ON THE METRIC DIMENSIONS FOR SETS OF VERTICES ${ }^{1}$

Anni Hakanen ${ }^{2}$, Ville Junnila, Tero Laihonen
Department of Mathematics and Statistics
University of Turku
Turku, Finland
e-mail: anehak@utu.fi
viljun@utu.fi
terolai@utu.fi
AND
María Luz Puertas ${ }^{3}$
Department of Mathematics
Universidad de Almería
Almería, Spain
e-mail: mpuertas@ual.es

Abstract

Resolving sets were originally designed to locate vertices of a graph one at a time. For the purpose of locating multiple vertices of the graph simultaneously, $\{\ell\}$-resolving sets were recently introduced. In this paper, we present new results regarding the $\{\ell\}$-resolving sets of a graph. In addition to proving general results, we consider $\{2\}$-resolving sets in rook's graphs and connect them to block designs. We also introduce the concept of ℓ -solid-resolving sets, which is a natural generalisation of solid-resolving sets. We prove some general bounds and characterisations for ℓ-solid-resolving sets and show how ℓ-solid- and $\{\ell\}$-resolving sets are connected to each other. In the last part of the paper, we focus on the infinite graph family of flower snarks. We consider the ℓ-solid- and $\{\ell\}$-metric dimensions of flower snarks. In two proofs regarding flower snarks, we use a new computer-aided reduction-like approach.

Keywords: resolving set, metric dimension, resolving several objects, block design, rook's graph, flower snark.
2010 Mathematics Subject Classification: 05C12, 05C69.

[^0]
1. Introduction

The graphs we consider are undirected and simple. They are also connected and finite unless otherwise stated. The vertex set of a graph G is denoted by $V(G)$ or simply by V if the graph in question is clear from context. The distance between vertices v and u, denoted by $d(v, u)$, is the length of any shortest path between v and u.

Consider a graph G with vertices V. Let $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$ be nonempty. The distance array of vertex $v \in V$ with respect to the set S is defined as $\mathcal{D}_{S}(v)=\left(d\left(s_{1}, v\right), \ldots, d\left(s_{k}, v\right)\right)$. If no two vertices have the same distance array, the set S is called a resolving set of G. This concept was introduced independently by Slater [16] and Harary and Melter [9]. Resolving sets have applications in robot navigation [14] and network discovery and verification [1], for example. For some recent developments, see $[6,12,13]$.

Resolving sets can be used to locate vertices of a graph one at a time. Our research focuses on how we can locate multiple vertices simultaneously. To that end, let us define the distance array of a vertex set $X \subseteq V$ with respect to $S=\left\{s_{1}, \ldots, s_{k}\right\} \subseteq V$ as

$$
\mathcal{D}_{S}(X)=\left(d\left(s_{1}, X\right), \ldots, d\left(s_{k}, X\right)\right)
$$

where $d\left(s_{i}, X\right)=\min _{x \in X}\left\{d\left(s_{i}, x\right)\right\}$ for all $s_{i} \in S$. For any singleton set $\{v\} \subseteq V$ we naturally have $\mathcal{D}_{S}(\{v\})=\mathcal{D}_{S}(v)$. The following definition was introduced in [15].

Definition 1. Let $\ell \geq 1$ be an integer. The set $S \subseteq V(G)$ is an $\{\ell\}$-resolving set of G, if for all nonempty sets $X, Y \subseteq V(G)$ such that $X \neq Y,|X| \leq \ell$ and $|Y| \leq \ell$ we have $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

When $\ell=1$, Definition 1 is equivalent to the definition of a resolving set.
Consider the graph H illustrated in Figure 1. The set $R_{1}=\left\{v_{2}, v_{3}, v_{7}\right\}$ is a $\{1\}$-resolving set of H. The vertex v_{6} and the set $X=\left\{v_{8}, v_{9}\right\}$ have the same distance array $\mathcal{D}_{R_{1}}\left(v_{6}\right)=(2,3,1)=\mathcal{D}_{R_{1}}(X)$ with respect to the set R_{1}. Thus, the set R_{1} cannot distinguish X from v_{6}. The set $R_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{8}, v_{9}\right\}$ is a $\{2\}$-resolving set of H, and with it we can distinguish X from v_{6}. Indeed, we have $\mathcal{D}_{R_{2}}\left(v_{6}\right)=(3,2,3,2,2,2)$ and $\mathcal{D}_{R_{2}}(X)=(3,2,3,2,0,0)$. Moreover, we can uniquely determine the elements of X using $\mathcal{D}_{R_{2}}(X)$.

We can also distinguish v_{6} from X with another type of resolving sets introduced in [7]. The set $S \subseteq V$ is a solid-resolving set of a graph G if for all $v \in V$ and nonempty $X \subseteq V$ we have $\mathcal{D}_{S}(v) \neq \mathcal{D}_{S}(X)$. For example, the set $S_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{7}, v_{8}\right\}$ is a solid-resolving set of the graph H. Indeed, we have $\mathcal{D}_{S_{1}}\left(v_{6}\right)=(3,2,3,1,2)$ and $\mathcal{D}_{S_{1}}(X)=(3,2,3,1,0)$. Solid-resolving sets give unique distance arrays to all vertices. However, some sets of vertices with at
least two elements may share the same distance array. Let $Y=\left\{v_{6}, v_{8}\right\}$. Now $\mathcal{D}_{S_{1}}(X)=(3,2,3,1,0)=\mathcal{D}_{S_{1}}(Y)$, and thus the set S_{1} is not a $\{2\}$-resolving set of H.

(a) The set R_{1}.

(b) The set R_{2}.

Figure 1. The graph H with a $\{1\}$-resolving set and a $\{2\}$-resolving set.
The concept of solid-resolving sets can be generalised for larger sets of vertices. Consider again the graph H. We want to be able to distinguish sets with up to two vertices as with a $\{2\}$-resolving set, but we want to also distinguish sets with up to two vertices from sets with three or more vertices. In other words, the aim is to locate the elements of sets with up to two vertices and detect if a set contains at least three vertices. Our $\{2\}$-resolving set R_{2} can do the former but not the latter; the sets $U=\left\{v_{5}, v_{7}\right\}$ and $W=\left\{v_{5}, v_{6}, v_{7}\right\}$ have the same distance array $\mathcal{D}_{R_{2}}(U)=(2,1,2,1,1,1)=\mathcal{D}_{R_{2}}(W)$. As a solution to this problem, we now present the following generalisation of solid-resolving sets.

Definition 2. Let $\ell \geq 1$ be an integer. The set $S \subseteq V(G)$ is an ℓ-solid-resolving set of G, if for all distinct nonempty sets $X, Y \subseteq V(G)$ such that $|X| \leq \ell$ we have $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

When $\ell=1$, the previous definition is exactly the same as the definition of a solid-resolving set in [7]. The set $S_{2}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}, v_{8}, v_{9}\right\}$ is a 2 -solidresolving set of H. We can distinguish the sets U and W from each other using S_{2} since $\mathcal{D}_{S_{2}}(U)=(2,1,2,1,1,1,1)$ and $\mathcal{D}_{S_{2}}(W)=(2,1,2,1,0,1,1)$.

The difference between Definitions 1 and 2 is significant but subtle; the set Y can have any cardinality in Definition 2, but in Definition 1, we have the restriction $|Y| \leq \ell$. If a set S satisfies Definition 2 for some $\ell \geq 1$, then S also satisfies Definition 1 for the same ℓ. However, an $\{\ell\}$-resolving set is not necessarily an ℓ-solid-resolving set (as we saw in the graph H).

Since $V(G)$ is an ℓ-solid-resolving set of G for any $\ell \in\{1, \ldots,|V(G)|\}$, it is clear that an ℓ-solid-resolving set exists for any graph G and any integer $\ell \in$ $\{1, \ldots,|V(G)|\}$. Similarly, for any G and $\ell \in\{1, \ldots,|V(G)|\}$ the set $V(G)$ is an $\{\ell\}$-resolving set. Therefore, we focus on determining the minimum cardinality of an ℓ-solid- or $\{\ell\}$-resolving set of a graph.

The $\{\ell\}$-metric dimension of G, denoted by $\beta_{\ell}(G)$, is the minimum cardinality of an $\{\ell\}$-resolving set of G. An $\{\ell\}$-resolving set of cardinality $\beta_{\ell}(G)$ is called an $\{\ell\}$-metric basis of G. Similarly, the ℓ-solid-metric dimension of G, denoted by $\beta_{\ell}^{s}(G)$, is the minimum cardinality of an ℓ-solid-resolving set of G. An ℓ-solid-resolving set of cardinality $\beta_{\ell}^{s}(G)$ is called an ℓ-solid-metric basis of G.

We explore the basic properties of ℓ-solid- and $\{\ell\}$-resolving sets in Section 2. In Section 3, we prove a general lower bound on the ℓ-solid-metric dimension of a graph and characterise the graphs that attain this bound. In Section 4, we consider Cartesian products of graphs. In particular, we consider the rook's graph $K_{m} \square K_{n}$, and it turns out that the $\{2\}$-metric dimension of a rook's graph is connected to combinatorial designs. Finally, in Section 5, we consider the ℓ -solid- and $\{\ell\}$-metric dimensions of flower snarks. The structure of a flower snark allows us to prove bounds on the 1 -solid- and $\{2\}$-metric dimensions by using a new reduction-like approach. We also point out and correct an error in a proof in [10] regarding the $\{1\}$-metric dimension of a flower snark.

2. General Results

2.1. The Connection Between ℓ-Solid- and $\{\ell\}$-Resolving Sets

The following theorem gives a characterisation for ℓ-solid-resolving sets. Compared to Definition 2, this characterisation provides a significantly easier way to verify that a set is an ℓ-solid-resolving set.

Theorem 3. Let $S \subseteq V$ and $\ell \geq 1$. The set S is an ℓ-solid-resolving set of G if and only if for all $x \in V$ and nonempty $Y \subseteq V$ such that $x \notin Y$ and $|Y| \leq \ell$ there exists an element $s \in S$ such that

$$
\begin{equation*}
d(s, x)<d(s, Y) \tag{1}
\end{equation*}
$$

Proof. (\Rightarrow) Assume that S does not satisfy (1). There exists a vertex $x \in V$ and a set $Y \subseteq V$ such that $x \notin Y,|Y| \leq \ell$ and $d(s, x) \geq d(s, Y)$ for all $s \in S$. Now $\mathcal{D}_{S}(Y)=\mathcal{D}_{S}(Y \cup\{x\})$ and S is not an ℓ-solid-resolving set of G by Definition 2.
(\Leftarrow) Assume then that S satisfies (1). Consider nonempty vertex sets $X, Y \subseteq$ V such that $|X| \leq \ell$ and $X \neq Y$. We have the following two cases.

1. $Y \not \subset X$: Let $y \in Y \backslash X$. Since S satisfies (1), there exists an element $s \in S$ such that $d(s, y)<d(s, X)$. Now we have $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.
2. $Y \subset X$: Since $X \neq Y$, there exists a vertex $x \in X$ such that $x \notin Y$. Furthermore, we have $|Y|<|X| \leq \ell$. According to (1), we have $d(s, x)<$ $d(s, Y)$ for some $s \in S$, and consequently $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

Thus, the set S is an ℓ-solid-resolving set of G by Definition 2 .

Theorem 3 will be very useful throughout the article. This theorem also implies the corresponding result for $\ell=1$ in [7, Thm 2.2]. A somewhat similar result holds for $\{\ell\}$-resolving sets as stated in the following lemma. Unlike in Theorem 3, we now have only an implication and not an equivalence.

Lemma 4. Let $S \subseteq V$ and $\ell \geq 2$. If S is an $\{\ell\}$-resolving set of G, then for all $x \in V$ and $Y \subseteq V$ such that $x \notin Y$ and $|Y| \leq \ell-1$ there exists an element $s \in S$ for which we have

$$
\begin{equation*}
d(s, x)<d(s, Y) \tag{2}
\end{equation*}
$$

Proof. Assume that S does not satisfy (2). There exists a vertex $x \in V$ and a set $Y \subseteq V$ such that $x \notin Y,|Y| \leq \ell-1$ and $d(s, x) \geq d(s, Y)$ for all $s \in S$. Now $\mathcal{D}_{S}(Y)=\mathcal{D}_{S}(Y \cup\{x\})$ and since $|Y|<|Y \cup\{x\}| \leq \ell$, the set S is not an $\{\ell\}$-resolving set of G.

Now, if S is an $\{\ell+1\}$-resolving set of G for some $\ell \geq 1$, then according to Lemma 4 for all $x \in V$ and $Y \subseteq V$ such that $x \notin Y$ and $|Y| \leq \ell$ there exists an element $s \in S$ such that $d(s, x)<d(s, Y)$. According to Theorem 3, the set S is now also an ℓ-solid-resolving set, and the next result is immediate.

Theorem 5. Let $S \subseteq V$ and $\ell \geq 1$.
(i) If S is an ℓ-solid-resolving set, then it is an $\{\ell\}$-resolving set of G.
(ii) If S is an $\{\ell+1\}$-resolving set, then it is an ℓ-solid-resolving set of G.

If we know that a set S is an ℓ-solid-resolving set of G, then to prove that the set S is an $\{\ell+1\}$-resolving set of G, it is sufficient to check that the distance arrays of vertex sets of cardinality $\ell+1$ are unique. Indeed, according to Definition 2 the distance arrays $\mathcal{D}_{S}(X)$, where $|X| \leq \ell$, are unique. The only thing we need to do to prove that S satisfies Definition 1 is to show that no two vertex sets of cardinality $\ell+1$ have the same distance array with respect to S.

2.2. Forced Vertices

A vertex $v \in V(G)$ is called a forced vertex of an $\{\ell\}$-resolving set (similarly, ℓ-solid-resolving set) of G if it must be included in any $\{\ell\}$-resolving set of G. In other words, no subset of $V(G) \backslash\{v\}$ is an $\{\ell\}$-resolving set of G. The graph we are considering is often clear from the context, and we may refer to a forced vertex of that graph by saying simply that the vertex is forced for an ℓ-solid- or $\{\ell\}$-resolving set. The number of forced vertices of an ℓ-solid- or $\{\ell\}$-resolving set gives us an immediate lower bound on the corresponding metric dimension.

The concept of forced vertices was first introduced in $[8]$, where the forced vertices of $\{\ell\}$-resolving sets were partially characterised. As was pointed out in
[4], the set $V \backslash\{v\}$ is a $\{1\}$-resolving set of a nontrivial connected graph G for all $v \in V$. Thus, no such graph has forced vertices for a $\{1\}$-resolving set. In [7], the forced vertices of 1 -solid-resolving sets were fully characterised. In this section, we prove characterisations for ℓ-solid- and $\{\ell\}$-resolving sets for all ℓ.

We denote by $N(v)$ the open neighbourhood of vertex v which is defined as $N(v)=\{u \in V \mid d(v, u)=1\}$. The closed neighbourhood of a vertex $v \in V$ is $N[v]=N(v) \cup\{v\}$ and the closed neighbourhood of a vertex set U is $N[U]=$ $\bigcup_{u \in U} N[u]$.

