We will prove that S is a {3}-resolving set of Jn by showing
how to determine the elements of X when we know the distance array DS(X).

If for some s ∈ S we have d(s,X) = 0, then clearly s ∈ X. Thus, if DS(X)
has three zeros, we have found all elements of X since |X| ≤ 3.

Assume that DS(X) has at most two zeros. We need to determine whether
bi ∈ X for any i ∈ {1, . . . , n}. Consider any Ti. If d(s,X) ≥ 2 for some s ∈ Ti∩S,
then clearly bi /∈ X. If d(s,X) ≤ 1 for all s ∈ Ti∩S, then bi ∈ X. Indeed, assume
to the contrary that bi /∈ X. There is an element of X in N(s) \ {bi} for every
s ∈ Ti ∩ S such that d(s,X) = 1. However, all neighbours of s other than bi are
also in S. Since N(s) ∩ N(s′) = {bi} for all distinct s, s′ ∈ Ti ∩ S, there must
be at least three zeros in the distance array DS(X), a contradiction. Therefore,
when DS(X) has at most two zeros bi ∈ X if and only if d(s,X) ≤ 1 for all
s ∈ Ti ∩ S.

(a) A {3}-resolving set. (b) A 2-solid-resolving set.

(c) A {2}-resolving set. (d) A 1-solid-resolving set.

Figure 4. Optimal {ℓ}- and ℓ-solid-resolving sets of J9.
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5.2. The 2-Solid-Metric Dimension of Jn

Let S be a 2-solid-resolving set of Jn. For any distinct sets X,Y ⊆ V such
that |X| = 2 and |Y | ≥ 3, we have DS(X) 6= DS(Y ). In particular, Lemma 23
holds for S. Thus, either bi ∈ S or {ai, ci, di} ⊆ S. This observation gives us
the obvious lower bound βs

2(Jn) ≥ n. However, as we will show in Theorem 28,
the 2-solid-metric dimension of Jn is n + 5. In order to obtain the lower bound
βs
2(Jn) ≥ n + 5, we need the following two lemmas. These lemmas tell us, how

many vertices ai, ci and di a 2-solid-resolving set must contain.
Recall that we denote n = 2k + 1, where k is an integer.

Lemma 26. Denote A = {ai | i = 1, . . . , n}. If a vertex set S is a 2-solid-
resolving set of Jn, then there can be at most k − 1 consecutive elements of A
that are not elements of S. Consequently, S must contain at least three elements

of A.

Proof. Assume to the contrary that there are k or more consecutive elements
of A that are not in S. Without loss of generality, we can assume that {ai | i =
k + 2, . . . , n} ∩ S = ∅. We will show that the set S is not a 2-solid-resolving set
as it does not satisfy (1). To that end, let us consider the vertex an and the
set X = {cn, a1}. For all bi we have d(bi, an) = d(bi, cn), and thus d(bi, X) ≤
d(bi, an). For all ci we have d(ci, cn) ≤ d(ai, an)+2 = d(ci, an). Similarly, we have
d(di, cn) ≤ d(di, an) for all di. Since d(ci, X) ≤ d(ci, cn) and d(di, X) ≤ d(di, dn),
we have d(ci, X) ≤ d(ci, an) and d(di, X) ≤ d(di, an) for all i ∈ {1, . . . , n}. Let
aj ∈ A ∩ S. Since 1 ≤ j ≤ k + 1, we have d(aj , a1) ≤ d(aj , an), and thus
d(aj , X) ≤ d(aj , an). Consequently, the set S does not satisfy (1) for an and X,
and is not a 2-solid-resolving set of Jn according to Theorem 3.

Consequently, A contains at least three elements of S.

We denote the cycle c1c2 · · · cnd1d2 · · · dnc1 by C.

Lemma 27. If a vertex set S is a 2-solid-resolving set of Jn, then there can be at

most k consecutive vertices of C that are not in S. Consequently, S must contain

at least four elements of C.

Proof. Assume to the contrary that there are at least k+1 consecutive vertices
of C that are not in S. Without loss of generality, assume that {ci | i = 1, . . . , k+
1} ∩ S = ∅.