Theorem 6. Let $\ell \geq 1$. A vertex $v \in V$ is a forced vertex of an ℓ-solid-resolving set of G if and only if there exists a set $U \subseteq V$ such that $v \notin U,|U| \leq \ell$ and $N(v) \subseteq N[U]$.

Proof. (\Leftarrow) Assume that v and U are as described. The shortest path from any $s \in V \backslash\{v\}$ to v goes through $N(v)$. Since $N(v) \subseteq N[U]$, we have $d(s, v) \geq d(s, U)$ for all $s \in V \backslash\{v\}$. Thus, $\mathcal{D}_{S}(U)=\mathcal{D}_{S}(U \cup\{v\})$ for all subsets $S \subseteq V \backslash\{v\}$.
(\Rightarrow) Assume then that $v \in V$ and for all $U \subseteq V$ such that $v \notin U$ and $|U| \leq \ell$ we have $N(v) \nsubseteq N[U]$. Now there exists a vertex $w \in N(v) \backslash N[U]$, and we have $d(w, v)<d(w, U)$. Since $d(x, x)<d(x, Y)$ for any $x \in V$ and $Y \subseteq V \backslash\{x\}$, the set $V \backslash\{v\}$ satisfies (1) and is thus an ℓ-solid-resolving set of G, which contradicts the fact that v is forced for an ℓ-solid-resolving set.

According to Theorem 5 an $\{\ell\}$-resolving set, where $\ell \geq 2$, is always an $(\ell-1)$-solid-resolving set of the graph in question. Thus, if a vertex is forced for $(\ell-1)$-solid-resolving sets of a graph, then it is also forced for the $\{\ell\}$-resolving sets of the same graph. The following theorem characterises all forced vertices of an $\{\ell\}$-resolving set of a graph, and shows that the forced vertices of $\{\ell\}$-resolving sets are in fact exactly the same as those of $(\ell-1)$-solid-resolving sets.

Theorem 7. Let $\ell \geq 2$. A vertex $v \in V$ is a forced vertex of an $\{\ell\}$-resolving set of G if and only if there exists a set $U \subseteq V$ such that $v \notin U,|U| \leq \ell-1$ and $N(v) \subseteq N[U]$.

Proof. (\Leftarrow) Clear by Theorems 5 and 6 .
(\Rightarrow) Assume then that $v \in V$ and that for all $U \subseteq V$ such that $v \notin U$ and $|U| \leq \ell-1$ we have $N(v) \nsubseteq N[U]$. We will show that the set $S=V \backslash\{v\}$ is an $\{\ell\}$-resolving set of G by showing how to determine the elements of a vertex set X when the distance array $\mathcal{D}_{S}(X)$ is known. Consider a nonempty set $X \subseteq V$, where $|X| \leq \ell$, and let $\mathcal{D}_{S}(X)$ be known. We can easily determine the elements of $X^{\prime}=X \cap S$ by considering the zeros in the distance array $\mathcal{D}_{S}(X)$. If $\left|X^{\prime}\right|=\ell$, then $X=X^{\prime}$ and we have uniquely determined all elements of X. Otherwise, we still need to determine whether v is in X since it is the only vertex of the graph that is not in S. Since $\left|X^{\prime}\right| \leq \ell-1$ and $v \notin X^{\prime}$, there exists a vertex
$w \in N(v) \backslash N\left[X^{\prime}\right]$ according to our assumption. Now, $d(w, v)<d\left(w, X^{\prime}\right)$ and $d(w, X)=d(w, v)$ if and only if $v \in X$.

To illustrate the previous theorems, consider again the graph H in Figure 1. Since $N\left(v_{1}\right)=\left\{v_{2}, v_{3}, v_{4}\right\}$ and $N\left(v_{3}\right)=\left\{v_{1}, v_{2}, v_{4}\right\}$, we have $N\left(v_{1}\right) \subseteq N\left[v_{3}\right]$ and $N\left(v_{3}\right) \subseteq N\left[v_{1}\right]$. By Theorems 6 and 7 , the vertices v_{1} and v_{3} are forced vertices of 1 -solid- and $\{2\}$-resolving sets of H.

Consider then any connected graph G. If $\operatorname{deg}(v) \leq \ell$ for some vertex v and integer $\ell \geq 1$, then $N(v) \subseteq N[N(v)]$ and v is forced for ℓ-solid- and $\{\ell+1\}$ resolving sets of G by Theorems 6 and 7 . In particular, if G is a tree, then a vertex v is forced for ℓ-solid- and $\{\ell+1\}$-resolving sets if and only if $\operatorname{deg}(v) \leq \ell$. In [8], it was shown that the forced vertices of an $\{\ell\}$-resolving set of a tree indeed form an $\{\ell\}$-resolving set, when $\ell \geq 2$. Since any $\{\ell+1\}$-resolving set is an ℓ-resolving set and the forced vertices of these two types of resolving sets are exactly the same, the ℓ-solid-resolving sets of a tree consist of only the corresponding forced vertices. Thus, for any ℓ we can construct trees that have nontrivial ℓ-solid- and $\{\ell\}$-resolving sets.

3. Bounds and Characterisations

For the $\{1\}$-metric dimension of a graph there is the obvious lower bound $\beta_{1}(G) \geq$ 1. This lower bound is attained if and only if $G=P_{n}[4,14]$. In this section, we prove a lower bound on the ℓ-solid-metric dimension of a graph and characterise the graphs attaining that bound. The lower bound $\beta_{1}^{s}(G) \geq 2$ on the 1 -solidmetric dimension of a graph was shown in [7]. The following theorem generalises this lower bound for ℓ-solid-metric dimensions where $\ell \geq 2$.

Theorem 8. Let G be a graph with n vertices. When $1 \leq \ell \leq n-1$, we have $\beta_{\ell}^{s}(G) \geq \ell+1$.

Proof. Let $S \subseteq V$ such that $1 \leq|S| \leq \ell$. Since $\ell \leq n-1$, there exists at least one vertex v which is not in S. Now, $\mathcal{D}_{S}(S)=(0, \ldots, 0)=\mathcal{D}_{S}(S \cup\{v\})$, and S is not an ℓ-solid-resolving set of G according to Definition 2.

The following theorem characterises the graphs attaining the bound of Theorem 8.

Theorem 9. Let G be a connected graph with n vertices and let $2 \leq \ell \leq n-1$. We have

$$
\beta_{\ell}^{s}(G)=\ell+1 \text { if and only if } n=\ell+1 \text { or } G=K_{1, \ell+1}
$$

Proof. If $n=\ell+1$, on the one hand, $\beta_{\ell}^{s}(G) \leq n=\ell+1$ and on the other hand $\beta_{\ell}^{s}(G)>\ell$, and thus $\beta_{\ell}^{s}(G)=\ell+1$. Also, by Theorem 2.9 of [8], the star $K_{1, \ell+1}$
with $\ell+2$ vertices satisfies $\beta_{\ell+1}\left(K_{1, \ell+1}\right)=\ell+1$. Therefore $\ell<\beta_{\ell}^{s}\left(K_{1, \ell+1}\right) \leq$ $\beta_{\ell+1}\left(K_{1, \ell+1}\right)=\ell+1$, and thus $\beta_{\ell}^{s}\left(K_{1, \ell+1}\right)=\ell+1$.

Conversely, suppose that G is a connected graph such that $|V|=n \geq \ell+2$ and $\beta_{\ell}^{s}(G)=\ell+1$ and let $S \subseteq V$ be an ℓ-solid-resolving set with $\ell+1$ vertices. The following properties hold.

1. The set S is independent: Suppose to the contrary that there exist $s_{1}, s_{2} \in$ S such that $d\left(s_{1}, s_{2}\right)=1$. Since $|V| \geq \ell+2$, there exists $u \in V \backslash S$ that satisfies $d\left(u, s_{1}\right) \geq 1=d\left(s_{2}, s_{1}\right)$. Now, $d(v, u) \geq d\left(v, S \backslash\left\{s_{1}\right\}\right)$ for all $v \in S$, and since $\left|S \backslash\left\{s_{1}\right\}\right|=\ell$, the set S is not an ℓ-solid-resolving set of G according to (1), when $x=u$ and $Y=S \backslash\left\{s_{1}\right\}$.
2. We have $\operatorname{deg}(s)=1$ for every $s \in S$: Denote $S=\left\{s_{1}, \ldots, s_{\ell+1}\right\}$. Since G is connected and S is independent, each s_{i} has a neighbour in $V \backslash S$, say $v_{i} \in N\left(s_{i}\right)$ for $i=1, \ldots, \ell+1$. Suppose to the contrary that $\operatorname{deg}\left(s_{i}\right) \geq 2$ for some i. Assume without loss of generality that $\operatorname{deg}\left(s_{1}\right) \geq 2$. There exists a vertex $v_{1}^{\prime} \in N\left(s_{1}\right), v_{1}^{\prime} \neq v_{1}$. Let $A=\left\{v_{1}, \ldots, v_{\ell}\right\}$. Since S is an ℓ-solid-resolving set of G, according to Theorem 3 we must have $d\left(s_{i}, v_{1}^{\prime}\right)<d\left(s_{i}, A\right)$ for some $i \in\{1, \ldots, \ell+1\}$. However, we have $d\left(s_{i}, A\right)=1$ for all $i \in\{1, \ldots, \ell\}$, and thus $d\left(s_{\ell+1}, v_{1}^{\prime}\right)<d\left(s_{\ell+1}, A\right)$. Specifically, we have $d\left(s_{\ell+1}, v_{1}^{\prime}\right)<d\left(s_{\ell+1}, v_{1}\right)$. Similarly, for v_{1} and $B=\left\{v_{1}^{\prime}, v_{2}, \ldots, v_{\ell}\right\}$ we have $d\left(s_{\ell+1}, v_{1}\right)<d\left(s_{\ell+1}, B\right)$, and specifically $d\left(s_{\ell+1}, v_{1}\right)<d\left(s_{\ell+1}, v_{1}^{\prime}\right)$, a contradiction. Thus, $\operatorname{deg}(s)=1$ for all $s \in S$.

We now consider two cases.
Case 1. There exists $u \in V \backslash S$ and two different vertices $s_{1}, s_{2} \in S$ such that $d\left(u, s_{1}\right)=d\left(u, s_{2}\right)=1$. If $|V \backslash S| \geq 2$, then let $v \in V \backslash S$ be such that $v \neq u$. Let $X=\left(S \backslash\left\{s_{1}, s_{2}\right\}\right) \cup\{u\}$ and $Y=X \cup\{v\}$. We obtain that $\mathcal{D}_{S}(X)=\mathcal{D}_{S}(Y)=$ $(1,1,0, \ldots, 0)$, a contradiction. This means that, in this case, $V \backslash S=\{u\}$, and since u is not a forced vertex, $\operatorname{deg}(u) \geq \ell+1$, and thus u is a neighbour of every vertex in S. Finally, $G=K_{1, \ell+1}$ because S is independent.

Case 2. Every vertex in $V \backslash S$ has at most one neighbour in S. As seen above, we know that every vertex in S has exactly one neighbour in $V \backslash S$. We denote $S=\left\{s_{1}, \ldots, s_{\ell+1}\right\}$ and $A=\left\{v_{1}, \ldots, v_{\ell+1}\right\}(|A|=\ell+1)$ where v_{i} is the unique neighbour of s_{i}, for $1 \leq i \leq \ell+1$, and note that $\ell+1 \geq 3$. The following properties hold.
(a) The set A is independent. Suppose to the contrary that, say, v_{1} and v_{2} are neighbours. Thus, $d\left(v_{1}, s_{2}\right)=2$. Define the sets $X=\left(S \backslash\left\{s_{1}, s_{2}\right\}\right) \cup\left\{v_{1}\right\}$ and $Y=X \cup\left\{v_{3}\right\}$. Clearly $\mathcal{D}_{S}(X)=\mathcal{D}_{S}(Y)=(1,2,0, \ldots, 0)$, a contradiction.
(b) No pair of vertices of A has a common neighbour. Suppose to the contrary (without loss of generality) that there exists $w \in V$ that satisfies $d\left(v_{1}, w\right)=$ $d\left(v_{2}, w\right)=1$. Then $\operatorname{deg}(w) \geq 2$ and $w \notin S$. Moreover $w \notin A$, because A is independent. Let $X=\left(S \backslash\left\{s_{1}, s_{2}\right\}\right) \cup\{w\}$ and $Y=X \cup\left\{v_{3}\right\}$. Then $\mathcal{D}_{S}(X)=$ $\mathcal{D}_{S}(Y)=(2,2,0, \ldots, 0)$, a contradiction.

Note that every $v_{i} \in A$ has at least ℓ neighbours $(\ell \geq 2)$ in $V \backslash S$, say $\left\{v_{i, j} \mid 1 \leq j \leq \ell\right\}$, because it is not forced. The last property gives that $v_{i, j} \neq v_{i^{\prime}, j^{\prime}}$ for $(i, j) \neq\left(i^{\prime}, j^{\prime}\right)$.

Assume, without loss of generality, that $d\left(v_{1,1}, s_{\ell+1}\right)=\min \left\{d\left(v_{1, j}, s_{\ell+1}\right) \mid 1 \leq\right.$ $j \leq \ell\}$ and let $X=\left\{v_{1,1}, v_{2,1}, \ldots, v_{\ell, 1}\right\}$. Then for all $s_{i} \in S$, where $i \neq \ell+1$, we have $d\left(s_{i}, X\right)=2 \leq d\left(s_{i}, v_{1,2}\right)$ since A and S are both independent. Furthermore, since $d\left(v_{1,1}, s_{\ell+1}\right) \leq d\left(v_{1,2}, s_{\ell+1}\right)$, we have $d\left(s_{\ell+1}, X\right) \leq d\left(s_{\ell+1}, v_{1,1}\right) \leq$ $d\left(s_{\ell+1}, v_{1,2}\right)$. Thus, $d\left(s_{i}, v_{1,2}\right) \geq d\left(s_{i}, X\right)$ for all $s_{i} \in S$, and S is not an ℓ-solidresolving set of G by Theorem 3, a contradiction.

Notice that the number of graphs that attain the lower bound $\beta_{\ell}^{s}(G) \geq \ell+1$ is infinite when $\ell=1$ and finite when $\ell \geq 2$. Corresponding results for $\{\ell\}$-resolving sets can be found in [8].

Let us then consider infinite graphs, that is, graphs with infinitely many vertices. In [2], it was shown that an infinite graph may have finite or infinite $\{1\}$-metric dimension. We will show that the $\{\ell\}$-metric dimension, where $\ell \geq 2$, is infinite for any infinite graph. Moreover, the ℓ-solid-metric dimension of any infinite graph is infinite. To prove these results, we will consider doubly resolving sets.

Definition 10 [3]. Let G be a graph with $|V(G)| \geq 2$. Two vertices $v, w \in V(G)$ are doubly resolved by $x, y \in V(G)$ if $d(v, x)-d(w, x) \neq d(v, y)-d(w, y)$. A set of vertices $S \subseteq V(G)$ doubly resolves G, and S is a doubly resolving set, if every pair of distinct vertices $v, w \in V(G)$ is doubly resolved by two vertices in S.

In [7], it was shown that a 1 -solid-resolving set of G is a doubly resolving set of G. According to Theorem 5 any $\{\ell\}$-resolving set, where $\ell \geq 2$, and ℓ-solidresolving set is a 1 -solid-resolving set. The following result is now immediate.

Corollary 11. If $S \subseteq V(G)$ is an $\{\ell\}$-resolving $\operatorname{set}(\ell \geq 2)$ or an ℓ-solid-resolving set of $G(\ell \geq 1)$, then S is a doubly resolving set of G.

Lemma 12 [2]. If G is an infinite graph, then any doubly resolving set of G is infinite.

The following corollary is now immediate due to Corollary 11 and Lemma 12.
Corollary 13. If G is an infinite graph, then $\beta_{\ell}(G)=\infty$, when $\ell \geq 2$, and $\beta_{\ell}^{s}(G)=\infty$, when $\ell \geq 1$.

4. On Cartesian Products of Graphs

The Cartesian product of the graphs G and H is the graph $G \square H$ with the vertex set $\{a v \mid a \in V(G), v \in V(H)\}$. Distinct vertices $a v, b u \in V(G \square H)$ are adjacent
if $a=b$ and $v \in N_{H}(u)$, or $a \in N_{G}(b)$ and $v=u$. We have $d_{G \square H}(a v, b u)=$ $d_{G}(a, b)+d_{H}(v, u)$. To simplify notations, we may denote V instead of $V(G \square H)$ and omit the subscript $G \square H$ from the distance function. The projection of $X \subseteq V$ onto G is the set $\left\{x_{1} \in V(G) \mid x_{1} x_{2} \in X\right\}$. Similarly, the projection of $X \subseteq V$ onto H is the set $\left\{x_{2} \in V(H) \mid x_{1} x_{2} \in X\right\}$.

Theorem 14. Let G and H be nontrivial connected graphs and $\ell \geq 1$.

1. If S is an ℓ-solid-resolving set of $G \square H$, then the projection of S onto G (respectively onto H) is an ℓ-solid-resolving of G (respectively of H).
2. If T is an ℓ-solid-resolving set of G and U is an ℓ-solid-resolving set of H, then $T \times U$ is an ℓ-solid-resolving of $G \square H$.
3. We have $\max \left\{\beta_{\ell}^{s}(G), \beta_{\ell}^{s}(H)\right\} \leq \beta_{\ell}^{s}(G \square H) \leq \beta_{\ell}^{s}(G) \cdot \beta_{\ell}^{s}(H)$.

Proof. 1. Let $a \in V(G)$ and $Y \subseteq V(G),|Y| \leq \ell$, and let $h_{0} \in V(H)$ be a fixed vertex. Let $a h_{0} \in V(G \square H)$ and $Y_{0}=Y \times\left\{h_{0}\right\}$. Now $\left|Y_{0}\right| \leq \ell$ and there exists $s=g_{s} h_{s} \in S$ such that

$$
\begin{aligned}
d_{G}\left(g_{s}, a\right)+d_{H}\left(h_{s}, h_{0}\right) & =d\left(g_{s} h_{s}, a h_{0}\right)<d\left(g_{s} h_{s}, Y_{0}\right) \\
& =\min \left\{d_{G}\left(g_{s}, y\right)+d_{H}\left(h_{s}, h_{0}\right) \mid y \in Y\right\} \\
& =\min \left\{d_{G}\left(g_{s}, y\right) \mid y \in Y\right\}+d_{H}\left(h_{s}, h_{0}\right) .
\end{aligned}
$$

Therefore, $d_{G}\left(g_{s}, a\right)<\min \left\{d_{G}\left(g_{s}, y\right) \mid y \in Y\right\}=d_{G}\left(g_{s}, Y\right)$, as desired.
2. Let $a b \in V(G \square H)$ and $Y \subseteq V(G \square H)$ such that $|Y| \leq \ell$. Then the projections Y_{G} and Y_{H} of Y onto G and H, respectively, satisfy $\left|Y_{G}\right|,\left|Y_{H}\right| \leq$ ℓ. Therefore, there exist $t \in T$ and $u \in U$ such that $d_{G}(t, a)<d_{G}\left(t, Y_{G}\right)=$ $\min \left\{d_{G}\left(t, y_{g}\right) \mid y_{g} \in Y_{G}\right\}$ and $d_{H}(u, b)<d_{H}\left(u, Y_{H}\right)=\min \left\{d_{H}\left(u, y_{h}\right) \mid y_{h} \in Y_{H}\right\}$.

Note that $\min \left\{d_{G}\left(t, y_{g}\right) \mid y_{g} \in Y_{G}\right\}+\min \left\{d_{H}\left(u, y_{h}\right) \mid y_{h} \in Y_{H}\right\} \leq \min \{$ $\left.d_{G}(t, \alpha)+d_{H}(u, \beta) \mid \alpha \beta \in Y\right\}=\min \{d(t u, \alpha \beta) \mid \alpha \beta \in Y\}=d(t u, Y)$.

Finally, $d(t u, a b)=d_{G}(t, a)+d_{H}(u, b)<\min \left\{d_{G}\left(t, y_{g}\right) \mid y_{g} \in Y_{G}\right\}+$ $\min \left\{d_{H}\left(u, y_{h}\right) \mid y_{h} \in Y_{H}\right\} \leq d(t u, Y)$, as desired.
3. The lower bound follows from 1. and the upper bound follows from 2.

Notice that in 2., it would be sufficient that the set U satisfies the condition (1) with equality, that is, for all $x \in V(H)$ and nonempty $Y \subseteq V(H)$ such that $x \notin Y$ and $|Y| \leq \ell$ there exists $u \in U$ such that $d_{H}(u, x) \leq d_{H}(u, Y)$.

Theorem 15. Let G and H be nontrivial connected graphs and $\ell \geq 2$.

1. If S is an $\{\ell\}$-resolving set of $G \square H$, then the projection of S onto G (respectively onto H) is an $\{\ell\}$-resolving of G (respectively of H).
2. If S is an $\{\ell\}$-resolving set of G (respectively of H) and S^{\prime} is an ℓ-solidresolving set of H (respectively of G), then $S \times S^{\prime}\left(\right.$ respectively $\left.S^{\prime} \times S\right)$ is a $\{\ell\}$-resolving set of $G \square H$.
3. We have $\max \left\{\beta_{\ell}(G), \beta_{\ell}(H)\right\} \leq \beta_{\ell}(G \square H) \leq \min \left\{\beta_{\ell}(G) \cdot \beta_{\ell}^{s}(H), \beta_{\ell}^{s}(G) \cdot \beta_{\ell}(H)\right\}$.

Proof. 1. Let S be an $\{\ell\}$-resolving set of $G \square H$, and X and Y be subsets of $V(G)$ such that $X \neq Y, 1 \leq|X| \leq \ell$ and $1 \leq|Y| \leq \ell$. Define $X_{0}=X \times\left\{h_{0}\right\}$ and $Y_{0}=$ $Y \times\left\{h_{0}\right\}$, where $h_{0} \in H$. Clearly, we have $X_{0} \neq Y_{0},|X|=\left|X_{0}\right|$ and $|Y|=\left|Y_{0}\right|$. Hence, there exists a vertex $s=g_{s} h_{s} \in S$ such that $d\left(s, X_{0}\right) \neq d\left(s, Y_{0}\right)$. Therefore, as $d\left(s, X_{0}\right)=d_{G}\left(g_{s}, X\right)+d_{H}\left(h_{s}, h_{0}\right)$ and $d\left(s, Y_{0}\right)=d_{G}\left(g_{s}, Y\right)+d_{H}\left(h_{s}, h_{0}\right)$, we obtain that $d_{G}\left(g_{s}, X\right) \neq d_{G}\left(g_{s}, Y\right)$. Thus, the projection of S onto G is an $\{\ell\}$ resolving set of G. Analogously, it can be shown that the projection of S onto H is an $\{\ell\}$-resolving set of H.
2. Let S be an $\{\ell\}$-resolving set of G and S^{\prime} be an ℓ-solid-resolving set of H. Assume that $X, Y \subseteq V(G \square H)$ are such that $X \neq Y, 1 \leq|X| \leq \ell$ and $1 \leq|Y| \leq$ ℓ. Denote $X=\left\{g_{1} h_{1}, \ldots, g_{k} h_{k}\right\}$ and $Y=\left\{g_{1}^{\prime} h_{1}^{\prime}, \ldots, g_{k^{\prime}}^{\prime} h_{k^{\prime}}^{\prime}\right\}$, where $k=|X|$, $k^{\prime}=|Y|, g_{i}, g_{i}^{\prime} \in V(G)$ and $h_{i}, h_{i}^{\prime} \in V(H)$. Further denote $X_{G}=\left\{g_{1}, \ldots, g_{k}\right\}$ and $Y_{G}=\left\{g_{1}^{\prime}, \ldots, g_{k^{\prime}}^{\prime}\right\}$, and $X_{H}=\left\{h_{1}, \ldots, h_{k}\right\}$ and $Y_{H}=\left\{h_{1}^{\prime}, \ldots, h_{k^{\prime}}^{\prime}\right\}$. The proof now divides into the following two cases.

- Suppose that $X_{G} \neq Y_{G}$. Now there exists a vertex $s \in S$ such that $d_{G}\left(s, X_{G}\right) \neq$ $d_{G}\left(s, Y_{G}\right)$. Without loss of generality, we may assume that $d_{G}\left(s, g_{1}\right)=d_{G}\left(s, X_{G}\right)$ $<d_{G}\left(s, Y_{G}\right)$. Observe that by the condition (1) there exists $s^{\prime} \in S^{\prime}$ such that $d_{H}\left(s^{\prime}, h_{1}\right)<d_{H}\left(s^{\prime}, h\right)$ for any $h \in Y_{H} \backslash\left\{h_{1}\right\}$ since $\left|Y_{H} \backslash\left\{h_{1}\right\}\right| \leq \ell$; we agree that if $Y_{H} \backslash\left\{h_{1}\right\}=\emptyset$, then any $s^{\prime} \in S^{\prime}$ meets the required (empty) condition (similar agreement is also made in the case with $X_{G}=Y_{G}$). Thus, we have a vertex $s^{\prime} \in S$ satisfying $d_{H}\left(s^{\prime}, h_{1}\right)=d_{H}\left(s^{\prime}, Y_{H}\right)$. Therefore, we obtain that $d\left(s s^{\prime}, X\right) \leq$ $d\left(s s^{\prime}, g_{1} h_{1}\right)=d_{G}\left(s, g_{1}\right)+d_{H}\left(s^{\prime}, h_{1}\right)<d_{G}\left(s, Y_{G}\right)+d_{H}\left(s^{\prime}, Y_{H}\right) \leq d\left(s s^{\prime}, Y\right)$.
- Suppose that $X_{G}=Y_{G}$. Since $X \neq Y$, we have $X \triangle Y=(X \backslash Y) \cup(Y \backslash X) \neq \emptyset$ and, without loss of generality, we may assume that $g_{1} h_{1} \in X \triangle Y$. By the condition (2), there exists $s \in S$ such that $d_{G}\left(s, g_{1}\right)<d_{G}(s, g)$ for any $g \in$ $Y_{G} \backslash\left\{g_{1}\right\}$ since $\left|Y_{G} \backslash\left\{g_{1}\right\}\right| \leq \ell-1$. Analogously, by (1), there exists $s^{\prime} \in S^{\prime}$ such that $d_{H}\left(s^{\prime}, h_{1}\right)<d_{H}\left(s^{\prime}, h^{\prime}\right)$ for any $h^{\prime} \in Y_{H} \backslash\left\{h_{1}\right\}$ since $\left|Y_{H} \backslash\left\{h_{1}\right\}\right| \leq \ell$. For any $g_{i}^{\prime} h_{i}^{\prime} \in Y$ we have $g_{i}^{\prime} \neq g_{1}$ or $h_{i}^{\prime} \neq h_{1}$ since $g_{1} h_{1} \notin Y$. Now $d\left(s s^{\prime}, X\right) \leq$ $d\left(s s^{\prime}, g_{1} h_{1}\right)=d_{G}\left(s, g_{1}\right)+d_{H}\left(s^{\prime}, h_{1}\right)<d_{G}\left(s, g_{i}^{\prime}\right)+d_{H}\left(s^{\prime}, h_{i}^{\prime}\right)=d\left(s s^{\prime}, g_{i}^{\prime} h_{i}^{\prime}\right)$ for any $g_{i}^{\prime} h_{i}^{\prime} \in Y$. Hence, we have shown that $d\left(s s^{\prime}, X\right)<d\left(s s^{\prime}, Y\right)$.

Thus, $S \times S^{\prime}$ is an $\{\ell\}$-resolving set of $G \square H$. The other claim can be proven analogously.
3. The lower bound follows from 1. and the upper bound follows from 2.

4.1. The Rook's Graph $K_{m} \square K_{n}$

The graph $K_{m} \square K_{n}$ can be illustrated as a grid, see Figure 2. A column of $K_{m} \square K_{n}$ is the set $\left\{v u \mid u \in V\left(K_{n}\right)\right\}$ for some fixed $v \in V\left(K_{m}\right)$. Similarly, a row of $K_{m} \square K_{n}$ is the set $\left\{v u \mid v \in V\left(K_{m}\right)\right\}$ for some fixed $u \in V\left(K_{n}\right)$. Two vertices
are adjacent if and only if they are on the same row or column. Moreover, if two distinct vertices x and y are on different rows and columns, we have $d(x, y)=2$.

Consider any $K_{m} \square K_{n}$ where $m, n \geq 2$. Let x, y and z be distinct vertices such that x and y are on the same column, and x and z are on the same row. Any neighbour of x is in the closed neighbourhood of either y or z. Thus, we have $N(x) \subseteq N[\{y, z\}]$. According to Theorems 6 and $7, x$ is a forced vertex for ℓ -solid-resolving sets when $\ell \geq 2$ and $\{\ell\}$-resolving sets when $\ell \geq 3$. Consequently, $\beta_{\ell}^{s}\left(K_{m} \square K_{n}\right)=m n$ for all $\ell \geq 2$ and $\beta_{\ell}\left(K_{m} \square K_{n}\right)=m n$ for all $\ell \geq 3$.

The 1 -solid- and $\{1\}$-metric dimensions of $K_{m} \square K_{n}$ were considered in [7] and [3], respectively. Thus, the only ℓ-solid- or $\{\ell\}$-metric dimension of $K_{m} \square K_{n}$ yet to be determined is the $\{2\}$-metric dimension. In what follows, we show a characterisation for the $\{2\}$-resolving sets of $K_{m} \square K_{n}$. As it turns out, this characterisation provides us an exciting connection between combinatorial designs and $\{2\}$-resolving sets of $K_{m} \square K_{n}$.