Consider the vertex c1 and the set X = {d1, dn}. We will show that d(s, c1) ≥
d(s,X) for all s ∈ S. For all ai, we have d(ai, c1) = d(ai, a1) + 2 = d(ai, d1).
Consequently, d(ai, X) ≤ d(ai, c1) for all i ∈ {1, . . . , n}. Similarly, we have
d(bi, c1) = d(ai, a1) + 1 = d(bi, d1) and d(bi, X) ≤ d(bi, c1) for all i ∈ {1, . . . , n}.
Consider then a vertex dj . If 1 ≤ j ≤ k, then d(dj , c1) = d(dj , d1) + 2. If
k + 1 ≤ j ≤ n, then d(dj , c1) = d(dj , dn) + 1. Thus, d(dj , X) < d(dj , c1) for all
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j ∈ {1, . . . , n}. Similarly, for all cj where j ∈ {k + 3, . . . , n} we have d(cj , c1) =
d(cj , d1) + 2. Finally, since d(ck+2, c1) = k + 1 = d(ck+2, dn), we have d(cj , X) ≤
d(cj , c1) for all j ∈ {k + 2, . . . , n}. Now the set S is not a 2-solid-resolving set of
Jn since it does not satisfy (1) for c1 and X.

Consequently, C contains at least four elements of S.

Theorem 28. Let n ≥ 5 be an odd integer. We have βs
2(Jn) = n+ 5.

Proof. βs
2(Jn) ≥ n + 5: Assume that S is a 2-solid-resolving set of Jn with at

most n+4 elements. Recall that according to Lemma 23 we have either bi ∈ S or
{ai, ci, di} ⊆ S for all i ∈ {1, . . . , n}. According to Lemma 27 the set S contains
at least four elements of C. Since |S| ≤ n+4, the set S has exactly four elements
of C due to Lemma 23(i). Now, if ci /∈ S or di /∈ S, then bi ∈ S and ai /∈ S since
otherwise S would have more than n+4 elements. If ci and di are both in S, we
have either bi ∈ S or ai ∈ S. Since S contains four elements of C, there can be
at most two elements ai in S. Now, according to Lemma 26 the set S is not a
2-solid-resolving set of Jn.

βs
2(Jn) ≤ n+ 5: Let

S = {a1, c1, d1, ak+1, ak+2, ck+2, dk+2} ∪ {bi | i ∈ {1, . . . , n}, i 6= 1, k + 2}.

See Figure 4(b) for an example of this set. We have |S| = 7 + n − 2 = n + 5.
We will show that S satisfies (1) for ℓ = 2, and is thus a 2-solid-resolving set of
Jn. Clearly, for all s ∈ S and X ⊆ V such that s /∈ X we have d(s, s) < d(s,X).
Consider then the vertices that are not in S. We divide the study by the types
of the vertices in Jn.

ai : Assume that 2 ≤ i ≤ k, the other case where k + 3 ≤ i ≤ n goes similarly.
Since ai /∈ S, we have bi ∈ S. Let X ⊆ V , |X| ≤ 2 and ai /∈ X. If X ∩
Ti = ∅, then d(bi, ai) < d(bi, X). Assume then that X ∩ Ti 6= ∅. Observe
that d(a1, ai) < d(a1, X ∩ Ti) and d(ak+1, ai) < d(ak+1, X ∩ Ti). If X ⊆ Ti,
then d(a1, ai) < d(a1, X) and d(ak+1, ai) < d(ak+1, X). Suppose then that |X ∩
Ti| = 1 and x ∈ X \ Ti. If d(a1, x) ≤ d(a1, ai) and d(ak+1, x) ≤ d(ak+1, ai),
then d(a1, ak+1) ≤ d(a1, x) + d(x, ak+1) ≤ d(a1, ai) + d(ai, ak+1). Since the path
a1a2 . . . ak+1 is the unique shortest path between a1 and ak+1, we have x = aj
for some j ∈ {1, . . . , k + 1}, j 6= i. Consequently, either d(a1, ai) < d(a1, x)
or d(ak+1, ai) < d(ak+1, x). Thus, either d(a1, ai) < d(a1, X) or d(ak+1, ai) <
d(ak+1, X).

bi : Since bi /∈ S, either i = 1 or i = k + 2. Consider the case where i = 1 (the
case where i = k + 2 goes similarly). Let X ⊆ V , |X| ≤ 2 and b1 /∈ X. If S does
not satisfy (1), then d(a1, X), d(c1, X) and d(d1, X) are all at most 1. However,
now each of the sets {a1, a2, an}, {c1, c2, dn} and {d1, d2, cn} must contain at least
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one element of X. Since these sets do not intersect, the set X has at least three
elements, a contradiction.