A quadruple of $K_{m} \square K_{n}$ is the set $\{a v, a u, b v, b u\}$ where $a, b \in V\left(K_{m}\right)$ and $v, u \in V\left(K_{n}\right)$ are distinct. For example, in $K_{7} \square K_{7}$ illustrated in Figure 2, the set $\left\{v_{1} u_{1}, v_{1} u_{3}, v_{4} u_{1}, v_{4} u_{3}\right\}$ is a quadruple, and we can see that these four vertices lie on the corners of a rectangle.

Figure 2. The graph $K_{7} \square K_{7}$, where $v_{i} \in V\left(K_{7}\right)$ and $u_{i} \in V\left(K_{7}\right)$. The black squares from a $\{2\}$-resolving set of $K_{7} \square K_{7}$.

Lemma 16. Let $m, n \geq 2$. If the set S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$, then each quadruple contains at least one element of S.

Proof. Let $Q=\{a v, a u, b v, b u\} \subseteq V\left(K_{m} \square K_{n}\right)$ be a quadruple that does not contain any elements of S. Let us denote $X=\{a v, b u\}$ and $Y=\{a u, b v\}$. Since $N[X]=N[Y]$, we have $d(s, X)=1$ if and only if $d(s, Y)=1$ for all $s \in S$. Consequently, $\mathcal{D}_{S}(X)=\mathcal{D}_{S}(Y)$ and S is not a $\{2\}$-resolving set of $K_{m} \square K_{n}$, a contradiction.

In the following theorem, we show that there are two types of $\{2\}$-resolving sets of $K_{m} \square K_{n}$.

Theorem 17. Let $m, n \geq 2$. If the set S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$, then

1. the set $\{v\} \cup(V \backslash N(v))$ is a subset of S for some $v \in V$ or
2. each row and column contains at least two elements of S and each quadruple contains at least one element of S.

Proof. Suppose first that for some $a \in V\left(K_{m}\right)$ the column $C=\{a u \mid u \in$ $\left.V\left(K_{n}\right)\right\}$ does not contain elements of S. Let $a v \in C$ and $b v \in V \backslash C$ for some $v \in V\left(K_{n}\right)$. Since the column C does not contain any elements of S, we have $N(a v) \cap S \subseteq N[b v]$. Consequently, $d(s, a v) \geq d(s, b v)$ for all $s \in S$, and the set S is not a $\{2\}$-resolving set of $K_{m} \square K_{n}$ according to Lemma 4. Thus, if S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$, then each column (and row, by symmetry) contains at least one element of S.

Suppose then that $C \cap S=\{a u\}$. Let $b \in V\left(K_{m}\right) \backslash\{a\}$ and $t \in V\left(K_{n}\right) \backslash\{u\}$. Consider the sets $X=\{b u, b t\}$ and $Y=\{b u, a t\}$. For some $c v \in S$, we have $d(c v, X) \neq d(c v, Y)$. As $b u$ is in both X and Y, we have $d(c v, b t) \neq d(c v, a t)$. Since at and $b t$ are on the same row, $c v$ is either on the column C or the column $D=\left\{b w \mid w \in V\left(K_{n}\right)\right\}$. The only element of S in C is $a u$. However, the element $b u$ is in both X and Y, and we have $d(a u, X)=d(a u, Y)=1$. Thus, $c v$ must be in D. The column D contains the element $b u$, and thus $d(c v, X)=d(c v, Y)=1$ if $c v \neq b t$. Therefore, we have $c v=b t$ and $b t \in S$. Since this holds for all $b \neq a$ and $t \neq u$, we have that $w \in S$ for all $w \in V \backslash N(a u)$.

In conclusion, if S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$ and some column (or row) contains only one element of S, the set $\{v\} \cup(V \backslash N(v))$ is a subset of S for some $v \in V$. If each row and column contains at least two elements of S, each quadruple contains at least one element of S according to Lemma 16.

If $\{v\} \cup(V \backslash N(v))$ is a proper subset of S for some $v \in V$, then S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$. The proof is straightforward but quite technical. The set S contains almost all vertices of the graph. When the graph $K_{m} \square K_{n}$ is sufficiently large, the condition 2 . of Theorem 17 has potential to produce significantly smaller $\{2\}$-resolving sets. To show that a set satisfying 2 . is a $\{2\}$-resolving set of $K_{m} \square K_{n}$, we need the following lemma.

Lemma 18. Let $m \geq n \geq 6$ and $S \subseteq V\left(K_{m} \square K_{n}\right)$. If each quadruple contains at least one element of S, then there exists at most one row and one column that contain at most two elements of S.

Proof. Suppose to the contrary that there exist some $r, t \in V\left(K_{n}\right), r \neq t$, such that the rows $R=\left\{v r \mid v \in V\left(K_{m}\right)\right\}$ and $T=\left\{v t \mid v \in V\left(K_{m}\right)\right\}$ both contain at most two elements of S. Consider the two rows as partitioned into pairs $\{v r, v t\}$,
where $v \in V\left(K_{m}\right)$. The rows R and T contain at most four elements of S in total. However, we have $m \geq 6$ pairs, and thus there are at least two pairs, say $\{a r, a t\}$ and $\{b r, b t\}$, that do not contain an element of S. Now the quadruple $\{a r, a t, b r, b t\}$ does not contain an element of S, a contradiction. The claim holds for columns by symmetry.

Theorem 19. Let $m \geq n \geq 6$ and $S \subseteq V\left(K_{m} \square K_{n}\right)$. If each row and column contains at least two elements of S and each quadruple contains at least one element of S, then the set S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$.

Proof. To prove that S is a 1 -solid-resolving set, it suffices to check that (1) holds for any $x \in V \backslash S$. To that end, let $x \in V \backslash S$ and $y \in V, y \neq x$. Both the row and column that contain x also contain at least two elements of S. The closed neighbourhood of y contains all these four elements if and only if $y=x$. Thus, for any $x \in V \backslash S$ and $y \in V$ there exists $s \in S$ such that $d(s, x)<d(s, y)$. According to Theorem 3, the set S is a 1-solid-resolving set of $K_{m} \square K_{n}$.

Let us then consider distinct sets $X, Y \subseteq V\left(K_{m} \square K_{n}\right)$ such that $|X|=|Y|=$ 2. If for some $x \in X \backslash Y$ and $y \in Y \backslash X$ we have $\{x, y\} \cap S \neq \emptyset$, then clearly $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

Suppose that for some $x \in X \backslash Y$ and $y \in Y \backslash X$ we have $\{x, y\} \cap S=\emptyset$. According to Lemma 18 at least one of x and y has three elements of S on its row or column. Assume without loss of generality that x is on the row R and R contains at least three elements of S. If $Y \cap R=\emptyset$, then for at least one $s \in S \cap R$ we have $d(s, X)=1<d(s, Y)$. Thus, $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

Suppose that $Y \cap R \neq \emptyset$, and let $y_{1} \in Y \cap R$. Since $x \notin Y$, the vertex y_{1} cannot be on the same column as x. The column C that contains x contains at least two elements of S, say $c_{1}, c_{2} \in C \cap S$. We have $d\left(c_{1}, x\right)=d\left(c_{2}, x\right)=1$ and $d\left(c_{1}, y_{1}\right)=d\left(c_{2}, y_{1}\right)=2$. Let $y_{2} \in Y, y_{2} \neq y_{1}$. If $y_{2} \notin C$, then $d\left(c_{1}, y_{2}\right)=2$ or $d\left(c_{2}, y_{2}\right)=2$, and thus $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

Suppose $y_{2} \in C$. Only one of y_{1} and y_{2} can be in S. Suppose $y_{1} \in S$. If $y_{1} \notin X$, then $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$. Suppose $y_{1} \in X$. The row T that contains y_{2} also contains at least two elements of S, say $t_{1}, t_{2} \in T \cap S$. Since $y_{2} \notin S, t_{1} \neq y_{2}$ and $t_{2} \neq y_{2}$, and thus $t_{1}, t_{2} \notin C$. Now $d\left(t_{1}, X\right)=2$ or $d\left(t_{2}, X\right)=2$ since only one of t_{1} and t_{2} can be on the same column as y_{1}. Thus, $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$. Similarly, if $y_{2} \in S$, we can prove that there is a vertex $s \in S$ in the same column as y_{1} such that $d\left(s, y_{1}\right)=1<d(s, X)$.

Suppose $y_{1} \notin S$ and $y_{2} \notin S$. If the element $x^{\prime} \in X \backslash\{x\}$ is in the intersection of the column containing y_{1} and the row containing y_{2}, the elements x, x^{\prime}, y_{1} and y_{2} form a quadruple. According to our assumption one of these elements is in S, and consequently $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$. If x^{\prime} is not on the same column as y_{1} or on the same row as y_{2} (both of which contain two elements of S), we clearly have $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$.

According to Theorem 19, the set illustrated as black squares in Figure 2 is a $\{2\}$-resolving set of $K_{7} \square K_{7}$. The following theorem can be used to obtain a lower bound on the $\{2\}$-metric dimension of $K_{m} \square K_{n}$. Indeed, the left side of Equation (3) decreases as the size of the $\{2\}$-resolving set S increases. Thus, this gives a lower bound on $|S|$.

Theorem 20. Let $m \geq n \geq 2$. If S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$, and q and r are integers such that $|S|=q m+r$ with $0 \leq r<m$, then

$$
\begin{equation*}
r\binom{n-(q+1)}{2}+(m-r)\binom{n-q}{2} \leq\binom{ n}{2} . \tag{3}
\end{equation*}
$$

Proof. Assume first that S is an arbitrary subset of $V\left(K_{m} \square K_{n}\right)$ and q and r are integers such that $|S|=q m+r$ with $0 \leq r<m$. Denote the columns of $K_{m} \square K_{n}$ by C_{1}, \ldots, C_{m}. For $i=1, \ldots, m$, let x_{i} be the number of elements of S in the column C_{i}, i.e., $x_{i}=\left|S \cap C_{i}\right|$. Using this notation, each column C_{i} contains $\binom{n-x_{i}}{2}$ pairs of vertices not belonging to S. Furthermore, the number of such pairs of vertices over all the columns is equal to

$$
\begin{equation*}
\sum_{i=1}^{m}\binom{n-x_{i}}{2} \tag{4}
\end{equation*}
$$

Assume that the set S^{\prime} gives the minimum value of the sum (4) among the sets with $|S|$ elements. Let us then show that no column of S^{\prime} contains less than q elements. Suppose to the contrary that there is a column C_{i} with $\left|S^{\prime} \cap C_{i}\right|=$ $k_{1}<q$. Since $\left|S^{\prime}\right|=q m+r$, there exists a column C_{j} with $\left|S^{\prime} \cap C_{j}\right|=k_{2} \geq q+1$. Now we have

$$
\begin{aligned}
\binom{k_{1}}{2}+\binom{k_{2}}{2} & =\binom{k_{1}}{2}+\binom{k_{2}-1}{2}+\left(k_{2}-1\right)>\binom{k_{1}}{2}+k_{1}+\binom{k_{2}-1}{2} \\
& =\binom{k_{1}+1}{2}+\binom{k_{2}-1}{2} .
\end{aligned}
$$

Hence, the elements of S^{\prime} in the columns C_{i} and C_{j} can be redistributed to obtain a set with the same number of elements as S^{\prime} and with a smaller sum (4) (a contradiction). Similarly, it can be shown that no column contains at least $q+2$ elements of S^{\prime}. Indeed, if such a column, say C_{i} with $\left|S^{\prime} \cap C_{i}\right|=k_{1} \geq q+2$, exists, then there is a column C_{j} with $\left|S^{\prime} \cap C_{j}\right|=k_{2} \leq q$ and as above we have

$$
\begin{aligned}
\binom{k_{1}}{2}+\binom{k_{2}}{2} & =\binom{k_{1}-1}{2}+\left(k_{1}-1\right)+\binom{k_{2}}{2}>\binom{k_{1}-1}{2}+\binom{k_{2}}{2}+k_{2} \\
& =\binom{k_{1}-1}{2}+\binom{k_{2}+1}{2}
\end{aligned}
$$

leading to a contradiction. Hence, we may assume that each column contains at least q and at most $q+1$ elements of S^{\prime}. Therefore, as $\left|S^{\prime}\right|=|S|=q m+r$, there exist r columns containing $q+1$ elements and $m-r$ columns containing q elements of S^{\prime}. Thus, we obtain that

$$
\sum_{i=1}^{m}\binom{n-x_{i}}{2} \geq r\binom{n-(q+1)}{2}+(m-r)\binom{n-q}{2}
$$

Observe that the right side of this inequality decreases as the number of elements of S increases.

Assume then that S is a $\{2\}$-resolving set of $K_{m} \square K_{n}$ (instead of being arbitrary). Now, due to Lemma 16, no two columns have two same rows without elements of S. This implies (by the pigeon hole principle) that

$$
r\binom{n-(q+1)}{2}+(m-r)\binom{n-q}{2} \leq\binom{ n}{2}
$$

Thus, the claim follows.
The conditions of Theorem 19 can also be interpreted as a certain type of design as explained in the following remark. For more on combinatorial designs, see [5] (specifically, parts I and IV).

Remark 21. Let X be a set with n elements and \mathcal{B} be a collection of m subsets called blocks of X such that (i) any block has at most $n-2$ elements, (ii) each element of X is included in at most $m-2$ blocks and (iii) any pair of elements of X is included in at most one block of \mathcal{B}. Each block of \mathcal{B} represents a column of $K_{m} \square K_{n}$; more precisely, the elements of a block correspond to the elements of a column not belonging to S. Observe that maximizing the total number of elements in the blocks of \mathcal{B} minimizes the corresponding $\{2\}$-resolving set S of $K_{m} \square K_{n}$. Although the designs satisfying (i), (ii) and (iii) have not earlier been studied, some usual designs work nicely for our purposes.

- Let $n=m=7$ and $X=\{1, \ldots, 7\}$. A collection $\mathcal{B}_{1}=\{\{1,2,4\},\{1,3,7\}$, $\{1,5,6\},\{2,3,5\},\{2,6,7\},\{3,4,6\},\{4,5,7\}\}$ is a (balanced incomplete block) design such that each block has 3 elements, each element is included in 3 blocks and any pair of elements of X is included in exactly one block of \mathcal{B}_{1}. When we interpret \mathcal{B}_{1} as explained above, we obtain a $\{2\}$-resolving set of $K_{7} \square K_{7}$ with 28 elements (see Figure 2). Moreover, by Theorem 20, no smaller $\{2\}$-resolving set exists. Hence, we have $\beta_{2}\left(K_{7} \square K_{7}\right)=28$.
- Let $n=10, m=12$ and $X=\{1, \ldots, 10\}$. A collection $\mathcal{B}_{2}=\{\{1,2,3,4\},\{1,5$, $6,7\},\{1,8,9,10\},\{2,5,8\},\{2,6,9\},\{2,7,10\},\{3,5,10\},\{3,6,8\},\{3,7,9\},\{4,5,9\}$, $\{4,6,10\},\{4,7,8\}\}$ is a (pairwise balanced) design such that each block has 3
or 4 elements, each element is included in 3 or 4 blocks and any pair of elements of X is included in exactly one block of \mathcal{B}_{2}. Hence, we obtain a $\{2\}-$ resolving set of $K_{10} \square K_{12}$ with 81 elements. Therefore, by Theorem 20, we have $\beta_{2}\left(K_{10} \square K_{12}\right)=81$.

Analogously, any $\{2\}$-resolving set S of $K_{m} \square K_{n}$ can be interpreted as a certain type of design. Indeed, construct a design with m blocks each formed by the elements of a column not belonging to S. By Lemma 16, each such design satisfies the previous condition (iii) and some other minor constraints depending on whether 1. or 2 . of Theorem 17 holds.

5. Flower Snarks

Flower snarks were first introduced by Isaacs in [11]. Flower snarks were one the first infinite graph families of 3 -regular graphs proven to have no proper 3-edge-coloring. In [10], flower snarks were shown to have a constant $\{1\}$-metric dimension. Let us define flower snarks with the following construction.

Construction. Let $n=2 k+1$ be an odd integer, $n \geq 5$.

1. First we draw n copies of the star $K_{1,3}$. We denote by $T_{i}=\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$ the vertices of the i th star, where the leaves of the star are a_{i}, c_{i} and d_{i}.
2. We connect the vertices a_{i} by drawing the cycle $a_{1} a_{2} \cdots a_{n} a_{1}$.
3. We connect the remaining leaves of the stars by drawing the cycle $c_{1} c_{2} \cdots c_{n} d_{1} d_{2} \cdots d_{n} c_{1}$.
The resulting graph is the flower snark J_{n} with $4 n$ vertices.
Probably the most common way to draw a flower snark is illustrated in Figure 3(a) for J_{5}. The graph J_{5} (and all flower snarks in general) can be drawn as in Figure 3(b). From this figure it is easy to see that the graph has many automorphisms and that the vertices c_{i} and d_{i} do not have any essential differences.

Any shortest path from $v \in T_{i}$ to $u \in T_{j}$ can be divided into three parts; the parts inside T_{i} and T_{j}, and the part from T_{i} to T_{j}. The part from T_{i} to T_{j} is usually the obvious, except for c_{1} and c_{k+2} (and isomorphic cases). For example, one shortest path between b_{1} and b_{4} in J_{5} is $b_{1} a_{1} a_{5} a_{4} b_{4}$. However, the unique shortest path between c_{1} and c_{4} is $c_{1} c_{2} c_{3} c_{4}$.

In [10], it was shown that $\beta_{1}\left(J_{n}\right)=3$ when $n \geq 5$. However, the proof for the upper bound $\beta_{1}\left(J_{n}\right) \leq 3$ is erroneous. The authors claim that the set $W=\left\{c_{1}, d_{1}, d_{k}\right\}$ is a resolving set of J_{n} since all vertices have unique distance arrays with respect to W. However, we have $\mathcal{D}_{W}\left(a_{1}\right)=(2,2, k+1)=\mathcal{D}_{W}\left(b_{n}\right)$ and $\mathcal{D}_{W}\left(a_{k}\right)=(k+1, k+1,2)=\mathcal{D}_{W}\left(b_{k+1}\right)$. Thus, the set W is not a resolving set of J_{n}. Despite this, their result holds. We can replace d_{k} with d_{k+1} in W,
after which it is straightforward to correct the proof and verify that the new set is indeed a resolving set of J_{n}.

Our goal is to determine the ℓ-solid- and $\{\ell\}$-metric dimensions of flower snarks. To that end, we first consider the forced vertices of flower snarks. Consider any flower snark J_{n}. Since $n \geq 5, J_{n}$ is a 3-regular graph of girth at least 5. Now, for all $v \in V$ and $U \subseteq V, v \notin U$, if $N(v) \subseteq N[U]$, then the set U has at least three elements. Thus, no vertex of J_{n} is forced for $\left\{\ell_{1}\right\}$-resolving sets or ℓ_{2}-solid-resolving sets where $\ell_{1} \leq 3$ and $\ell_{2} \leq 2$. For all other ℓ-solid- and $\{\ell\}$-resolving sets all vertices are forced vertices; for all $v \in V$ we can choose $U=N(v)$, and we naturally have $N(v) \subseteq N[U]$. Thus, we have the following theorem.

Theorem 22. Let n be an odd integer, $n \geq 5$. We have $\beta_{\ell}\left(J_{n}\right)=4 n$ when $\ell \geq 4$ and $\beta_{\ell}^{s}\left(J_{n}\right)=4 n$ when $\ell \geq 3$.

As for the remaining metric dimensions, we begin by considering $\{3\}$-resolving sets since, quite surprisingly, the difficulty of the proofs increases as the value of ℓ decreases.

(c) A portion of J_{n}.

Figure 3.

5.1. The $\{3\}$-Metric Dimension of J_{n}

We begin by proving two technical lemmas. In these lemmas, we consider certain sets of vertices with at most three elements. Any $\{3\}$-resolving set should be able
to distinguish these sets from each other. However, as we will see, there are very few vertices able to do that. In Figure 3(c), we have illustrated a part of a flower snark, which will help in visualising the sets of vertices discussed in the lemmas. Notice that if $i=1$, then $b_{i-1}=b_{n}$, and if $i=n$, then $b_{i+1}=b_{1}$.

Lemma 23. Let $i \in\{1, \ldots, n\}$ and

$$
B=\left\{b_{i-1}, b_{i+1}\right\}, \quad X=B \cup\left\{a_{i}\right\}, \quad Y=B \cup\left\{c_{i}\right\}, \quad Z=B \cup\left\{d_{i}\right\} .
$$

We have
(i) $d(s, X) \neq d(s, B)$ if and only if $s \in\left\{a_{i}, b_{i}\right\}$,
(ii) $d(s, Y) \neq d(s, B)$ if and only if $s \in\left\{c_{i}, b_{i}\right\}$,
(iii) $d(s, Z) \neq d(s, B)$ if and only if $s \in\left\{d_{i}, b_{i}\right\}$.

Proof. Let $v \in V \backslash T_{i}$ and $u \in T_{i}$. Any shortest path $v-u$ goes through either T_{i-1} or T_{i+1}. Thus, either $d(v, u) \geq d\left(v, b_{i-1}\right)$ or $d(v, u) \geq d\left(v, b_{i+1}\right)$, and we have $d(v, X)=d(v, Y)=d(v, Z)=\min \left\{d\left(v, b_{i-1}\right), d\left(v, b_{i+1}\right)\right\}=d(v, B)$.

Consider then the elements of T_{i}. The distances from each element $s \in T_{i}$ to each of the sets B, X, Y and Z are presented in the following table.

s	$d(s, B)$	$d(s, X)$	$d(s, Y)$	$d(s, Z)$
b_{i}	3	1	1	1
a_{i}	2	0	2	2
c_{i}	2	2	0	2
d_{i}	2	2	2	0

Lemma 24. Let $i \in\{1, \ldots, n\}$ and

$$
X=\left\{a_{i}, b_{i-1}, b_{i+1}\right\}, \quad Y=\left\{c_{i}, b_{i-1}, b_{i+1}\right\}, \quad Z=\left\{d_{i}, b_{i-1}, b_{i+1}\right\} .
$$

We have
(i) $d(s, X) \neq d(s, Y)$ if and only if $s \in\left\{a_{i}, c_{i}\right\}$,
(ii) $d(s, X) \neq d(s, Z)$ if and only if $s \in\left\{a_{i}, d_{i}\right\}$,
(iii) $d(s, Y) \neq d(s, Z)$ if and only if $s \in\left\{c_{i}, d_{i}\right\}$.

Proof. Follows from the proof of Lemma 23.
In the following theorem, the exact values of $\beta_{3}\left(J_{n}\right)$ are determined for all $n \geq 5$.

Theorem 25. Let $n \geq 5$ be an odd integer. We have $\beta_{3}\left(J_{n}\right)=3 n$.

Proof. $\beta_{3}\left(J_{n}\right) \geq 3 n$: Let S be a $\{3\}$-resolving set of J_{n}. Any set of two vertices of T_{i} contains an element of S by Lemmas 23 and 24. Thus, $\left|S \cap T_{i}\right| \geq 3$ for all $i=1, \ldots, n$, and the lower bound $\beta_{3}\left(J_{n}\right) \geq 3 n$ follows.
$\beta_{3}\left(J_{n}\right) \leq 3 n$: Let $S=V \backslash\left\{b_{i} \mid i=1, \ldots, n\right\}$ (see Figure 4(a)) and let $X \subseteq V$ such that $|X| \leq 3$. We will prove that S is a $\{3\}$-resolving set of J_{n} by showing how to determine the elements of X when we know the distance array $\mathcal{D}_{S}(X)$.

If for some $s \in S$ we have $d(s, X)=0$, then clearly $s \in X$. Thus, if $\mathcal{D}_{S}(X)$ has three zeros, we have found all elements of X since $|X| \leq 3$.

Assume that $\mathcal{D}_{S}(X)$ has at most two zeros. We need to determine whether $b_{i} \in X$ for any $i \in\{1, \ldots, n\}$. Consider any T_{i}. If $d(s, X) \geq 2$ for some $s \in T_{i} \cap S$, then clearly $b_{i} \notin X$. If $d(s, X) \leq 1$ for all $s \in T_{i} \cap S$, then $b_{i} \in X$. Indeed, assume to the contrary that $b_{i} \notin X$. There is an element of X in $N(s) \backslash\left\{b_{i}\right\}$ for every $s \in T_{i} \cap S$ such that $d(s, X)=1$. However, all neighbours of s other than b_{i} are also in S. Since $N(s) \cap N\left(s^{\prime}\right)=\left\{b_{i}\right\}$ for all distinct $s, s^{\prime} \in T_{i} \cap S$, there must be at least three zeros in the distance array $\mathcal{D}_{S}(X)$, a contradiction. Therefore, when $\mathcal{D}_{S}(X)$ has at most two zeros $b_{i} \in X$ if and only if $d(s, X) \leq 1$ for all $s \in T_{i} \cap S$.

Figure 4. Optimal $\{\ell\}$ - and ℓ-solid-resolving sets of J_{9}.

5.2. The 2-Solid-Metric Dimension of J_{n}

Let S be a 2 -solid-resolving set of J_{n}. For any distinct sets $X, Y \subseteq V$ such that $|X|=2$ and $|Y| \geq 3$, we have $\mathcal{D}_{S}(X) \neq \mathcal{D}_{S}(Y)$. In particular, Lemma 23 holds for S. Thus, either $b_{i} \in S$ or $\left\{a_{i}, c_{i}, d_{i}\right\} \subseteq S$. This observation gives us the obvious lower bound $\beta_{2}^{s}\left(J_{n}\right) \geq n$. However, as we will show in Theorem 28, the 2 -solid-metric dimension of J_{n} is $n+5$. In order to obtain the lower bound $\beta_{2}^{s}\left(J_{n}\right) \geq n+5$, we need the following two lemmas. These lemmas tell us, how many vertices a_{i}, c_{i} and d_{i} a 2 -solid-resolving set must contain.

Recall that we denote $n=2 k+1$, where k is an integer.
Lemma 26. Denote $A=\left\{a_{i} \mid i=1, \ldots, n\right\}$. If a vertex set S is a 2 -solidresolving set of J_{n}, then there can be at most $k-1$ consecutive elements of A that are not elements of S. Consequently, S must contain at least three elements of A.

Proof. Assume to the contrary that there are k or more consecutive elements of A that are not in S. Without loss of generality, we can assume that $\left\{a_{i} \mid i=\right.$ $k+2, \ldots, n\} \cap S=\emptyset$. We will show that the set S is not a 2 -solid-resolving set as it does not satisfy (1). To that end, let us consider the vertex a_{n} and the set $X=\left\{c_{n}, a_{1}\right\}$. For all b_{i} we have $d\left(b_{i}, a_{n}\right)=d\left(b_{i}, c_{n}\right)$, and thus $d\left(b_{i}, X\right) \leq$ $d\left(b_{i}, a_{n}\right)$. For all c_{i} we have $d\left(c_{i}, c_{n}\right) \leq d\left(a_{i}, a_{n}\right)+2=d\left(c_{i}, a_{n}\right)$. Similarly, we have $d\left(d_{i}, c_{n}\right) \leq d\left(d_{i}, a_{n}\right)$ for all d_{i}. Since $d\left(c_{i}, X\right) \leq d\left(c_{i}, c_{n}\right)$ and $d\left(d_{i}, X\right) \leq d\left(d_{i}, d_{n}\right)$, we have $d\left(c_{i}, X\right) \leq d\left(c_{i}, a_{n}\right)$ and $d\left(d_{i}, X\right) \leq d\left(d_{i}, a_{n}\right)$ for all $i \in\{1, \ldots, n\}$. Let $a_{j} \in A \cap S$. Since $1 \leq j \leq k+1$, we have $d\left(a_{j}, a_{1}\right) \leq d\left(a_{j}, a_{n}\right)$, and thus $d\left(a_{j}, X\right) \leq d\left(a_{j}, a_{n}\right)$. Consequently, the set S does not satisfy (1) for a_{n} and X, and is not a 2 -solid-resolving set of J_{n} according to Theorem 3.

Consequently, A contains at least three elements of S.
We denote the cycle $c_{1} c_{2} \cdots c_{n} d_{1} d_{2} \cdots d_{n} c_{1}$ by C.
Lemma 27. If a vertex set S is a 2 -solid-resolving set of J_{n}, then there can be at most k consecutive vertices of C that are not in S. Consequently, S must contain at least four elements of C.

Proof. Assume to the contrary that there are at least $k+1$ consecutive vertices of C that are not in S. Without loss of generality, assume that $\left\{c_{i} \mid i=1, \ldots, k+\right.$ $1\} \cap S=\emptyset$.