ci, di : Consider the vertex ci where 2 ≤ i ≤ k + 1 (the other cases go similarly).
Let X ⊆ V , |X| ≤ 2 and ci /∈ X. Assume that d(s,X) ≤ d(s, ci) for all s ∈ S.
Since d(bi, X) ≤ d(bi, ci), we have X ∩ {bi, di, ai} 6= ∅. However, for all v ∈
{bi, di, ai} we have d(c1, ci) < d(c1, v) and d(ck+2, ci) < d(ck+2, v). Thus, X must
have an element x such that d(c1, x) ≤ d(c1, ci) and d(ck+2, x) ≤ d(ck+2, ci).

The path c1c2 . . . ck+1ck+2 is the unique shortest path between c1 and ck+2.
Naturally, for all cj , where j 6= i, we have either d(c1, ci) < d(c1, cj) or d(ck+2, ci) <
d(ck+2, cj). For all other vertices v /∈ {c1, . . . , ck+2}, we have d(c1, v)+d(v, ck+2) >
d(c1, ck+2) = d(c1, ci) + d(ci, ck+2), and thus d(c1, ci) < d(c1, v) or d(ck+2, ci) <
d(ck+2, v). Thus, there is no such vertex x that d(c1, x) ≤ d(c1, ci) and d(ck+2, x) ≤
d(ck+2, ci).

5.3. The {2}-Metric Dimension of Jn

As we have seen in the two previous sections, the {3}- and 2-solid-metric dimen-
sions of Jn are dependent on n. However, we will see in Theorem 29 that the
{2}-metric dimension is at most eight for any Jn.

Our computer calculations have shown that β2(J5) = 7, and S = {a1, a3, b2,
b4, c1, c3, d1}, for example, is a {2}-metric basis of J5. Our calculations have
also shown that β2(Jn) = 8 when 7 ≤ n ≤ 19. We will prove the upper bound
β2(Jn) ≤ 8 in the following theorem, and we conjecture that the lower bound
β2(Jn) ≥ 8 holds for all n ≥ 7.

The proof of the following theorem is surprisingly difficult with traditional
methods of comparing distance arrays. To show the upper bound β2(Jn) ≤ 8
we will construct a {2}-resolving set of Jn with eight elements. We have verified
with a computer that the set we provide is indeed a {2}-resolving set of Jn when
7 ≤ n ≤ 19. To show the claim for n ≥ 21 we use a reduction-like approach.
We will show that if the set was not a {2}-resolving set of Jn then it would not
be a {2}-resolving set of Jn−2. The idea behind the proof is that if we carefully
remove two stars Ti from Jn and add necessary edges (for example, in Figure
3(c), we can remove the star Ti and connect the stars Ti−1 and Ti+1), we obtain
Jn−2, and the distances in Jn and Jn−2 are highly dependent on each other.

Theorem 29. Let n = 2k + 1 ≥ 7. We have β2(Jn) ≤ 8.

Proof. Denote

I = Tn ∪ T1 ∪ T2 ∪ T3, J = Tk ∪ Tk+1 ∪ Tk+2 ∪ Tk+3,

I ′ = I ∪ Tn−1 ∪ T4, J ′ = J ∪ Tk−1 ∪ Tk+4,

SI = {a1, c1, d1, a2}, SJ = {ak+1, ak+2, ck+2, dk+2}.
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Let S = SI ∪SJ (see Figure 4(c)). We will show that the set S is a {2}-resolving
set of Jn. It is easy to check with a computer that the set S is a {2}-resolving
set when 7 ≤ n ≤ 19.

Assume to the contrary that the set S is not a {2}-resolving set of Jn, where
n ≥ 21, and that the set S is a {2}-resolving set of Jn−2. We denote the distance
arrays in Jn by Dn

S and the distance arrays in Jn−2 by Dn−2

S . Consider nonempty
sets X,Y ⊆ V (Jn) such that |X| ≤ 2, |Y | ≤ 2, X 6= Y and Dn

S(X) = Dn
S(Y ).