Consider the vertex c_{1} and the set $X=\left\{d_{1}, d_{n}\right\}$. We will show that $d\left(s, c_{1}\right) \geq$ $d(s, X)$ for all $s \in S$. For all a_{i}, we have $d\left(a_{i}, c_{1}\right)=d\left(a_{i}, a_{1}\right)+2=d\left(a_{i}, d_{1}\right)$. Consequently, $d\left(a_{i}, X\right) \leq d\left(a_{i}, c_{1}\right)$ for all $i \in\{1, \ldots, n\}$. Similarly, we have $d\left(b_{i}, c_{1}\right)=d\left(a_{i}, a_{1}\right)+1=d\left(b_{i}, d_{1}\right)$ and $d\left(b_{i}, X\right) \leq d\left(b_{i}, c_{1}\right)$ for all $i \in\{1, \ldots, n\}$. Consider then a vertex d_{j}. If $1 \leq j \leq k$, then $d\left(d_{j}, c_{1}\right)=d\left(d_{j}, d_{1}\right)+2$. If $k+1 \leq j \leq n$, then $d\left(d_{j}, c_{1}\right)=d\left(d_{j}, d_{n}\right)+1$. Thus, $d\left(d_{j}, X\right)<d\left(d_{j}, c_{1}\right)$ for all
$j \in\{1, \ldots, n\}$. Similarly, for all c_{j} where $j \in\{k+3, \ldots, n\}$ we have $d\left(c_{j}, c_{1}\right)=$ $d\left(c_{j}, d_{1}\right)+2$. Finally, since $d\left(c_{k+2}, c_{1}\right)=k+1=d\left(c_{k+2}, d_{n}\right)$, we have $d\left(c_{j}, X\right) \leq$ $d\left(c_{j}, c_{1}\right)$ for all $j \in\{k+2, \ldots, n\}$. Now the set S is not a 2 -solid-resolving set of J_{n} since it does not satisfy (1) for c_{1} and X.

Consequently, C contains at least four elements of S.
Theorem 28. Let $n \geq 5$ be an odd integer. We have $\beta_{2}^{s}\left(J_{n}\right)=n+5$.
Proof. $\beta_{2}^{s}\left(J_{n}\right) \geq n+5$: Assume that S is a 2 -solid-resolving set of J_{n} with at most $n+4$ elements. Recall that according to Lemma 23 we have either $b_{i} \in S$ or $\left\{a_{i}, c_{i}, d_{i}\right\} \subseteq S$ for all $i \in\{1, \ldots, n\}$. According to Lemma 27 the set S contains at least four elements of C. Since $|S| \leq n+4$, the set S has exactly four elements of C due to Lemma 23(i). Now, if $c_{i} \notin S$ or $d_{i} \notin S$, then $b_{i} \in S$ and $a_{i} \notin S$ since otherwise S would have more than $n+4$ elements. If c_{i} and d_{i} are both in S, we have either $b_{i} \in S$ or $a_{i} \in S$. Since S contains four elements of C, there can be at most two elements a_{i} in S. Now, according to Lemma 26 the set S is not a 2 -solid-resolving set of J_{n}.

$$
\beta_{2}^{s}\left(J_{n}\right) \leq n+5: \text { Let }
$$

$$
S=\left\{a_{1}, c_{1}, d_{1}, a_{k+1}, a_{k+2}, c_{k+2}, d_{k+2}\right\} \cup\left\{b_{i} \mid i \in\{1, \ldots, n\}, i \neq 1, k+2\right\} .
$$

See Figure 4(b) for an example of this set. We have $|S|=7+n-2=n+5$. We will show that S satisfies (1) for $\ell=2$, and is thus a 2 -solid-resolving set of J_{n}. Clearly, for all $s \in S$ and $X \subseteq V$ such that $s \notin X$ we have $d(s, s)<d(s, X)$. Consider then the vertices that are not in S. We divide the study by the types of the vertices in J_{n}.
a_{i} : Assume that $2 \leq i \leq k$, the other case where $k+3 \leq i \leq n$ goes similarly. Since $a_{i} \notin S$, we have $b_{i} \in S$. Let $X \subseteq V,|X| \leq 2$ and $a_{i} \notin X$. If $X \cap$ $T_{i}=\emptyset$, then $d\left(b_{i}, a_{i}\right)<d\left(b_{i}, X\right)$. Assume then that $X \cap T_{i} \neq \emptyset$. Observe that $d\left(a_{1}, a_{i}\right)<d\left(a_{1}, X \cap T_{i}\right)$ and $d\left(a_{k+1}, a_{i}\right)<d\left(a_{k+1}, X \cap T_{i}\right)$. If $X \subseteq T_{i}$, then $d\left(a_{1}, a_{i}\right)<d\left(a_{1}, X\right)$ and $d\left(a_{k+1}, a_{i}\right)<d\left(a_{k+1}, X\right)$. Suppose then that $\mid X \cap$ $T_{i} \mid=1$ and $x \in X \backslash T_{i}$. If $d\left(a_{1}, x\right) \leq d\left(a_{1}, a_{i}\right)$ and $d\left(a_{k+1}, x\right) \leq d\left(a_{k+1}, a_{i}\right)$, then $d\left(a_{1}, a_{k+1}\right) \leq d\left(a_{1}, x\right)+d\left(x, a_{k+1}\right) \leq d\left(a_{1}, a_{i}\right)+d\left(a_{i}, a_{k+1}\right)$. Since the path $a_{1} a_{2} \ldots a_{k+1}$ is the unique shortest path between a_{1} and a_{k+1}, we have $x=a_{j}$ for some $j \in\{1, \ldots, k+1\}, j \neq i$. Consequently, either $d\left(a_{1}, a_{i}\right)<d\left(a_{1}, x\right)$ or $d\left(a_{k+1}, a_{i}\right)<d\left(a_{k+1}, x\right)$. Thus, either $d\left(a_{1}, a_{i}\right)<d\left(a_{1}, X\right)$ or $d\left(a_{k+1}, a_{i}\right)<$ $d\left(a_{k+1}, X\right)$.
b_{i} : Since $b_{i} \notin S$, either $i=1$ or $i=k+2$. Consider the case where $i=1$ (the case where $i=k+2$ goes similarly). Let $X \subseteq V,|X| \leq 2$ and $b_{1} \notin X$. If S does not satisfy (1), then $d\left(a_{1}, X\right), d\left(c_{1}, X\right)$ and $d\left(d_{1}, X\right)$ are all at most 1 . However, now each of the sets $\left\{a_{1}, a_{2}, a_{n}\right\},\left\{c_{1}, c_{2}, d_{n}\right\}$ and $\left\{d_{1}, d_{2}, c_{n}\right\}$ must contain at least
one element of X. Since these sets do not intersect, the set X has at least three elements, a contradiction.
c_{i}, d_{i} : Consider the vertex c_{i} where $2 \leq i \leq k+1$ (the other cases go similarly). Let $X \subseteq V,|X| \leq 2$ and $c_{i} \notin X$. Assume that $d(s, X) \leq d\left(s, c_{i}\right)$ for all $s \in S$. Since $d\left(b_{i}, X\right) \leq d\left(b_{i}, c_{i}\right)$, we have $X \cap\left\{b_{i}, d_{i}, a_{i}\right\} \neq \emptyset$. However, for all $v \in$ $\left\{b_{i}, d_{i}, a_{i}\right\}$ we have $d\left(c_{1}, c_{i}\right)<d\left(c_{1}, v\right)$ and $d\left(c_{k+2}, c_{i}\right)<d\left(c_{k+2}, v\right)$. Thus, X must have an element x such that $d\left(c_{1}, x\right) \leq d\left(c_{1}, c_{i}\right)$ and $d\left(c_{k+2}, x\right) \leq d\left(c_{k+2}, c_{i}\right)$.

The path $c_{1} c_{2} \ldots c_{k+1} c_{k+2}$ is the unique shortest path between c_{1} and c_{k+2}. Naturally, for all c_{j}, where $j \neq i$, we have either $d\left(c_{1}, c_{i}\right)<d\left(c_{1}, c_{j}\right)$ or $d\left(c_{k+2}, c_{i}\right)<$ $d\left(c_{k+2}, c_{j}\right)$. For all other vertices $v \notin\left\{c_{1}, \ldots, c_{k+2}\right\}$, we have $d\left(c_{1}, v\right)+d\left(v, c_{k+2}\right)>$ $d\left(c_{1}, c_{k+2}\right)=d\left(c_{1}, c_{i}\right)+d\left(c_{i}, c_{k+2}\right)$, and thus $d\left(c_{1}, c_{i}\right)<d\left(c_{1}, v\right)$ or $d\left(c_{k+2}, c_{i}\right)<$ $d\left(c_{k+2}, v\right)$. Thus, there is no such vertex x that $d\left(c_{1}, x\right) \leq d\left(c_{1}, c_{i}\right)$ and $d\left(c_{k+2}, x\right) \leq$ $d\left(c_{k+2}, c_{i}\right)$.

5.3. The $\{2\}$-Metric Dimension of J_{n}

As we have seen in the two previous sections, the $\{3\}$ - and 2 -solid-metric dimensions of J_{n} are dependent on n. However, we will see in Theorem 29 that the $\{2\}$-metric dimension is at most eight for any J_{n}.

Our computer calculations have shown that $\beta_{2}\left(J_{5}\right)=7$, and $S=\left\{a_{1}, a_{3}, b_{2}\right.$, $\left.b_{4}, c_{1}, c_{3}, d_{1}\right\}$, for example, is a $\{2\}$-metric basis of J_{5}. Our calculations have also shown that $\beta_{2}\left(J_{n}\right)=8$ when $7 \leq n \leq 19$. We will prove the upper bound $\beta_{2}\left(J_{n}\right) \leq 8$ in the following theorem, and we conjecture that the lower bound $\beta_{2}\left(J_{n}\right) \geq 8$ holds for all $n \geq 7$.

The proof of the following theorem is surprisingly difficult with traditional methods of comparing distance arrays. To show the upper bound $\beta_{2}\left(J_{n}\right) \leq 8$ we will construct a $\{2\}$-resolving set of J_{n} with eight elements. We have verified with a computer that the set we provide is indeed a $\{2\}$-resolving set of J_{n} when $7 \leq n \leq 19$. To show the claim for $n \geq 21$ we use a reduction-like approach. We will show that if the set was not a $\{2\}$-resolving set of J_{n} then it would not be a $\{2\}$-resolving set of J_{n-2}. The idea behind the proof is that if we carefully remove two stars T_{i} from J_{n} and add necessary edges (for example, in Figure $3(\mathrm{c})$, we can remove the star T_{i} and connect the stars T_{i-1} and T_{i+1}), we obtain J_{n-2}, and the distances in J_{n} and J_{n-2} are highly dependent on each other.

Theorem 29. Let $n=2 k+1 \geq 7$. We have $\beta_{2}\left(J_{n}\right) \leq 8$.
Proof. Denote

$$
\begin{array}{ll}
I=T_{n} \cup T_{1} \cup T_{2} \cup T_{3}, & J=T_{k} \cup T_{k+1} \cup T_{k+2} \cup T_{k+3}, \\
I^{\prime}=I \cup T_{n-1} \cup T_{4}, & J^{\prime}=J \cup T_{k-1} \cup T_{k+4}, \\
S_{I}=\left\{a_{1}, c_{1}, d_{1}, a_{2}\right\}, & S_{J}=\left\{a_{k+1}, a_{k+2}, c_{k+2}, d_{k+2}\right\} .
\end{array}
$$

Let $S=S_{I} \cup S_{J}$ (see Figure 4(c)). We will show that the set S is a $\{2\}$-resolving set of J_{n}. It is easy to check with a computer that the set S is a $\{2\}$-resolving set when $7 \leq n \leq 19$.

Assume to the contrary that the set S is not a $\{2\}$-resolving set of J_{n}, where $n \geq 21$, and that the set S is a $\{2\}$-resolving set of J_{n-2}. We denote the distance arrays in J_{n} by \mathcal{D}_{S}^{n} and the distance arrays in J_{n-2} by \mathcal{D}_{S}^{n-2}. Consider nonempty sets $X, Y \subseteq V\left(J_{n}\right)$ such that $|X| \leq 2,|Y| \leq 2, X \neq Y$ and $\mathcal{D}_{S}^{n}(X)=\mathcal{D}_{S}^{n}(Y)$. It is easy to see that if $\mathcal{D}_{S_{I}}^{n}(X)$ contains at least one distance that is at most 2, then we have $X \cap I^{\prime} \neq \emptyset$. Furthermore, if all distances in $\mathcal{D}_{S_{I}}^{n}(X)$ are at least 3, then we have $X \cap I=\emptyset$. The same holds for S_{J}, J and J^{\prime} by symmetry.

If both $\mathcal{D}_{S_{I}}^{n}(X)$ and $\mathcal{D}_{S_{J}}^{n}(X)$ contain at least one distance that is at most 2 , we have $X \cap I^{\prime} \neq \emptyset$ and $X \cap J^{\prime} \neq \emptyset$. Since $\mathcal{D}_{S}^{n}(X)=\mathcal{D}_{S}^{n}(Y)$, we have $Y \cap I^{\prime} \neq \emptyset$ and $Y \cap J^{\prime} \neq \emptyset$. We may think of J_{n-2} as being obtained from J_{n} by removing two stars from opposite sides of J_{n} such that they are halfway between I and J. Let $X^{\prime}, Y^{\prime} \subseteq V\left(J_{n-2}\right)$ consist of vertices that are in exactly the same positions as the elements of X and Y with respect to S_{I} and S_{J}. Since $n-2 \geq 19$, we have $d_{J_{n-2}}(s, v) \leq 5 \leq k-4 \leq d_{J_{n-2}}(s, u)$ for all $s \in S_{I}, v \in I^{\prime}$ and $u \in J^{\prime}$ (similarly for $s \in S_{J}, v \in J^{\prime}$ and $u \in I^{\prime}$). Thus, $\mathcal{D}_{S_{I}}^{n-2}\left(X^{\prime} \cap I^{\prime}\right)=\mathcal{D}_{S_{I}}^{n-2}\left(X^{\prime}\right)$ and $\mathcal{D}_{S_{J}}^{n-2}\left(X^{\prime} \cap J^{\prime}\right)=\mathcal{D}_{S_{J}}^{n-2}\left(X^{\prime}\right)$, and the same also holds for Y^{\prime}. Now we have $\mathcal{D}_{S}^{n-2}\left(X^{\prime}\right)=\mathcal{D}_{S}^{n}(X)=\mathcal{D}_{S}^{n}(Y)=\mathcal{D}_{S}^{n-2}\left(Y^{\prime}\right)$. However, $X \neq Y$ implies that $X^{\prime} \neq Y^{\prime}$, and since S is a $\{2\}$-resolving set of J_{n-2}, we must have $\mathcal{D}_{S}^{n-2}\left(X^{\prime}\right) \neq$ $\mathcal{D}_{S}^{n-2}\left(Y^{\prime}\right)$, a contradiction.

Assume then that all distances in $\mathcal{D}_{S_{I}}^{n}(X)$ are at least 3 (the case where this holds for $\mathcal{D}_{S_{J}}^{n}(X)$ goes similarly). Now, we have $X \cap I=\emptyset$ and $Y \cap I=\emptyset$. We may think of J_{n-2} as being obtained from J_{n} by removing the stars T_{3} and T_{n}. Let $X^{\prime}, Y^{\prime} \subseteq V\left(J_{n-2}\right)$ consist of vertices that are in exactly the same positions as the elements of X and Y with respect to S_{J}. Now, we have $\left(X^{\prime} \cup Y^{\prime}\right) \cap\left(T_{1} \cup T_{2}\right)=\emptyset$, and thus

$$
\begin{array}{ll}
\mathcal{D}_{S_{I}}^{n-2}\left(X^{\prime}\right)=\mathcal{D}_{S_{I}}^{n}(X)-(1,1,1,1), & \mathcal{D}_{S_{J}}^{n-2}\left(X^{\prime}\right)=\mathcal{D}_{S_{J}}^{n}(X), \\
\mathcal{D}_{S_{I}}^{n-2}\left(Y^{\prime}\right)=\mathcal{D}_{S_{I}}^{n}(Y)-(1,1,1,1), & \mathcal{D}_{S_{J}}^{n-2}\left(Y^{\prime}\right)=\mathcal{D}_{S_{J}}^{n}(Y) .
\end{array}
$$

Consequently, $\mathcal{D}_{S}^{n-2}\left(X^{\prime}\right)=\mathcal{D}_{S}^{n-2}\left(Y^{\prime}\right)$ if and only if $\mathcal{D}_{S}^{n}(X)=\mathcal{D}_{S}^{n}(Y)$. Since S is a $\{2\}$-resolving set of J_{n-2} and $X^{\prime} \neq Y^{\prime}$, we have $\mathcal{D}_{S}^{n-2}\left(X^{\prime}\right) \neq \mathcal{D}_{S}^{n-2}\left(Y^{\prime}\right)$, a contradiction.

5.4. The 1-Solid-Metric Dimension of J_{n}

We begin the section by giving an upper bound on $\beta_{1}^{s}\left(J_{n}\right)$ for all $n \geq 5$.
Theorem 30. Let $n=2 k+1 \geq 5$. We have $\beta_{1}^{s}\left(J_{n}\right) \leq 6$.

Proof. Let $S=\left\{a_{1}, a_{k+2}, c_{1}, d_{1}, c_{k+1}, d_{k+1}\right\}$ (see Figure $4(\mathrm{~d})$). We will show that the set S is a 1 -solid-resolving set of J_{n} by proving that S satisfies (1). We divide the proof by the types of the vertices of J_{n}.
a_{i} : Assume that $i \in\{2, \ldots, k+1\}$. The vertex a_{i} is along some shortest path from a_{1} to c_{k+1}. If there exists a vertex $v \in V \backslash\left\{a_{i}\right\}$ such that $d\left(a_{1}, v\right) \leq d\left(a_{1}, a_{i}\right)$ and $d\left(c_{k+1}, v\right) \leq d\left(c_{k+1}, a_{i}\right)$, then v is also along a shortest path from a_{1} to c_{k+1}. Moreover, we have $d\left(a_{1}, v\right)=d\left(a_{1}, a_{i}\right)$ and $d\left(c_{k+1}, v\right)=d\left(c_{k+1}, a_{i}\right)$, and thus $v \in$ $\left\{b_{i-1}, c_{i-2}\right\}$. Similarly, if $d\left(d_{k+1}, v\right) \leq d\left(d_{k+1}, a_{i}\right)$, then $v \in\left\{b_{i-1}, d_{i-2}\right\}$. Thus, we have $v=b_{i-1}$. However, we clearly have $d\left(a_{k+2}, a_{i}\right)<d\left(a_{k+2}, b_{i-1}\right)$. Thus, (1) is satisfied for all a_{i} where $i \in\{2, \ldots, k+1\}$. The case where $i \in\{k+3, \ldots, n\}$ goes similarly (look at the shortest paths from a_{k+2} to c_{1} and d_{1}).
b_{i} : Assume that $i \in\{1, \ldots, k+1\}$. By the argument above, the only vertex $v \in V \backslash\left\{b_{i}\right\}$ that is at the same distance from a_{1}, c_{k+1} and d_{k+1} as b_{i} is a_{i+1}. However, since $d\left(c_{1}, b_{i}\right)<d\left(c_{1}, a_{i+1}\right)$ for all $i \in\{1, \ldots, k+1\}$, the condition (1) is satisfied for all b_{i} where $i \in\{1, \ldots, k+1\}$. Similarly, we can prove that (1) holds for all b_{i} where $i \in\{k+2, \ldots, n\}$ by looking at the shortest paths from a_{k+2} to c_{1} and d_{1}.
c_{i}, d_{i} : Each c_{i} and d_{i} is along one of the four unique shortest paths: $c_{1}-c_{k+1}$, $c_{k+1}-d_{1}, d_{1}-d_{k+1}$ and $d_{k+1}-c_{1}$. Thus, (1) is satisfied for all c_{i} and d_{i}.

Let P be a shortest path between u and v in J_{n}. We denote $\rho_{n}(u, v)=t-1$, where t is the number of stars that intersect with P. Thus, $\rho_{n}(u, v)$ is the distance P traverses in order to get from the star that contains u to the star that contains v. The distance $d(u, v)$ could now be written as $d(u, v)=\rho_{n}(u, v)+r$, where r is the distance that P traverses inside the stars that contain u and v.

To determine the exact 1-solid-metric dimension of J_{n} we still need to prove the lower bound $\beta_{1}^{s}\left(J_{n}\right) \geq 6$. Computer calculations have shown this lower bound to hold for $5 \leq n \leq 39$. The idea behind the proof of the following theorem is to prove that if for some J_{n} we have $\beta_{1}^{s}\left(J_{n}\right) \leq 5$, then we also have $\beta_{1}^{s}\left(J_{n-2}\right) \leq 5$. To that end, we assume that the set $S,|S|=5$, is a 1 -solid-resolving set of J_{n}. We then construct J_{n-2} from J_{n} by removing the stars T_{1} and T_{k+1} and adding necessary edges (see Figure 5). As long as the stars close to the stars that were removed did not contain any elements of S the distances from the elements of S to other vertices behave well and predictably after the removal of the two stars. Then we can construct a 1 -solid-resolving set of J_{n-2} from S, and we reach a contradiction to the lower bound shown with a computer.

Theorem 31. Let $n=2 k+1 \geq 5$. We have $\beta_{1}^{s}\left(J_{n}\right)=6$.
Proof. Due to Theorem 30, it suffices to show the lower bound $\beta_{1}^{s}\left(J_{n}\right) \geq 6$. We showed this lower bound for $n \leq 39$ by an exhaustive search with a computer.

To prove the claim for all $n \geq 41$ we will show that if for some $n \geq 41$ we have $\beta_{1}^{s}\left(J_{n}\right) \leq 5$, then we also have $\beta_{1}^{s}\left(J_{n-2}\right) \leq 5$.

Let $n=2 k+1 \geq 41$ and let S be a 1 -solid-resolving set of J_{n} such that $|S|=5$. Throughout the proof, we will refer to Figure 5, where the flower snarks are smaller than what the proof requires for technical reasons. Consider the set $\left\{T_{i} \mid i \in\{1,2, k-1, k, k+1, k+2, n-1, n\}\right\}$ (illustrated with a gray background in Figure 5 for J_{21}) and its isomorphic images. There are n such sets and each $s \in S$ is in eight of these sets. Since $|S|=5$, at least one of these sets does not contain any elements of S if $n>8 \cdot 5=40$. Since $n \geq 41$, we can assume that the stars T_{i} where $i \in\{1,2, k-1, k, k+1, k+2, n-1, n\}$ do not contain elements of S. Let $m=n-2=2 l+1$. We denote by T_{i}^{n} a star in J_{n} and by T_{i}^{m} a star in J_{m}.

Let $\alpha: V\left(J_{n}\right) \rightarrow V\left(J_{m}\right)$ be a surjection such that

$$
\alpha\left(x_{i}\right)= \begin{cases}x_{1}, & \text { if } i=n, \\ x_{i}, & \text { if } i \in\{1, \ldots, k\}, \\ x_{i-1}, & \text { otherwise }\end{cases}
$$

where $x_{i} \in\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}$. The image of x_{i} is the same type as x_{i}, that is, if $x_{i}=a_{i}$, then $\alpha\left(x_{i}\right)=a_{j}$ for some $j \in\{1, \ldots, m\}$ and similarly for $x_{i}=b_{i}, c_{i}, d_{i}$. The preimages of x_{1} and x_{l+1} are $\alpha^{-1}\left(x_{1}\right)=\left\{x_{1}, x_{n}\right\}$ and $\alpha^{-1}\left(x_{l+1}\right)=\left\{x_{k}, x_{k+1}\right\}$ (illustrated as black vertices in Figure 5). For all other $x_{i} \in V\left(J_{m}\right)$ the preimages are unique.

Figure 5. An example of the last case of the proof of Theorem 31 where $n=21$ and $m=19$.

Let $R=\{\alpha(s) \mid s \in S\}$. Since the stars T_{i}^{n}, where $i \in\{1,2, k-1, k, k+1, k+$ $2, n-1, n\}$, do not contain elements of S, the vertices $\alpha\left(T_{i}^{n}\right)$ in J_{m} are not in R,
and $|R|=|S|$. In other words, the stars T_{j}^{m}, where $j \in\{1,2, l, l+1, l+2, m\}$, do not contain elements of R. We denote

$$
I=\bigcup_{i=2}^{l} T_{i}^{m} \quad \text { and } \quad J=\bigcup_{i=l+2}^{m} T_{i}^{m}
$$

(see Figure 5). Let $r \in R$ and $v \in V\left(J_{m}\right)$. Let $s=\alpha^{-1}(r)$ and v^{\prime} be a preimage of v. Since the stars T_{i}^{m} where $i \in\{1,2, l, l+1, l+2, m\}$ do not contain elements of R, the shortest paths from r to v are closely related to the shortest paths from s to v^{\prime}.

Let us denote by d_{n} and d_{m} the distances in J_{n} and J_{m}, respectively. If $r, v \in I$ or $r, v \in J$, then we have $d_{m}(r, v)=d_{n}\left(s, v^{\prime}\right)$. If $r \in I$ and $v \in J$, or $r \in J$ and $v \in I$, then $d_{m}(r, v)=d_{n}\left(s, v^{\prime}\right)-1$. If $v \in T_{1}^{m}$ or $v \in T_{l+1}^{m}$, then $d_{m}(r, v)=d_{n}\left(s, v^{\prime}\right)$ or $d_{m}(r, v)=d_{n}\left(s, v^{\prime}\right)-1$ depending on which of the preimages of v the vertex v^{\prime} is. Indeed, let $\alpha^{-1}(v)=\left\{x_{1}, x_{n}\right\}$. If $r \in I$, then $d_{m}(r, v)=d_{n}\left(s, x_{1}\right)=d_{n}\left(s, x_{n}\right)-1$. If $r \in J$, then $d_{m}(r, v)=d_{n}\left(s, x_{n}\right)=$ $d_{n}\left(s, x_{1}\right)-1$.

Let $x, y \in V\left(J_{m}\right)$ be distinct. In what follows, we will show that the set R satisfies (1). Suppose first that $x, y \in T_{1}^{m}$ or $x, y \in T_{l+1}^{m}$. Due to symmetry, it suffices to show that when $x, y \in T_{1}^{m}$ there exists an element $r \in R$ such that $d_{m}(r, x)<d_{m}(r, y)$. Let x^{\prime} and y^{\prime} be the preimages of x and y that are in T_{1}^{n}. Since S is a 1 -solid-resolving set of J_{n}, there exists some $s \in S$ such that $d_{n}\left(s, x^{\prime}\right)<d_{n}\left(s, y^{\prime}\right)$. Now, we have $d_{m}(\alpha(s), x)=d_{n}\left(s, x^{\prime}\right)$ if and only if $d_{m}(\alpha(s), y)=d_{n}\left(s, y^{\prime}\right)$. Consequently, $d_{m}(\alpha(s), x)<d_{m}(\alpha(s), y)$.

Suppose then that $x \in T_{1}^{m}$ and $y \in T_{l+1}^{m}$ (the case where $x \in T_{l+1}^{m}$ and $y \in T_{1}^{m}$ goes similarly). Assume to the contrary that there does not exist any $r \in R$ such that $d_{m}(r, x)<d_{m}(r, y)$. We have $d_{m}(r, x) \geq d_{m}(r, y)$ for all $r \in R$. Let x_{1} and x_{n} be the preimages of x that are in the stars T_{1}^{n} and T_{n}^{n}, respectively. Similarly, let y_{k} and y_{k+1} be the preimages of y in the stars T_{k}^{n} and T_{k+1}^{n}, respectively. Let $s \in S$. If $\alpha(s) \in I$, then we have $d_{n}\left(s, x_{1}\right)=$ $d_{m}(\alpha(s), x) \geq d_{m}(\alpha(s), y)=d_{n}\left(s, y_{k}\right)$. Since $d_{n}\left(s, x_{n}\right)=d_{n}\left(s, x_{1}\right)+1$ and $d_{n}\left(s, y_{k+1}\right)=d_{n}\left(s, y_{k}\right)+1$, we have $d_{n}\left(s, x_{n}\right) \geq d_{n}\left(s, y_{k+1}\right)$. If $\alpha(s) \in J$, then $d_{n}\left(s, x_{n}\right)=d_{m}(\alpha(s), x) \geq d_{m}(\alpha(s), y)=d_{n}\left(s, y_{k+1}\right)$. Thus, we have $d_{n}\left(s, x_{n}\right) \geq$ $d_{n}\left(s, y_{k+1}\right)$ for all $s \in S$, a contradiction. Therefore, there must exist some $r \in R$ such that $d_{m}(r, x)<d_{m}(r, y)$.

Suppose that $x \in T_{1}^{m} \cup T_{l+1}^{m}$ and $y \notin T_{1}^{m} \cup T_{l+1}^{m}$. Assume that $x \in T_{1}^{m}$ (the case where $x \in T_{l+1}^{m}$ follows by symmetry). We denote $y^{\prime}=\alpha^{-1}(y)$ and $\alpha^{-1}(x)=\left\{x_{1}, x_{n}\right\}$, where $x_{1} \in T_{1}^{n}$ and $x_{n} \in T_{n}^{n}$. Suppose that $y \in I$ (the case where $y \in J$ goes similarly). Assume to the contrary that $d_{m}(v, x) \geq$ $d_{m}(v, y)$ for all $v \in R$. Let $r, u \in R$ be such that $r \in I$ and $u \in J$. We denote $s=\alpha^{-1}(r)$ and $t=\alpha^{-1}(u)$. Now we have $d_{n}\left(s, y^{\prime}\right)=d_{m}(r, y), d_{n}\left(t, y^{\prime}\right)=$ $d_{m}(u, y)+1, d_{m}(r, x)=d_{n}\left(s, x_{1}\right)$ and $d_{m}(u, x)=d_{n}\left(t, x_{1}\right)-1$. Since $d_{m}(v, x) \geq$
$d_{m}(v, y)$ for all $v \in R$, we have $d_{n}\left(s, x_{1}\right)=d_{m}(r, x) \geq d_{m}(r, y)=d_{n}\left(s, y^{\prime}\right)$ and $d_{n}\left(t, x_{1}\right)=d_{m}(u, x)+1 \geq d_{m}(u, y)+1=d_{n}\left(t, y^{\prime}\right)$. Thus, for all $v^{\prime} \in S$ we have $d_{n}\left(v^{\prime}, x_{1}\right) \geq d_{n}\left(v^{\prime}, y^{\prime}\right)$ and the set S does not satisfy (1), a contradiction. Thus, for some $v \in R$ we have $d_{m}(v, x)<d_{m}(v, y)$. Similarly, if $d_{m}(v, y) \geq d_{m}(v, x)$ for all $v \in R$, then $d_{n}\left(s, y^{\prime}\right)=d_{m}(r, y) \geq d_{m}(r, x)=d_{n}\left(s, x_{1}\right)$ and $d_{n}\left(t, y^{\prime}\right)=$ $d_{m}(u, y)+1 \geq d_{m}(u, x)+1=d_{n}\left(t, x_{1}\right)$. Consequently, for all $v^{\prime} \in S$ we have $d_{n}\left(v^{\prime}, y^{\prime}\right) \geq d_{n}\left(v^{\prime}, x_{1}\right)$ and the set S does not satisfy (1), a contradiction. Thus, we also have $d_{m}(v, y)<d_{m}(v, x)$ for some $v \in R$.