It is easy to see that if Dn
SI
(X) contains at least one distance that is at most 2,

then we have X ∩ I ′ 6= ∅. Furthermore, if all distances in Dn
SI
(X) are at least 3,

then we have X ∩ I = ∅. The same holds for SJ , J and J ′ by symmetry.

If both Dn
SI
(X) and Dn

SJ
(X) contain at least one distance that is at most 2,

we have X ∩ I ′ 6= ∅ and X ∩ J ′ 6= ∅. Since Dn
S(X) = Dn

S(Y ), we have Y ∩ I ′ 6= ∅
and Y ∩ J ′ 6= ∅. We may think of Jn−2 as being obtained from Jn by removing
two stars from opposite sides of Jn such that they are halfway between I and J .
Let X ′, Y ′ ⊆ V (Jn−2) consist of vertices that are in exactly the same positions
as the elements of X and Y with respect to SI and SJ . Since n − 2 ≥ 19, we
have dJn−2

(s, v) ≤ 5 ≤ k − 4 ≤ dJn−2
(s, u) for all s ∈ SI , v ∈ I ′ and u ∈ J ′

(similarly for s ∈ SJ , v ∈ J ′ and u ∈ I ′). Thus, Dn−2

SI
(X ′ ∩ I ′) = Dn−2

SI
(X ′)

and Dn−2

SJ
(X ′ ∩ J ′) = Dn−2

SJ
(X ′), and the same also holds for Y ′. Now we have

Dn−2

S (X ′) = Dn
S(X) = Dn

S(Y ) = Dn−2

S (Y ′). However, X 6= Y implies that
X ′ 6= Y ′, and since S is a {2}-resolving set of Jn−2, we must have Dn−2

S (X ′) 6=
Dn−2

S (Y ′), a contradiction.

Assume then that all distances in Dn
SI
(X) are at least 3 (the case where this

holds for Dn
SJ
(X) goes similarly). Now, we have X∩I = ∅ and Y ∩I = ∅. We may

think of Jn−2 as being obtained from Jn by removing the stars T3 and Tn. Let
X ′, Y ′ ⊆ V (Jn−2) consist of vertices that are in exactly the same positions as the
elements of X and Y with respect to SJ . Now, we have (X

′∪Y ′)∩ (T1∪T2) = ∅,
and thus

Dn−2

SI
(X ′) = Dn

SI
(X)− (1, 1, 1, 1), Dn−2

SJ
(X ′) = Dn

SJ
(X),

Dn−2

SI
(Y ′) = Dn

SI
(Y )− (1, 1, 1, 1), Dn−2

SJ
(Y ′) = Dn

SJ
(Y ).

Consequently, Dn−2

S (X ′) = Dn−2

S (Y ′) if and only if Dn
S(X) = Dn

S(Y ). Since S
is a {2}-resolving set of Jn−2 and X ′ 6= Y ′, we have Dn−2

S (X ′) 6= Dn−2

S (Y ′), a
contradiction.

5.4. The 1-Solid-Metric Dimension of Jn

We begin the section by giving an upper bound on βs
1(Jn) for all n ≥ 5.

Theorem 30. Let n = 2k + 1 ≥ 5. We have βs
1(Jn) ≤ 6.
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Proof. Let S = {a1, ak+2, c1, d1, ck+1, dk+1} (see Figure 4(d)). We will show that
the set S is a 1-solid-resolving set of Jn by proving that S satisfies (1). We divide
the proof by the types of the vertices of Jn.

ai: Assume that i ∈ {2, . . . , k + 1}. The vertex ai is along some shortest path
from a1 to ck+1. If there exists a vertex v ∈ V \{ai} such that d(a1, v) ≤ d(a1, ai)
and d(ck+1, v) ≤ d(ck+1, ai), then v is also along a shortest path from a1 to ck+1.
Moreover, we have d(a1, v) = d(a1, ai) and d(ck+1, v) = d(ck+1, ai), and thus v ∈
{bi−1, ci−2}. Similarly, if d(dk+1, v) ≤ d(dk+1, ai), then v ∈ {bi−1, di−2}. Thus,
we have v = bi−1. However, we clearly have d(ak+2, ai) < d(ak+2, bi−1). Thus, (1)
is satisfied for all ai where i ∈ {2, . . . , k + 1}. The case where i ∈ {k + 3, . . . , n}
goes similarly (look at the shortest paths from ak+2 to c1 and d1).

bi: Assume that i ∈ {1, . . . , k + 1}. By the argument above, the only vertex
v ∈ V \ {bi} that is at the same distance from a1, ck+1 and dk+1 as bi is ai+1.
However, since d(c1, bi) < d(c1, ai+1) for all i ∈ {1, . . . , k+1}, the condition (1) is
satisfied for all bi where i ∈ {1, . . . , k+1}. Similarly, we can prove that (1) holds
for all bi where i ∈ {k + 2, . . . , n} by looking at the shortest paths from ak+2 to
c1 and d1.

ci, di: Each ci and di is along one of the four unique shortest paths: c1 − ck+1,
ck+1 − d1, d1 − dk+1 and dk+1 − c1. Thus, (1) is satisfied for all ci and di.

Let P be a shortest path between u and v in Jn. We denote ρn(u, v) = t− 1,
where t is the number of stars that intersect with P . Thus, ρn(u, v) is the distance
P traverses in order to get from the star that contains u to the star that contains
v. The distance d(u, v) could now be written as d(u, v) = ρn(u, v) + r, where r is
the distance that P traverses inside the stars that contain u and v.

To determine the exact 1-solid-metric dimension of Jn we still need to prove
the lower bound βs

1(Jn) ≥ 6. Computer calculations have shown this lower bound
to hold for 5 ≤ n ≤ 39. The idea behind the proof of the following theorem is to
prove that if for some Jn we have βs

1(Jn) ≤ 5, then we also have βs
1(Jn−2) ≤ 5.

To that end, we assume that the set S, |S| = 5, is a 1-solid-resolving set of Jn.
We then construct Jn−2 from Jn by removing the stars T1 and Tk+1 and adding
necessary edges (see Figure 5). As long as the stars close to the stars that were
removed did not contain any elements of S the distances from the elements of S
to other vertices behave well and predictably after the removal of the two stars.
Then we can construct a 1-solid-resolving set of Jn−2 from S, and we reach a
contradiction to the lower bound shown with a computer.

Theorem 31. Let n = 2k + 1 ≥ 5. We have βs
1(Jn) = 6.

Proof. Due to Theorem 30, it suffices to show the lower bound βs
1(Jn) ≥ 6. We

showed this lower bound for n ≤ 39 by an exhaustive search with a computer.
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To prove the claim for all n ≥ 41 we will show that if for some n ≥ 41 we have
βs
1(Jn) ≤ 5, then we also have βs

1(Jn−2) ≤ 5.
Let n = 2k + 1 ≥ 41 and let S be a 1-solid-resolving set of Jn such that

|S| = 5. Throughout the proof, we will refer to Figure 5, where the flower snarks
are smaller than what the proof requires for technical reasons. Consider the set
{Ti | i ∈ {1, 2, k− 1, k, k+1, k+2, n− 1, n}} (illustrated with a gray background
in Figure 5 for J21) and its isomorphic images. There are n such sets and each
s ∈ S is in eight of these sets. Since |S| = 5, at least one of these sets does not
contain any elements of S if n > 8 · 5 = 40. Since n ≥ 41, we can assume that
the stars Ti where i ∈ {1, 2, k−1, k, k+1, k+2, n−1, n} do not contain elements
of S. Let m = n − 2 = 2l + 1. We denote by Tn

i a star in Jn and by Tm
i a star

in Jm.
Let α : V (Jn) → V (Jm) be a surjection such that

α(xi) =







x1, if i = n,
xi, if i ∈ {1, . . . , k},
xi−1, otherwise,

where xi ∈ {ai, bi, ci, di}. The image of xi is the same type as xi, that is, if
xi = ai, then α(xi) = aj for some j ∈ {1, . . . ,m} and similarly for xi = bi, ci, di.
The preimages of x1 and xl+1 are α

−1(x1) = {x1, xn} and α−1(xl+1) = {xk, xk+1}
(illustrated as black vertices in Figure 5). For all other xi ∈ V (Jm) the preimages
are unique.

s

x′

t

z

y′

J21 :

α

T1Tn

Tk+1

Tk

r

x

u

y

J19 :

IJ

T1

Tl+1

Figure 5. An example of the last case of the proof of Theorem 31 where n = 21 and

m = 19.