Finally, assume that $x, y \notin T_{1}^{m} \cup T_{l+1}^{m}$. Let us denote $x^{\prime}=\alpha^{-1}(x)$ and $y^{\prime}=\alpha^{-1}(y)$. Assume that $x, y \in I$. Let $s \in S$ be such that $d_{n}\left(s, x^{\prime}\right)<d_{n}\left(s, y^{\prime}\right)$. Denote $r=\alpha(s)$. If $r \in I$, then $d_{m}(r, x)=d_{n}\left(s, x^{\prime}\right)$ and $d_{m}(r, y)=d_{n}\left(s, y^{\prime}\right)$. If $r \in J$, then $d_{m}(r, x)=d_{n}\left(s, x^{\prime}\right)-1$ and $d_{m}(r, y)=d_{n}\left(s, y^{\prime}\right)-1$. In both cases we have $d_{m}(r, x)<d_{m}(r, y)$. Thus, the set R satisfies (1) for any $x, y \in I$. The case where $x, y \in J$ goes similarly.

Suppose that $x \in I$ and $y \in J$. There is at least one star between the stars that contain x and y. We have the following two cases.

Case 1. There is exactly one star between x and y. Since $x \in I$ and $y \in J$, the star between x and y is either T_{1}^{m} or T_{l+1}^{m}. Thus, there are two stars between x^{\prime} and y^{\prime}. Suppose that T_{1}^{m} is the star between x and y, and $x \in T_{2}^{m}$ and $y \in T_{m}^{m}$. We have $x^{\prime} \in T_{2}^{n}$ and $y^{\prime} \in T_{n-1}^{n}$. Let $x_{1} \in T_{1}^{n}$ and $y_{n} \in T_{n}^{n}$ be such that they are the same type as x^{\prime} and y^{\prime}, respectively. By 'same type' we mean that if $x^{\prime}=c_{2}$, for example, then $x_{1}=c_{1}$. Since the stars T_{i}^{n} where $i \in\{1,2, k-1, k, k+1, k+2, n-1, n\}$ do not contain any elements of S, the vertex $s \in S$ is on the same side as x^{\prime} (that is, $\alpha(s) \in I$) if and only if we have $d_{n}\left(s, x^{\prime}\right)<d_{n}\left(s, y^{\prime}\right)$. Similarly, s is on the same side as y^{\prime} if and only if $d_{n}\left(s, y^{\prime}\right)<d_{n}\left(s, x^{\prime}\right)$.

Assume that for all $v \in R$ we have $d_{m}(v, x) \geq d_{m}(v, y)$. Since S is a 1-solidresolving set of J_{n}, there exist vertices $s, t \in S$ such that $d_{n}\left(s, x^{\prime}\right)<d_{n}\left(s, y^{\prime}\right)$ and $d_{n}\left(t, y^{\prime}\right)<d_{n}\left(t, x^{\prime}\right)$. According to our previous observation, s is on the same side as x^{\prime} and t is on the same side as y^{\prime}. Denote $r=\alpha(s)$. Since $d_{m}(r, x) \geq$ $d_{m}(r, y)$, we have $d_{n}\left(s, y^{\prime}\right)-1 \geq d_{n}\left(s, x^{\prime}\right)=d_{m}(r, x) \geq d_{m}(r, y)=d_{n}\left(s, y^{\prime}\right)-1$. Consequently, $d_{m}(r, x)=d_{m}(r, y)$ and $d_{n}\left(s, y^{\prime}\right)=d_{n}\left(s, x^{\prime}\right)+1$. Thus, we have $d_{n}\left(s, x_{1}\right)=d_{n}\left(s, x^{\prime}\right)+1=d_{n}\left(s, y^{\prime}\right)$. Since the stars T_{i}^{n}, where $i \in\{1,2, k-$ $1, k, k+1, k+2, n-1, n\}$, do not contain any elements of S, all shortest paths from t to x_{1} go through the star that contains y^{\prime}. Since the star T_{n}^{n} is between T_{1}^{n} and the star that contains y^{\prime}, we have $d_{n}\left(t, y^{\prime}\right) \leq d_{n}\left(t, x_{1}\right)$. Thus, the set S does not satisfy (1) for x_{1} and y^{\prime}, a contradiction. Similarly, if $d_{m}(v, y) \geq d_{m}(v, x)$ for all $v \in R$, the set S does not satisfy (1) for y_{n} and x^{\prime}.

Case 2. There are at least two stars between x and y. Now, there are at least three stars between x^{\prime} and y^{\prime}. Let $s \in S$ be such that $d_{n}\left(s, x^{\prime}\right)<d_{n}\left(s, y^{\prime}\right)$, and denote $r=\alpha(s)$. As $d_{m}(r, y) \geq d_{n}\left(s, y^{\prime}\right)-1$, we have $d_{m}(r, x) \leq d_{m}(r, y)$. If
$d_{m}(r, x)<d_{m}(r, y)$, then we are done. Suppose that $d_{m}(r, x)=d_{m}(r, y)$. We have $r \in I$ since otherwise $d_{m}(r, x)=d_{n}\left(s, x^{\prime}\right)-1<d_{n}\left(s, y^{\prime}\right)-1=d_{m}(r, y)-1$. Since $d_{m}(r, x)=d_{n}\left(s, x^{\prime}\right)$ and $d_{m}(r, y)=d_{n}\left(s, y^{\prime}\right)-1$, we have $d_{n}\left(s, x^{\prime}\right)=d_{n}\left(s, y^{\prime}\right)-1$. Clearly, there does not exist a shortest path from r to x that goes through the star that contains y. Since there are at least two stars between x and y, there does not exist a shortest path from r to y that goes through the star that contains x. Indeed, otherwise we would have $d_{m}(r, x) \leq \rho_{m}(r, x)+2<\rho_{m}(r, y) \leq d_{m}(r, y)$. Thus, the shortest paths $r-x$ and $r-y$ can coincide with each other only in the star that contains r.

Let $z \in V\left(J_{n}\right)$ be the unique vertex that is the same type as y^{\prime} (i.e., a_{i}, b_{i}, c_{i} or d_{i}), is in a star next to y^{\prime} and for which $d_{n}(s, z)=d_{n}\left(s, x^{\prime}\right)$ holds (see Figure 5). The vertex z is indeed unique since the first two conditions reduce the options to two and the third condition uniquely determines z as n in odd. Since S is a 1 -solid-resolving set of J_{n}, there exists a $t \in S$ such that $d_{n}\left(t, x^{\prime}\right)<d_{n}(t, z)$. If the vertex t is in the same star as y^{\prime} or z, then $\rho_{n}\left(t, x^{\prime}\right) \geq 3$ since $\rho_{n}\left(y^{\prime}, x^{\prime}\right) \geq 4$. However, now $d_{n}(t, z) \leq 3 \leq \rho_{n}\left(t, x^{\prime}\right) \leq d_{n}\left(t, x^{\prime}\right)$. Thus, t is not in the same star as y^{\prime} or z, and we have

$$
\begin{aligned}
d_{n}\left(t, y^{\prime}\right)-1 & \leq d_{n}(t, z) \leq d_{n}\left(t, y^{\prime}\right)+1, \\
d_{n}(t, z)-1 \leq d_{n}\left(t, y^{\prime}\right) & \leq d_{n}(t, z)+1 .
\end{aligned}
$$

If $d_{n}\left(t, y^{\prime}\right)<d_{n}\left(t, x^{\prime}\right)$, then $d_{n}(t, z) \leq d_{n}\left(t, y^{\prime}\right)+1 \leq d_{n}\left(t, x^{\prime}\right)$, a contradiction. Thus, we have $d_{n}\left(t, y^{\prime}\right) \geq d_{n}\left(t, x^{\prime}\right)$.

We denote $u=\alpha(t)$. If $u \in J$, then $d_{m}(u, y)=d_{n}\left(t, y^{\prime}\right)$ and $d_{m}(u, x)=$ $d_{n}\left(t, x^{\prime}\right)-1$. Consequently, $d_{m}(u, x) \leq d_{n}\left(t, y^{\prime}\right)-1<d_{m}(u, y)$ and (1) is satisfied for x and y.

Suppose then that $u \in I$. Now, $d_{m}(u, y)=d_{n}\left(t, y^{\prime}\right)-1$ and $d_{m}(u, x)=$ $d_{n}\left(t, x^{\prime}\right)$. If $d_{m}(u, x)<d_{m}(u, y)$, then (1) is again satisfied. Assume that $d_{m}(u, x) \geq d_{m}(u, y)$. Since there are at least two stars between x and y, a shortest path $u-y$ cannot go through the star that contains x. Consequently, there is no shortest path $t-y^{\prime}$ that goes through the star that contains x^{\prime}. If there is a shortest path $t-y^{\prime}$ that goes through the star that contains z, then we have $d_{n}\left(t, y^{\prime}\right)=d_{n}(t, z)+1$ and

$$
d_{m}(u, y)=d_{n}\left(t, y^{\prime}\right)-1=d_{n}(t, z)>d_{n}\left(t, x^{\prime}\right)=d_{m}(u, x) .
$$

Thus, u satisfies (1) for x and y. Suppose then that there is no shortest path $t-y^{\prime}$ that goes through the star that contains z. The shortest paths $t-y^{\prime}$ and $s-y^{\prime}$ can coincide only in the star that contains y^{\prime}. Consequently, the shortest paths $u-y$ and $r-y$ in J_{m} can coincide only in the star that contains y. As we have seen before, the shortest paths $r-x$ and $r-y$ can coincide only in the star that contains r, and the shortest paths $u-y$ do not go through the star that
contains x. Thus, the shortest paths $u-y, u-x, r-x$ and $r-y$ can coincide only in the stars that contain x, y, r or u (see Figure 5 for an example of this situation). Consequently, we have

$$
\begin{aligned}
d_{m}(r, x)+d_{m}(u, x) & \leq \rho_{m}(r, x)+2+\rho_{m}(u, x)+2=\rho_{m}(r, u)+4 \\
& \leq l-4+4=l \\
d_{m}(r, y)+d_{m}(u, y) & \geq \rho_{m}(r, y)+\rho_{m}(u, y)=m-\rho_{m}(r, u) \geq l+5
\end{aligned}
$$

Thus, $d_{m}(r, x)+d_{m}(u, x)<d_{m}(r, y)+d_{m}(u, y)$. Since $d_{m}(r, x)=d_{m}(r, y)$, we have $d_{m}(u, x)<d_{m}(u, y)$. Using similar arguments we can show that there exists some $u^{\prime} \in R$ such that $d_{m}\left(u^{\prime}, y\right)<d_{m}\left(u^{\prime}, x\right)$.

References

[1] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalák and L.S. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006) 2168-2181.
https://doi.org/10.1109/JSAC.2006.884015
[2] J. Cáceres, M.C. Hernando, M. Mora, I.M. Pelayo and M.L. Puertas, On the metric dimension of infinite graphs, Discrete Appl. Math. 160 (2012) 2618-2626. https://doi.org/10.1016/j.dam.2011.12.009
[3] J. Cáceres, M.C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara and D.R. Wood, On the metric dimension of Cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423-441.
https://doi.org//10.1137/050641867
[4] G. Chartrand, L. Eroh, M.A. Johnson, and O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113. https://doi.org/10.1016/S0166-218X(00)00198-0
[5] C.J. Colbourn and J.H. Dinitz, (Ed(s)), Handbook of Combinatorial Designs, Second Edition, in: Discrete Math. Appl. (Chapman \& Hall/CRC, 2007). https://doi.org/10.1201/9781420010541
[6] A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, The k-metric dimension of the lexicographic product of graphs, Discrete Math. 339 (2016) 1924-1934. https://doi.org/10.1016/j.disc.2015.12.024
[7] A. Hakanen, V. Junnila and T. Laihonen, The solid-metric dimension, Theoret. Comput. Sci. 806 (2020) 156-170. https://doi.org/10.1016/j.tcs.2019.02.013
[8] A. Hakanen and T. Laihonen, On $\{\ell\}$-metric dimensions in graphs, Fund. Inform. 162 (2018) 143-160.
https://doi.org/10.3233/FI-2018-1718
[9] F. Harary and R. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[10] M. Imran, S. Bokhary, A. Ahmad and A. Semaničová-Feňovčiková, On classes of regular graphs with constant metric dimension, Acta Math. Sci. Ser. B (Engl. Ed.) 33 (2013) 187-206. https://doi.org/10.1016/S0252-9602(12)60204-5
[11] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not tait colorable, Amer. Math. Monthly 82 (1975) 221-239. https://doi.org/10.1080/00029890.1975.11993805
[12] C.X. Kang, I.G. Yero and E. Yi, The fractional strong metric dimension in three graph products, Discrete Appl. Math. 251 (2018) 190-203. https://doi.org/10.1016/j.dam.2018.05.051
[13] A. Kelenc, N. Tratnik and I.G. Yero, Uniquely identifying the edges of a graph: The edge metric dimension, Discrete Appl. Math. 251 (2018) 204-220. https://doi.org/10.1016/j.dam.2018.05.052
[14] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217-229. https://doi.org/10.1016/0166-218X(95)00106-2
[15] T. Laihonen, The metric dimension for resolving several objects, Inform. Process. Lett. 116 (2016) 694-700. https://doi.org/10.1016/j.ipl.2016.06.002
[16] P.J. Slater, Leaves of trees, in: Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congr. Numer. 14 (1975) 549-559.

Received 10 March 2020
Revised 15 September 2020
Accepted 15 September 2020

[^0]: ${ }^{1}$ Parts of this article have been presented in the 9th Slovenian International Conference on Graph Theory (Bled, 2019) and the Bordeaux Graph Workshop (Bordeaux, 2019).
 ${ }^{2}$ Corresponding author. Research partially funded by the Magnus Ehrnrooth foundation.
 ${ }^{3}$ Partially supported by grants MINECO MTM2015-63791-R and RTI2018-095993-B-I00.