Let R = {α(s) | s ∈ S}. Since the stars Tn
i , where i ∈ {1, 2, k−1, k, k+1, k+

2, n− 1, n}, do not contain elements of S, the vertices α(Tn
i ) in Jm are not in R,
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and |R| = |S|. In other words, the stars Tm
j , where j ∈ {1, 2, l, l+1, l+2,m}, do

not contain elements of R. We denote

I =
l
⋃

i=2

Tm
i and J =

m
⋃

i=l+2

Tm
i

(see Figure 5). Let r ∈ R and v ∈ V (Jm). Let s = α−1(r) and v′ be a preimage
of v. Since the stars Tm

i where i ∈ {1, 2, l, l+1, l+2,m} do not contain elements
of R, the shortest paths from r to v are closely related to the shortest paths from
s to v′.

Let us denote by dn and dm the distances in Jn and Jm, respectively. If
r, v ∈ I or r, v ∈ J , then we have dm(r, v) = dn(s, v

′). If r ∈ I and v ∈ J ,
or r ∈ J and v ∈ I, then dm(r, v) = dn(s, v

′) − 1. If v ∈ Tm
1 or v ∈ Tm

l+1
,

then dm(r, v) = dn(s, v
′) or dm(r, v) = dn(s, v

′) − 1 depending on which of the
preimages of v the vertex v′ is. Indeed, let α−1(v) = {x1, xn}. If r ∈ I, then
dm(r, v) = dn(s, x1) = dn(s, xn) − 1. If r ∈ J , then dm(r, v) = dn(s, xn) =
dn(s, x1)− 1.

Let x, y ∈ V (Jm) be distinct. In what follows, we will show that the set
R satisfies (1). Suppose first that x, y ∈ Tm

1 or x, y ∈ Tm
l+1

. Due to symmetry,
it suffices to show that when x, y ∈ Tm

1 there exists an element r ∈ R such
that dm(r, x) < dm(r, y). Let x′ and y′ be the preimages of x and y that are
in Tn

1 . Since S is a 1-solid-resolving set of Jn, there exists some s ∈ S such
that dn(s, x

′) < dn(s, y
′). Now, we have dm(α(s), x) = dn(s, x

′) if and only if
dm(α(s), y) = dn(s, y

′). Consequently, dm(α(s), x) < dm(α(s), y).
Suppose then that x ∈ Tm

1 and y ∈ Tm
l+1

(the case where x ∈ Tm
l+1

and
y ∈ Tm

1 goes similarly). Assume to the contrary that there does not exist
any r ∈ R such that dm(r, x) < dm(r, y). We have dm(r, x) ≥ dm(r, y) for all
r ∈ R. Let x1 and xn be the preimages of x that are in the stars Tn

1 and
Tn
n , respectively. Similarly, let yk and yk+1 be the preimages of y in the stars

Tn
k and Tn

k+1
, respectively. Let s ∈ S. If α(s) ∈ I, then we have dn(s, x1) =

dm(α(s), x) ≥ dm(α(s), y) = dn(s, yk). Since dn(s, xn) = dn(s, x1) + 1 and
dn(s, yk+1) = dn(s, yk) + 1, we have dn(s, xn) ≥ dn(s, yk+1). If α(s) ∈ J , then
dn(s, xn) = dm(α(s), x) ≥ dm(α(s), y) = dn(s, yk+1). Thus, we have dn(s, xn) ≥
dn(s, yk+1) for all s ∈ S, a contradiction. Therefore, there must exist some r ∈ R
such that dm(r, x) < dm(r, y).

Suppose that x ∈ Tm
1 ∪ Tm

l+1
and y /∈ Tm

1 ∪ Tm
l+1

. Assume that x ∈ Tm
1

(the case where x ∈ Tm
l+1

follows by symmetry). We denote y′ = α−1(y) and
α−1(x) = {x1, xn}, where x1 ∈ Tn

1 and xn ∈ Tn
n . Suppose that y ∈ I (the

case where y ∈ J goes similarly). Assume to the contrary that dm(v, x) ≥
dm(v, y) for all v ∈ R. Let r, u ∈ R be such that r ∈ I and u ∈ J . We denote
s = α−1(r) and t = α−1(u). Now we have dn(s, y

′) = dm(r, y), dn(t, y
′) =

dm(u, y) + 1, dm(r, x) = dn(s, x1) and dm(u, x) = dn(t, x1)− 1. Since dm(v, x) ≥
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dm(v, y) for all v ∈ R, we have dn(s, x1) = dm(r, x) ≥ dm(r, y) = dn(s, y
′) and

dn(t, x1) = dm(u, x) + 1 ≥ dm(u, y) + 1 = dn(t, y
′). Thus, for all v′ ∈ S we have

dn(v
′, x1) ≥ dn(v

′, y′) and the set S does not satisfy (1), a contradiction. Thus,
for some v ∈ R we have dm(v, x) < dm(v, y). Similarly, if dm(v, y) ≥ dm(v, x)
for all v ∈ R, then dn(s, y

′) = dm(r, y) ≥ dm(r, x) = dn(s, x1) and dn(t, y
′) =

dm(u, y) + 1 ≥ dm(u, x) + 1 = dn(t, x1). Consequently, for all v′ ∈ S we have
dn(v

′, y′) ≥ dn(v
′, x1) and the set S does not satisfy (1), a contradiction. Thus,

we also have dm(v, y) < dm(v, x) for some v ∈ R.
Finally, assume that x, y /∈ Tm

1 ∪ Tm
l+1

. Let us denote x′ = α−1(x) and
y′ = α−1(y). Assume that x, y ∈ I. Let s ∈ S be such that dn(s, x

′) < dn(s, y
′).

Denote r = α(s). If r ∈ I, then dm(r, x) = dn(s, x
′) and dm(r, y) = dn(s, y

′). If
r ∈ J , then dm(r, x) = dn(s, x

′) − 1 and dm(r, y) = dn(s, y
′) − 1. In both cases

we have dm(r, x) < dm(r, y). Thus, the set R satisfies (1) for any x, y ∈ I. The
case where x, y ∈ J goes similarly.

Suppose that x ∈ I and y ∈ J . There is at least one star between the stars
that contain x and y. We have the following two cases.

Case 1. There is exactly one star between x and y. Since x ∈ I and y ∈ J ,
the star between x and y is either Tm

1 or Tm
l+1

. Thus, there are two stars between
x′ and y′. Suppose that Tm

1 is the star between x and y, and x ∈ Tm
2 and

y ∈ Tm
m . We have x′ ∈ Tn

2 and y′ ∈ Tn
n−1. Let x1 ∈ Tn

1 and yn ∈ Tn
n be

such that they are the same type as x′ and y′, respectively. By ’same type’ we
mean that if x′ = c2, for example, then x1 = c1. Since the stars Tn

i where
i ∈ {1, 2, k − 1, k, k + 1, k + 2, n − 1, n} do not contain any elements of S, the
vertex s ∈ S is on the same side as x′ (that is, α(s) ∈ I) if and only if we
have dn(s, x

′) < dn(s, y
′). Similarly, s is on the same side as y′ if and only if

dn(s, y
′) < dn(s, x

′).
Assume that for all v ∈ R we have dm(v, x) ≥ dm(v, y). Since S is a 1-solid-

resolving set of Jn, there exist vertices s, t ∈ S such that dn(s, x
′) < dn(s, y

′)
and dn(t, y

′) < dn(t, x
′). According to our previous observation, s is on the same

side as x′ and t is on the same side as y′. Denote r = α(s). Since dm(r, x) ≥
dm(r, y), we have dn(s, y

′) − 1 ≥ dn(s, x
′) = dm(r, x) ≥ dm(r, y) = dn(s, y

′) − 1.
Consequently, dm(r, x) = dm(r, y) and dn(s, y

′) = dn(s, x
′) + 1. Thus, we have

dn(s, x1) = dn(s, x
′) + 1 = dn(s, y

′). Since the stars Tn
i , where i ∈ {1, 2, k −

1, k, k + 1, k + 2, n − 1, n}, do not contain any elements of S, all shortest paths
from t to x1 go through the star that contains y′. Since the star Tn

n is between Tn
1

and the star that contains y′, we have dn(t, y
′) ≤ dn(t, x1). Thus, the set S does

not satisfy (1) for x1 and y′, a contradiction. Similarly, if dm(v, y) ≥ dm(v, x) for
all v ∈ R, the set S does not satisfy (1) for yn and x′.

Case 2. There are at least two stars between x and y. Now, there are at
least three stars between x′ and y′. Let s ∈ S be such that dn(s, x

′) < dn(s, y
′),

and denote r = α(s). As dm(r, y) ≥ dn(s, y
′)− 1, we have dm(r, x) ≤ dm(r, y). If
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dm(r, x) < dm(r, y), then we are done. Suppose that dm(r, x) = dm(r, y). We have
r ∈ I since otherwise dm(r, x) = dn(s, x

′)− 1 < dn(s, y
′)− 1 = dm(r, y)− 1. Since

dm(r, x) = dn(s, x
′) and dm(r, y) = dn(s, y

′)− 1, we have dn(s, x
′) = dn(s, y

′)− 1.
Clearly, there does not exist a shortest path from r to x that goes through the
star that contains y. Since there are at least two stars between x and y, there
does not exist a shortest path from r to y that goes through the star that contains
x. Indeed, otherwise we would have dm(r, x) ≤ ρm(r, x)+2 < ρm(r, y) ≤ dm(r, y).
Thus, the shortest paths r−x and r− y can coincide with each other only in the
star that contains r.

Let z ∈ V (Jn) be the unique vertex that is the same type as y′ (i.e., ai, bi, ci
or di), is in a star next to y′ and for which dn(s, z) = dn(s, x

′) holds (see Figure
5). The vertex z is indeed unique since the first two conditions reduce the options
to two and the third condition uniquely determines z as n in odd. Since S is a
1-solid-resolving set of Jn, there exists a t ∈ S such that dn(t, x

′) < dn(t, z). If
the vertex t is in the same star as y′ or z, then ρn(t, x

′) ≥ 3 since ρn(y
′, x′) ≥ 4.

However, now dn(t, z) ≤ 3 ≤ ρn(t, x
′) ≤ dn(t, x

′). Thus, t is not in the same star
as y′ or z, and we have

dn(t, y
′)− 1 ≤ dn(t, z) ≤ dn(t, y

′) + 1,

dn(t, z)− 1 ≤ dn(t, y
′) ≤ dn(t, z) + 1.

If dn(t, y
′) < dn(t, x

′), then dn(t, z) ≤ dn(t, y
′) + 1 ≤ dn(t, x

′), a contradiction.
Thus, we have dn(t, y

′) ≥ dn(t, x
′).

We denote u = α(t). If u ∈ J , then dm(u, y) = dn(t, y
′) and dm(u, x) =

dn(t, x
′)−1. Consequently, dm(u, x) ≤ dn(t, y

′)−1 < dm(u, y) and (1) is satisfied
for x and y.

Suppose then that u ∈ I. Now, dm(u, y) = dn(t, y
′) − 1 and dm(u, x) =

dn(t, x
′). If dm(u, x) < dm(u, y), then (1) is again satisfied. Assume that

dm(u, x) ≥ dm(u, y). Since there are at least two stars between x and y, a
shortest path u − y cannot go through the star that contains x. Consequently,
there is no shortest path t − y′ that goes through the star that contains x′. If
there is a shortest path t− y′ that goes through the star that contains z, then we
have dn(t, y

′) = dn(t, z) + 1 and

dm(u, y) = dn(t, y
′)− 1 = dn(t, z) > dn(t, x

′) = dm(u, x).

Thus, u satisfies (1) for x and y. Suppose then that there is no shortest path
t− y′ that goes through the star that contains z. The shortest paths t − y′ and
s − y′ can coincide only in the star that contains y′. Consequently, the shortest
paths u − y and r − y in Jm can coincide only in the star that contains y. As
we have seen before, the shortest paths r − x and r − y can coincide only in the
star that contains r, and the shortest paths u−y do not go through the star that
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contains x. Thus, the shortest paths u − y, u − x, r − x and r − y can coincide
only in the stars that contain x, y, r or u (see Figure 5 for an example of this
situation). Consequently, we have

dm(r, x) + dm(u, x) ≤ ρm(r, x) + 2 + ρm(u, x) + 2 = ρm(r, u) + 4

≤ l − 4 + 4 = l,

dm(r, y) + dm(u, y) ≥ ρm(r, y) + ρm(u, y) = m− ρm(r, u) ≥ l + 5.

Thus, dm(r, x) + dm(u, x) < dm(r, y) + dm(u, y). Since dm(r, x) = dm(r, y), we
have dm(u, x) < dm(u, y). Using similar arguments we can show that there exists
some u′ ∈ R such that dm(u′, y) < dm(u′, x).
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